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SLEI3D: Simultaneous Exploration and Inspection via Heterogeneous

Fleets under Limited Communication
Junfeng Chen1, Yuxiao Zhu2, Xintong Zhang2, Bing Luo2, and Meng Guo1

Abstract—Robotic fleets such as unmanned aerial and ground
vehicles have been widely used for routine inspections of
static environments, where the areas of interest are known
and planned in advance. However, in many applications, such
areas of interest are unknown and should be identified online
during exploration. Thus, this paper considers the problem of
simultaneous exploration, inspection of unknown environments
and then real-time communication to a mobile ground control
station to report the findings. The heterogeneous robots are
equipped with different sensors, e.g., long-range lidars for fast
exploration and close-range cameras for detailed inspection.
Furthermore, global communication is often unavailable in such
environments, where the robots can only communicate with
each other via ad-hoc wireless networks when they are in
close proximity and free of obstruction. This work proposes
a novel planning and coordination framework (SLEI3D) that
integrates the online strategies for collaborative 3D exploration,
adaptive inspection and timely communication (via the intermit-
tent or proactive protocols). To account for uncertainties w.r.t.
the number and location of features, a multi-layer and multi-
rate planning mechanism is developed for inter-and-intra robot
subgroups, to actively meet and coordinate their local plans.
The proposed framework is validated extensively via high-fidelity
simulations of numerous large-scale missions with up to 48
robots and 384 thousand cubic meters. Hardware experiments
of 7 robots are also conducted. Project website is available at
https://junfengchen-robotics.github.io/SLEI3D/.

Note to Practitioners—This paper is motivated by the chal-
lenges of coordinating large-scale heterogeneous fleets for the
inspection of large buildings and infrastructure, where heteroge-
neous UAVs must collaborate to explore unknown environments,
identify areas of interest, and more importantly, inspect specific
features (such as cracks, leaks, and other anomalies). Further-
more, these features must be relayed back to a control station
for further analyses. Existing methods predominantly focuses
on exploration tasks and often overlooks the need for close-
up inspection. Instead, a hierarchical and flexible framework is
proposed to coordinate a group of heterogeneous UAVs online for
efficient exploration, inspection and communication, subject to
an unknown number and location of features. Instead of relying
on an all-to-all communication network, limited communication
range and bandwidth are addressed by leveraging intermittent
and proactive communication protocols, i.e., to enable exchange
of local plans, explored areas, and detected features during online
execution. Via extensive simulations in a high-fidelity simulator,
the proposed framework is shown to be efficient and reliable for
large-scale simultaneous exploration and inspection tasks within
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Figure 1: (a) 6 explorers and 12 inspectors are tasked to simultane-
ously explore and inspect an unknown number of numerous features;
(b) the explorer and inspectors within the same subgroup coordinate
for the inspection tasks; (c) the mobile ground station actively meets
with the explorers to receive the latest features; (d)-(g) snapshots of
online execution in four different large-scale scenes.

various scenes. Robustness to robot failures and communication
loss is also demonstrated. Hardware experiments over UGVs and
UAVs validate the practical relevance.

Index Terms—Heterogeneous multi-robot system, 3D explo-
ration, collaborative task planning, intermittent communication.

I. INTRODUCTION

Fleets of unmanned aerial vehicles (UAVs) and ground
vehicles (UGVs) have been deployed to perform routine main-
tenance and inspection tasks for large and remote infrastruc-
tures such as power plants [1], bridges [2], [3] and industrial
sites [4]. Such tasks are often static and repetitive, where the
sequence of areas to visit and inspect are given in advance.
However, in many applications as highlighted in Fig. 1, both
the environment and the areas of interests (AoI) are unknown a
priori, which requires the robots to simultaneously explore the
environment, identify the AoI, and then inspect the features
therein. Most existing work on collaborative exploration [5]
has focused on only the exploration task to obtain the global
map quickly, which overlooks the need for close-up inspec-
tion of certain features detected during exploration [6], e.g.,
cracks in planetary caves [7], life signs during search and
rescue [8], and zoomed images at archaeological sites [9].
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Figure 2: Overview of the proposed method, which consists of two hierarchical layers: the first layer where GCS coordinates with explorers,
and the second layer where the explorer coordinates with inspectors within each subgroup, all under limited communication.

More importantly, these work often assumes a global all-to-all
communication among the robots, which could be impractical
in many aforementioned scenes where the communication
facilities are unavailable [10] or severely degraded [11]. In
such cases, the robots can only exchange information via
ad-hoc networks subject to the line-of-sight (LOS) [12] and
proximity constraints [13]. This imposes great challenges on
the coordination of the robotic fleet as communication events,
exploration and inspection tasks are now closely dependent,
thus should be planned simultaneously [14].

Moreover, it is often essential to provide a timely update to
a mobile ground control station (GCS), regarding the progress
of exploration and inspected features, e.g., to plan for further
actions such as maintenance and repair [15]. This can be
particularly challenging without a global communication net-
work, as the GCS would lose connection whenever the robots
spread out for exploration [16]. In other words, the robots
and the GCS should actively and frequently coordinate their
communication including time, location and the content. How
to design such a flexible and efficient coordination framework
for the GCS and robotic fleets remains unsolved.

As shown in Fig. 2, this work proposes a simultaneous large-
scale exploration, inspection and communication framework
(SLEI3D) for a heterogeneous robotic fleet that operates in
unknown environments under limited communication. Given
the bounding boxes that enclose the AoI, the robots are
divided into numerous subgroups of explorers and inspectors.
As an essential component, a 3D collaborative exploration
strategy is designed for explorers with long-range Lidars
to detect AoI efficiently, based on geometric-aware frontier
generation. Allocation of the identified AoI to inspectors with
close-range cameras is then formulated as a 3D constrained
routing problem, to maximize the inspection efficiency and
ensure a safety distance. Then a prediction algorithm for the
task completion time is designed for the GCS to rapidly
collect the result of inspected features. More importantly, an
intermittent communication protocol is designed between the
GCS and the subgroups, to facilitate online data exchange and
adaptation given the updated map and the features. In contrast,
a proactive communication protocol is employed within each
subgroup, where the explorer dynamically determines the time

and location to communicate with the inspectors based on the
detected features. The efficiency and reliability of the pro-
posed framework are analyzed theoretically and validated via
extensive large-scale simulations and hardware experiments.
Up to 48 robots are deployed to explore and inspect numerous
large-scale scenes with more than 150 inspection tasks.

Main contributions of this work are threefold: (I) the
novel problem formulation of simultaneous exploration and
inspection under limited communication for heterogeneous
robotic fleets; (II) the multi-layer and multi-rate coordination
framework that co-optimizes the exploration task, the inspec-
tion task and the inter-robot communication; and (III) the
extensive large-scale simulations that validate the performance
in practical scenes. To the best of our knowledge, this is the
first work that provides such a comprehensive solution.

II. RELATED WORK

A. Multi-robot Collaborative Exploration

Autonomous exploration has a long history in robotics [17],
[18], e.g., [5] introduces an intuitive yet powerful frontier-
based method for guiding the exploration. It has been adapted
to multi-robot teams by assigning these frontiers to different
robots for concurrent exploration via e.g., distributed auc-
tion [19], multi-vehicle routing [20], optimization of infor-
mation gain in [21], and dynamic optimization of topological
graph in [22]. On the other hand, the work in [23] presents a
flooding algorithm that ensures multiple robots can explore the
entire environment without missing any area. A multi-robot
depth-first search (MR-DFS) method is proposed in [24] to
explore unknown environments encoded as a graph by parallel
search. However, these work commonly assumes that all robots
can communicate instantly and exchange information at all
times, i.e., they always have access to the same global map.
However, this is often impractical for unknown environments
where the inter-robot communication is limited in range.
Besides the above classical methods, reinforcement learning
(RL)-based approaches have also been applied to multi-robot
exploration, see [25]. They mostly focus on the design of
customized observation spaces encapsulating partial observ-
ability constraints and novel reward functions to improve
exploration efficiency. Therefore, many recent work combines
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the planning of inter-robot communication and autonomous
exploration [26]. the work in [27] adopts fully-connected net-
works at all time, while radio dropplets are utilized in [28] as
extended communication relays between robots. Nonetheless,
these work considers only the task of collaborative exploration,
without addressing the inspection tasks of certain features.

B. Autonomous Inspection
Autonomous inspection can already be found in various

applications via different sensors, e.g., [8]. Such tasks involve
generating a set of viewpoints based on the 3D structure and
the sensor intrinsics, which are then assigned to the robots for
inspection. A skeleton-based space decomposition method is
proposed in [29] followed by a travel salesman problem (TSP)
algorithm. The work in [30] generates via-points and path
primitives using voxel dilation or subtraction, and employs
a primitive coverage graph (PCG) to optimize the collective
paths. However, these work primarily focuses on single-robot
exploration strategies and is not directly applicable to multi-
robot systems.

The work in [31] employs random sampling in combination
with potential fields to generate candidate viewpoints, which
are allocated to a fleet of UAVs by solving an integer optimiza-
tion problem. Moreover, the Multi-UAV Coverage Path Plan-
ning for Inspection (MU-CPPI) algorithm in [32], addresses
the allocation problem of viewpoints by formulating as a set-
covering vehicle routing problem (SC-VRP). This approach
builds on an exploration-then-inspection framework, where
UAVs first fully explore the environment to construct a prior
map, followed by dedicated inspection path planning based
on the acquired data. This decoupling often leads to low effi-
ciency of inspection. To tackle this, simultaneous exploration
and photographing framework (SOAR) is proposed in [33],
where SOAR employs LiDAR-equipped explorers to detect
uncovered areas and generate inspection viewpoints at surface
frontiers, while camera-equipped photographers are assigned
to these viewpoints via solving a Consistent Multiple Depot
Multiple Traveling Salesman Problem (Consistent-MDMTSP).
However, it relies on the persistent all-to-all communication
between UAVs and a static ground control station (GCS) for
global task allocation. Furthermore, the framework designates
a single explorer as the sole frontier detector, yielding a
computational bottleneck in large-scale environments. The
most relevant work [34] called CARIC, introduces a hierar-
chical strategy for simultaneous exploration and inspection in
multi-robot systems. CARIC partitions robots into specialized
teams assigned to subregions, where they perform local tasks
and relay inspection results to a static GCS through line-of-
sight (LOS) communication. However, CARIC enforces inter-
robot connectivity by pre-defining communication points on
rectangular bounding boxes, a method that cannot be applied to
irregular bounding boxes with non-convex internal structures
or to scenarios involving a dynamic GCS that interacts with
multiple teams of heterogeneous UAVs.

C. Multi-robot Coordination under Limited Communication
The key challenge in multi-robot coordination under com-

munication constraints, is to determine when and where

inter-robot communication should occur, with the message
content tailored to different purposes. This issue arises not
only in cooperative exploration [35], but also in cooperative
patrolling [36], and coverage planning [37]. Different commu-
nication protocols have been proposed, e.g., the work in [38]
proposes the meeting-merging-mission protocol for all robots,
by formulating a constrained integer optimization problem
to determine the rendezvous points and the meeting time.
In related work in [16] presents the protocol of distributed
intermittent communication, by solving iteratively multiple
vehicle routing problems with time window (MVRP-TW). The
most relevant work [34] addresses the LOS communication
constraints by choosing communication points on regular
bounding boxes, which is not applicable to irregular structures.
However, these work primarily assumes a uniform purpose.

III. PROBLEM DESCRIPTION

A. Model of Workspace and Robots

Consider a group of N robots N fi t1, ¨ ¨ ¨ , Nu that collab-
orate in a common, unknown and bounded workspace W Ă

R3. It is assumed that the bounding size and shape of the
workspace is known a priori. Each robot i P N has a
state xi P R3 and the system state is given by the stacked
vector X fi rxis P X . Due to the safety constraints such as
inter-robot and robot-obstacle collision avoidance, the system
state is restricted to a safety set pX Ă X . There are two types of
robots N fi Ne Y No with explorers Ne and inspectors No.
Each robot i P N can perform SLAM locally and navigate
within its map safely without colliding with other robots or
detected obstacles. Denote by

psg fi Naviippi, pg, Miq, (1)

as the navigation module [39] that guides robot i from its
current pose pi P W to a target pose pg P W via the path psg

within its local workspace map Mi, while ensuring that psg Ă
pX . Each pair of robots can exchange data via ad-hoc wireless

communication networks, subject to the line-of-sight (LOS)
and limited-range constraints. Denote by

pD`
i , D

`
j q fi CommijpDi, Djq, (2)

as the communication module that robots i, j P N update their
local data Di and Dj via communication if their LOS is not
blocked by obstacles in W , and their relative distance is within
their communication range, denoted by rij ą 0.

In addition, there is a mobile GCS which has a unique
index 0, which is only responsible for sending and receiving
data and does not undertake the role of communication man-
ager. It follows the same navigation module in (1), and has
the same communication constraints with other robots in (2),
i.e., the communication range is given by r0i ą 0, @i P N .
Similarly, the local map at the GCS is denoted by M0 and
local data by D0, For brevity, denote by N` fi t0u Y N .

B. Exploration and Inspection

Each explorer i P Ne can update its local map via the
exploration module

M`
i fi Exploreippi, Mi, Wq, (3)
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where M`
i is the updated local map. For instance, the oc-

tomap [40] can be constructed online via lidars. Moreover,
there are Q ą 0 features of interest in the workspace,
denoted by F fi tfq, @q P Qu. Given the updated map, each
explorer i P Ne can identify a set of potential Areas of Interest
(AoI) in its local map that contains several features, through
a perception system that integrates 3D reconstruction from
fused visual-depth images, enhanced by real-time semantic
segmentation and accelerated object detection [41], [42]. This
detection process is formalized via the feature fusion module:

␣

pfq, ϕqq
(

fi FitipMiq, (4)

where ϕq Ă Mi is the AoI that might contain feature fq P F .
Each inspector i P No can inspect an AoI ϕq in close

range, i.e., to further determine whether the feature fq exists
within ϕq and its state, via the inspection module:

pD`
i , sq, tqq fi Inspectippi, fq, ϕqq, (5)

where sq P RL is the grounded representation of feature fq
with dimension L ą 0, such as positions, images and point
clouds; tq ą 0 is the duration of inspecting feature fq; and
the local data D`

i is updated with the inspection results.
The GCS is required to collect data from the robotic fleet

regarding the progress of exploration and inspection. The data
collection process follows the same communication protocol
as in (2) to update its local data D0.

Example 1. As shown in Fig. 1, the archaeological mission
considered in the simulation deploys 6 large UAVs as explorers
with high-resolution Lidar to construct the global map of the
entire site; 12 small UAVs as inspectors with cameras to take
close-up images of numerous potential features; and 1 GCS
to gather, coordinate and update features from the fleet. ■

C. Problem Formulation

The local plan of each robot i P N` is given by a sequence
of navigation and various actions, i.e.,

ξi fi p1
i a

1
i ¨ ¨ ¨pt

ia
t
i, (6)

where pt
i P W is the sequence of waypoints; and ati is

the sequence of actions, i.e., exploration or communication
for explorers i P Ne; inspection or communication for
inspectors i P No and communication for the GCS. The
planning objective is to design the exploration, inspection and
communication strategy for the robotic fleet, such that the total
time of gathering all features by the GCS is minimized, i.e.,

min
tξiu

T

s.t. W Ď M0pT q; (7a)
sq Ď D0pT q, @q P Q; (7b)

xptq P pX , @t P r0, T s; (7c)
(1) ´ (5), @i P N ; (7d)

where T ą 0 is the duration of the mission to be minimized;
the constraint (7a) ensures that the local map M0 of the GCS at
time t “ T contains the entire workspace; the constraint (7b)
requires that the inspection results of all features within the

entire workspace are obtained in the local data D0pT q of
the GCS; and the other constraints (7c), (7d) ensure that
the fleet follows the navigation, exploration, inspection and
communication modules as described earlier.

IV. PROPOSED SOLUTION

A. Overview of Proposed Method

The proposed method tackles above optimization problem
in (7) via a multi-layer and multi-rate coordination framework
that simultaneously co-optimizes the collaborative behaviors
of GCS, explorers and inspectors. As illustrated in Fig. 2, the
robotic exploration efficiency is enhanced by constraining the
search space with prior knowledge regarding the distribution
of AoI: bounding boxes B fi tBiu Ă W that encapsulate
clusters of internal architectures. However, this framework
can also be applied to fully unknown workspace without
any prior information, via a prior-free exploration module
described in the sequel. Given BBoxes, the GCS is responsible
for receding-horizon allocation of bounding boxes (BBoxes)
denoted as B fi tB1, B2, ¨ ¨ ¨ u Ă W , reassigning the subgroup
to other unfinished BBoxes, and collecting both map informa-
tion M and inspection results of features S fi ts1, s2, ¨ ¨ ¨ u.
Initially, GCS divides all robots into multiple subgroups based
on the number of explorers, BBoxes and the robotic sensing
capabilities. Then, each subgroup is assigned to the nearest
BBox using rolling assignment algorithm as described in the
sequel. Furthermore, the proposed method adopts a two-layer
communication structure, i.e., the first layer coordinates the
GCS and subgroup at a low frequency, while the second layer
manages the intra-group collaboration in higher frequency.

1) Layer of GCS-to-SubGroups: As for the GCS-to-
SubGroup layer, an intermittent communication protocol is
designed to facilitate the coordination between GCS and
explorers, mainly focusing on three aspects: (I) Management
of BBoxes. The GCS informs the location of BBoxes to
the explorer of the subgroup, and explorer reports the com-
pletion status of BBoxes back to GCS. The rolling assign-
ment algorithm is applied by GCS to assign any remaining
BBoxes to the nearest subgroup to accelerate overall mission.
(II) Collection of inspection results. Inspectors transmit their
inspection results S to the explorer, which then forwards
these results to GCS along with the exploration map M.
(III) Coordination of meeting time and location. GCS and the
explorer negotiate the time and location of their next meeting
by utilizing the prediction algorithm for task completion time.
To further quantify the efficiency of task execution, the metrics
to measure idle time associated with GCS and explorers are
introduced. Specifically, τ0 denotes the time GCS spends
waiting to meet the explorer. For each explorer i P Ne, the
idle time is defined as τi fi τ´

i Y τ`
i , where τ´

i denotes the
travel time to the meeting location with GCS or the inspectors,
and τ`

i is the waiting time at the meeting location before the
meeting starts. Detailed descriptions are given in Sec. IV-B.

2) Layer of SubGroups: A proactive communication pro-
tocol within a subgroup is proposed to coordinate the collab-
oration between explorer and inspectors, under limited com-
munication. It contains two main components: (I) Allocation
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Figure 3: Intermittent communication between GCS and explorers.
of AoIs. The explorer assigns detected AoIs to the inspectors.
(II) Planning for inspection trajectories and relaying inspection
results. Inspectors relay their inspection results and their
planned trajectories to the explorer, to coordinate their next
meeting events. To evaluate the efficiency of this intra-group
coordination, the idle time τj fi τ´

j Y τ`
j is introduced as

the efficiency metrics for each inspector j P No, where τ´
j is

the idle period when no features are available for inspection,
and τ`

j is the travel time to the features.
Given the above multi-layer framework and the coordination

strategies, the original problem in (7) is reformulated to
minimize the total idle time of all robots, subject to the same
constraints, i.e., the objective function is re-stated as follows:

mintξiu

␣

ÿ

iPN`

τi
(

, (8)

where τi is the idle time for each robot i P N` as defined
above. Note that minimizing T in (7) can be achieved by
minimizing the total idle time, i.e., maximizing the mission
efficiency for exploration, inspection and communication.

B. Layer of GCS-to-SubGroups
1) Subproblem Formulation: To ensure data collection

online, the GCS and subgroups are required to meet and
communicate frequently via an intermittent communication
protocol under the communication module Comm0i, i P Ne

in (2). Denote by C fi C1C2 ¨ ¨ ¨ the sequence of commu-
nication events, where Cm “ ppcm, tcmq represents the m-
th communication between GCS and the explorers within
each subgroup; pcm and tcm are the location and time for
the m-th communication. Then, the protocol of intermittent
communication is as follows: (I) GCS can communicate with
the explorers when they satisfy the LOS and communication
range; (II) during each communication, they determine locally
the next meeting time and location. Then they depart and do
not communicate until the next meeting. This procedure is
repeated until termination, as shown in Fig. 3. Under this
protocol, the idle time τi of the explorers i P Ne mainly
originates from the travel time τ´

im
from exploration to the

meeting location pcm at the predefined time tcm, and the waiting
time τ`

im
for the GCS. On the other hand, the idle time τ0m of

the GCS is the waiting time for the explorer to arrive at pcm
for the m-th communication. Therefore, the objective in (8) is
to minimize the total idle time for explorers and GCS.

Problem 1. Determine the optimal plan tξi, i P t0u Y Neu

such that the total idle time for the explorers and GCS is min-
imized, i.e., mintξiu

řM
m“1p

ř

iPNe
τim ` τ0mq, where M ą 0

Figure 4: BBoxes Construction via the vertical buildings (left) for
two scenarios; Adaptive BBox partition without any priors (right).

is a predefined planning horizon as the number of communi-
cation rounds ahead. ■

To tackle Problem 1, a parametric method for BBoxes
construction is proposed, as illustrated in Fig. 4 (a). For each
building, its principal axis-aligned footprint BF

i Ă R2 is
extracted from prior structural data or low-resolution scans.
This footprint is then extruded vertically with a safety margin
δz P rδmin, δmaxs to form the cubic bounding box Bi fi

BF
i ˆ rzbase ´ δz, ztop ` δzs, where zbase and ztop denote

the structure’s elevation bounds. The complete search space
is defined as B fi

ŤN
i“1 Bi Ă W , effectively encapsulat-

ing all surface-adjacent subspaces within ϵ-neighborhoods of
building envelopes. This construction enables robotic fleets
to execute surface-normal trajectory planning while avoiding
computationally prohibitive full 3D reconstructions. For sce-
narios lacking prior structural knowledge, the system initiates
an adaptive bounding box generation process, as detailed in
Section IV-E5. Then, a predictor for task completion time is
first proposed to estimate the time needed for the explorers
to explore each BBox Bi P B, such that GCS can schedule
the next communication event. Then, an exploration algorithm
named FF3Ep¨q is proposed for the explorers to arrive at
the meeting location pcm at time tcm, thereby minimizing the
waiting time τ0. Lastly, an algorithm is proposed for the GCS
to coordinate the communication events with the explorers, to
reduce the waiting time τ`

i .
2) Prediction of Task Completion Time and Planning for

Next Communication Event: An explorer i P Ne first explores
for a user-defined time teim ă Ei, during which it fits a set
of features Fim by (4), and receives the inspection results of
features Sim . Then, explorer i estimates the time needed to
complete the exploration of the entire BBox Bi, which serves
as the next communication time tcm`1, i.e., the predictor for
task completion time as follows:

tcm`1 “

ˆ

VBi

|Sim |

˙

¨

ˆ

|Fim |

V m
Bi

˙

¨ teim , (9)

where Sim Ă S is the set of inspection results, received by
explorer i during the m-th communication; VBi

ą 0 is the
total volume of BBox Bi, while V m

Bi
represents the volume that

has been explored by explorer i by the m-th communication.
If no features are received, i.e., Sim “ H, the communi-
cation time tidealm`1 is approximated by the ratio of explored
volume, i.e., VBi

teim{V m
Bi

. In addition, the location pcm`1 is
chosen among the four corner points of the BBox Bi to
the current location of explorer i, such that the estimated
arrival time by the A‹ algorithm following the navigation
module Navip¨q in (1) is closest to the newly planned com-
munication time tcm`1. Note that other prediction algorithms
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Figure 5: Fast frontier-based exploration and local adaptation of the
exploration strategy tpt

iu by the explorer.

than (9) can be integrated into the proposed framework, e.g.,
regression of existing data.

Remark 1. Different from the work [16] where the GCS
communicates with all explorers in every round, the proposed
method schedules communications based on the predicted time
of task completion, thus eliminating the need for the GCS to
communicate with all explorers in a predefined order. ■

3) Fast Frontier-based 3D Exploration: With a slight abuse
of notation, the current local plan of explorer i is given by:

ξipmq fi p1
i a

1
i ¨ ¨ ¨pt

ia
t
i ¨ ¨ ¨ pcmami , t ď tcm, (10)

where pcm, tcm are the confirmed m-th communication be-
tween the GCS and explorer i; ami is the communication
action with GCS; and pt

i, a
t
i are the waypoints and actions

of exploration, which should be optimized to maximize the
explored workspace within the communication time tcm. As
illustrated in Fig. 5, More specifically, denote by pξipmq fi

pp1
i a

1
i ¨ ¨ ¨ ppt

ia
t
i ¨ ¨ ¨ ppcmacm as the revised local plan, where tppt

iu

are the updated waypoints and ppcm are the newly-added
waypoints to the meeting location pcm. Thus, the waiting time
for explorer i is given by τ`

i “ pξipp
c
mq ´ tcm, where pξipp

c
mq

is the estimated time of arriving at pcm.

Problem 2. Determine the local plan pξipmq such that: (I)
the explored area is maximized within the communication
time tcm; (II) the waiting time τ`

i is minimized. ■

To begin with, it is worth noting that these two objectives
above are often conflicting. Existing algorithms [43] based on
TSP or TSP-TW can not be directly applied as not all frontiers
have to be visited. Therefore, the proposed solution under the
module Explorep¨q in (3) is summarized in Alg. 1. At each
round m, explorer i first checks whether it has enough time tcm
to reach the meeting location pcm in Lines 14-16. If T 1 ą 0
does not hold, then H is returned in Line 20. Otherwise, the
algorithm proceeds to find the optimal waypoints pξ‹

i via the
function planPathp¨q in Line 18-19. More specifically, it
checks if the total time spent plus the time needed to reach pcm
exceeds the agreed meeting time tcm in Line 18. If so, this
function returns the current path pξ1 in Line 3. Otherwise, it
initializes the optimal path pξ‹ as the current path pξ1 in Line 4.
Then, it iterates through each frontier P P Γ in Line 5, by
computing the distance D and the travel time TP

p0
, from its

position p0 to P in Lines 6-7. Afterwards, the set of visited

Algorithm 1: Fast Frontier-based 3D Exploration:
FF3Ep¨q

Input: Current position pi, Frontiers set Γ, Meeting
location pcm, Meeting time tcm, Robot speed vi

Output: Optimal path pξ‹
i

1 Function planPath(p0, pξ1, T`):
2 if T` ` Tpck

ą tck then
3 return pξ1 ;
4 pξ‹ Ð pξ1;
5 for each point P P Γzpξ1 do
6 D Ð GetDistancepp0, P q ;
7 TP

p0
Ð D{vi ;

8 pξ1 Ð pξ1 ` rP s ;
9 T` Ð T` ` TP

p0
;

10 pξ` Ð planPathpP, pξ1, T`q ;
11 if distppξ`q ą distppξ‹q then
12 pξ‹ Ð pξ` ;
13 return pξ‹ ;
14 Dc

m Ð GetDistanceppi, p
c
mq ;

15 Tpcm
Ð Dc

m{vi ;
16 T 1 Ð tcm ´ Tpcm

;
17 if T 1 ą 0 then
18 pξ‹

i Ð planPathppi, rs, 0q ;
19 pξ‹

i Ð pξ1
i ` rpcms ;

20 return pξ‹
i ;

frontiers pξ1 is updated along with the total time spent T`,
before calling planPathp¨q again in Line 10. Lastly, if the
resulting path pξ` is longer than pξ‹, the optimal path pξ‹

i is
updated accordingly in Lines 11-12. Lastly, pξ‹

i from Alg. 1 is
returned as the optimized solution for Problem 2.

The time complexity of Alg. 1 can be analyzed step by
step based on its recursive structure. During initialization in
Lines 14- 16, it mainly computes the distance and time to reach
the meeting location pcm, thus the complexity is Op1q. Then,
during the recursive path planning, function planPathp¨q

explores all possible frontier points P P Γ by calling it-
self recursively in Line 10. The worst-case time complexity
is Op|Γ|!q, where |Γ| is the total number of frontiers. Lastly,
to update the optimal path in Line 3 has a complexity of Op1q.
Therefore, the overall complexity of Alg. 1 is given by Op|Γ|!q.

4) Communication Coordination for GCS: To minimize the
idle time τ0 for GCS, it is sufficient to arrive at the meeting
location pcm within the predefined time tcm. Therefore, a TSP-
TW problem is formulated for GCS to optimize the sequence
of meetings with the explorers in each communication m P M .
Detailed description is omitted due to limited space. In sum-
mary, the subproblem of coordinating GCS and explorers to
minimize the idle time τi and τ0 is solved by the proposed
prediction algorithm of task completion time, 3D exploration
algorithm and the intermittent communication protocol. It is
worth noting that our framework does not require explicit
calibration of the global localization between the GCS and
explorers, via external positioning systems such as GPS or
RTK. In addition, any pre-calibrated 3D coordinate in the
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Figure 6: Proactive communication between an explorer (in blue)
and the inspectors (in yellow) within a subgroup.

exploration area could serve as absolute references for GCS-
to-explorer communications without additional calibration.

Lemma 1. Under the proposed coordination strategy for the
layer of GCS-to-SubGroups, all features F in the BBoxes can
be fitted by explorers in finite time, of which the results can
be collected by the GCS in finite time.

Proof. During exploration, the explorers explore and fit fea-
tures Fim via Alg. 1. The planning module planPathp¨q in
Line 1 ensures that all frontiers within a BBox Bi are visited
and the whole BBox is fully explored. Since the number of
frontiers |Γ| in each BBox is finite, the total time required to
explore any BBox is also limited. Furthermore, all BBoxes can
be fully explored by the explorers via the rolling assignment
algorithm. Thus, all features F in the environment can be fitted
in finite time. On the other hand, the communication protocol
schedules the next communication event ppcm, tcmq, for which
the explorers would adhere by Line 17. Similarly, the GCS
ensures a timely arrival at the meeting event via solving the
TSP-TW problem. During each communication, explorers can
transmit all detected features to GCS. Since both the number
of features and communication rounds are finite, the GCS can
collect all results in finite time. ■

C. Communication-aware Exploration and Inspection

To minimize the idle time within the subgroup, a simulta-
neous exploration and inspection algorithm is proposed under
the limited communication conditions.

1) Subproblem Formulation: Different from the scheme of
intermittent communication, a novel proactive communication
protocol under the module Commijp¨q in (2), is designed for the
explorer i P Ne and the inspectors N i

o fi t1, ¨ ¨ ¨ ,Ku Ă No

within the subgroup. The protocol has two steps: (I) the
explorer i communicates with the inspectors in N i

o under
the LOS constraints; (II) during each communication, the
explorer determines not only the time and location of the
next meeting with the inspectors under the energy constraint,
but also assigns the fitted features to the inspectors. i.e., the
features pFj Ă F to inspect and the accordingly updated local
plan ξ`

j of each inspector j P N i
o. As illustrated in Fig. 6, this

procedure is repeated until all features are fitted and inspected.

Definition 1 (Plan of Subgroup). The overall plan of the
subgroup is defined as a 4-tuple:

Ξi fi p pNi, ci, φi, ξiq, (11)

Figure 7: Main components of the proposed SOEI algorithm in
Alg. 2: (a) the initialization of a subgroup including the explorer (in
blue) and the inspectors (in yellow); (b) the sampling of candidate
meeting locations tpju (in red); (c) the optimization of meeting
sequence ci including meeting time and locations (in brown); and (d)
the allocation of fitted features F`

i (in red stars) to the inspectors pNi.

where pNi Ă N i
o is the subset of inspectors to communicate

with; ci fi tptj , pjq,@j P pNiu is the set of meeting time and
location for each inspector in pNi; φi fi t pFj ,@j P pNiu is the
set of new features allocated to each inspector, given the set
of fitted features F`

i ; and ξi fi tξ`
j ,@j P pNiu is the set of

updated local plans for all inspectors. ■

Problem 3. Determine the plan of the subgroup Ξi as defined
in (11) such that the total idle time of the explorer and
inspectors within the subgroup is minimized, namely:

min
Ξi

!

τi `
ÿ

jPN i
o

pτ`
j ` τ´

j q

)

, (12)

where τ`
j is the idle time of inspector j P N i

o due to waiting;
and τ´

j is the remaining idle time excluding τ`
j . ■

2) Efficient 3D Exploration and Inspection under Limited
Communication: An efficient exploration and inspection algo-
rithm encapsulated as SOEIp¨q is proposed to solve the above
problem. As illustrated in Fig. 7 and summarized in Alg. 2, it
consists of three main parts as described in the sequel.

(I) Choice of inspectors. The optimal subgroup solution Ξ‹
i

and the idle time τΞ‹ are initialized in Line 1. Then, the
algorithm iterates over each subset pNi Ă N i

o, in order to
evaluate the associated idle time. Note that if no inspectors
are selected, the explorer would continue exploration. (II)
Meeting Sequence. A sampling-based algorithm is proposed to
determine the optimal sequence of meeting events between the
explorer and the inspectors in pNi. A set of sample points pΩj

are generated around the executing local plan tξ´
j u of each

inspector, subject to the LOS and range communication con-
straints. Denote by pc1 fi tc1

iu a set of potential sequences
of meeting events, where each c1

i is formed by selecting
one sample from pΩj for each inspector and traversing the
samples in a timed order. Afterwards, the optimal trajectory
for the explorer to visit these samples can be obtained via
the navigation module Navip¨q in (1), with adaptive velocity
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to minimize the total idle time τΞ` “ pτi `
ř

jPxNi
τ`
j q. As

shown in Line 5, it generates the actual schedule of meeting
events ci and the associated idle time τΞ` as follows:

minc1
i

τΞ`

s.t. τ´
i “ A‹ptpjuq, τ`

i “ tj ´ ξ´
j ppjq; (13a)

τ`
j “ tj ´ t

e´

j , @j P pNi, pj P pΩj , (13b)

where t
e´

j is the end timestamp of executing local plan ξ´
j

for inspector j; ξ´
j ptjq returns location of inspector j at

time tj , while ξ´
j ppjq outputs the timestamp for inspector j

at location pj . Furthermore, constraint (13a) calculates the
travel idle time of the explorer i using A‹ algorithm and the
waiting time of the inspector j; (13b) quantifies the waiting
idle time of the explorer i. Since non-analytic constraint (13a)
cannot be directly applied in the traditional optimization
tools, thus a genetic algorithm is leveraged by following the
standard steps: the potential sequence c1

i is jointly encoded as
a chromosome; the fitness function is defined as the reciprocal
of total idle time, i.e., Fitness “ 1{τΞ` ; the constraints (13)
are enforced by the genetic algorithm; and the standard genetic
algorithm procedure [44] is followed to obtain the actual
meeting sequence ci. Finally, the total idle time τΞ` is
returned by OptMeet algorithm as Line 5. (III) Allocation
of Features. Given the confirmed meeting events, the stored
new features F` are then assigned to the inspectors and
appended to the end of their local plans. To determine the
optimal assignment and minimize idle time τΞ´ , a MVRP is
formulated and solved to obtain φi, by setting the end of local
plans as initial positions and all features in F` as positions
to visit. Once φi is obtained, the next local plans tξ`

j u are
updated by interpolating the shortest path between assigned
features, along with the total idle time τ´

j . Lastly, the total
idle time τΞ is derived by adding τΞ´ and τΞ` (Line 7). If
it is less than the current optimal idle time τΞ‹ , the optimal
subgroup solution Ξ‹

i is updated by this solution (Line 9-10).
It is important to clarify that our framework does not require
the intra-group sharing of global coordinates due to the relative
localization within the same group. Particularly, when entering
a BBox, all group members adopt the entry point as their local
origin. The explorers map the detected features (structural
elements, inspection targets) relative to this origin. Finally,
the inspectors navigate directly via these relative coordinates
without the external alignment between different groups.

3) Algorithm Summary: It is worth noting that the num-
ber of subsets pNi is combinatorial to the size of N i

o, i.e.,
Op2|N i

o |q. To generate all potential meeting sequences pc has
a factorial complexity of Op| pNi|!q. Then, to determine the
optimal sequence of meeting events ci, the genetic algorithm
has a complexity of Op| pNi|

3q. Finally, the MVRP algorithm
to allocate features has a complexity of Op| pNi|

|F`
|q.

Lemma 2. Under the proposed Alg. 2 for the layer of
SubGroups, all features F can be inspected, and the results S
are collected by the explorers in finite time.

Proof. During each communication event, the explorer assigns
the newly discovered features F` to the selected inspectors pNi

Algorithm 2: Simultaneous Optimized Exploration
and Inspection SOEIp¨q

Input: F`
i , N i

o, tξ´
j u.

Output: Ξ‹
i .

1 Ξ‹
i Ð None, τΞ‹ Ð 8 ;

2 foreach pNi Ă N i
o do

3 pc1 “ SampleLOSptξ´
j uq;

4 foreach c1
i P pc do

5 pci, τΞ` q Ð OptMeetpc1
i, tξ´

j uq by (13) ;
6 pφi, ξi, τΞ´ q Ð MVRPpci,F`, tξ´

j uq ;
7 τΞ Ð τΞ´ ` τΞ` ;
8 if τΞ ă τΞ‹ then
9 τΞ‹ Ð τΞ ;

10 Ξ‹
i Ð p pNi, ci, φi, ξiq ;

11 return Ξ‹
i ;

via the MVRP algorithm in Line 6, which ensures that each
inspector is allocated a subset of features pFj . Since the number
of features F is finite, the recursive allocation of features
guarantees all features are eventually assigned to inspectors.
On the other hand, the proactive communication protocol
guarantees that explorers actively communicate with each
inspector more than once to minimize the idle time due to
waiting. In addition, the inspectors transmit their inspection
results S to the explorer. Since the number of inspectors No

and communication events are finite, the total time needed to
collect all inspection results S is also finite. ■

D. Online Execution and Adaptation

1) Rolling Assignment of Exploration Tasks: Since the
GCS is fully aware of the location of all BBoxes B, and it
coordinates with the explorers directly in the layer of GCS-
SubGroups, it is reasonable for GCS to assign these BBoxes
to robotic fleets. Moreover, instead of assigning all BBoxes at
once, a rolling assignment strategy is adopted in a receding
horizon way, which is particularly useful as the actual structure
of BBoxes in B is unknown, making it difficult to predict
the exploration time of each BBox. In the initial phase, GCS
assigns each explorer i P Ne to the nearest BBox Bi P B.
Then, a subgroup is formed by allocating a specific number
of inspectors to each explorer, denoted by N i

o Ă No, according
to the volume VBi

of the BBox Bi, i.e.,

|N i
o| “

Z

|No|
VBi

ř

i VBi

^

, (14)

where |No| is the total number of inspectors; and t¨u represents
the floor function. During online execution, when GCS and
explorer meet at the designated location pcm, each explorer
reports the current exploration status of Bi to GCS. Once Bi

is fully explored and all inspected features are fed back, the
GCS assigns the next nearest BBox to the entire subgroup for
execution, until all BBoxes are assigned, as shown in Fig. 8.

2) Handling Mismatch of Meeting Time: Due to motion
uncertainty and tracking errors, it is possible that actual arrival
time at the designated meeting location is different from the
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Figure 8: Snapshots of the GCS-to-SubGroup layer in Scenario-A with 1 GCS, 2 explorers and 4 inspectors. At t “ 146s, BBox-5 is
reassigned to explorer 2, and BBox-3 to explorer 1 at t “ 312s.

planned meeting time, especially in unknown or complex
environment. This is called the mismatch of meeting time. To
address this challenge, a series of mechanisms are proposed:
(I) If the waiting time of GCS for an explorer exceeds a
given tolerance δ ą 0, i.e., τ0 ě δ, then GCS assumes that
this explorer fails and proceeds to communicate with the next
explorer. Conversely, if the waiting time of an explorer for the
GCS exceeds δ, i.e., τ`

i ě δ, the explorer has to wait until
the GCS arrives; (II) Within a subgroup, if the waiting time
of an explorer for an inspector exceeds δ, the explorer would
continue its local plan. Since the explorer has full knowledge
of the local plans of all inspectors, the next scheduled meeting
event is appended to the end of the local plan of this inspector.
If this tolerance is exceeded again in the next meeting, the
explorer would assume that this inspector has failed, in which
case the failure recovery mechanism is discussed in the sequel.
Last but not least, whenever scheduling conflicts may arise that
the explorer should meet with both the GCS and inspectors
in close time, higher priority is given to the GCS. This
prioritization is justified since GCS-explorer communication
occurs infrequently, whereas explorer-inspector communica-
tions happen more regularly, allowing remaining data to be
deferred to subsequent meetings.

3) Local Adaptation during Exploration: During 3D online
exploration, although the optimal path pξ‹

i of each explorer i P

Ne is synthesized given the existing frontiers via Alg. 1, new
frontiers may be generated during the exploration process,
yielding the need for local adaptation. Thus, to address this
issue, Alg. 1 can be triggered in a receding horizon manner
by adding new frontiers to the existing set and replanning
the path. This iterative re-planning process continues until the
explorer reaches the confirmed meeting location pcm within tcm.

Theorem 1. The proposed SLEI3D framework ensures that
all inspected features S are collected by the GCS in a finite
time, while minimizing the total idle time in (8).

Proof. Lemma 1 guarantees all features F are fitted by explor-
ers in finite time, while Lemma 2 ensures all features F are
allocated, inspected and transmitted to explorers by inspectors
within finite time. Under the protocol of intermittent commu-
nication, the GCS solves the TSP-TW problem to arrive at
the meeting location pcm at the scheduled time tcm, where the

explorers transmit the inspected features S. Since both the
number of features F and communication rounds are finite,
the GCS collects all inspection results S within finite time.
Furthermore, the strategy of online adaptation can effectively
mitigate delays and failures caused by uncertainties. There-
fore, the SLEI3D framework guarantees that all features F
are collected back by GCS in a finite time. On the other
hand, as re-formulated in Problem 1 algorithms of GCS-to-
SubGroups layer coordinate the meeting events between GCS
and explorers, to minimize the waiting time. As formulated
in Problem 3, algorithm SOEIp¨q coordinates the explorer and
inspectors in each subgroup, to minimize the idle time. Thus,
given the set of currently-known features, the overall plan of
the robotic fleet and the GCS minimizes the total idle time
in (8) and maximizes the efficiency to collect explored and
inspected features. This completes the proof. ■

E. Generalization

1) Robot Failures and Recovery: Consider the following
cases: (I) Failure of an explorer: Assume that explorer i fails
at tf ą 0, the GCS would wait for the explorer i at the
predefined time tcm and location pcm for a maximum waiting
time δ. Then GCS determines that explorer i has failed and
directly moves to next explorer in its local plan. Subsequently,
the meeting events of next rounds are scheduled without
considering the failed explorer. In addition, once another
subgroup has finished exploring its assigned BBox, it will be
reassigned to the BBox of the failed explorer to restart the
task of exploration and inspection, along with the remaining
inspectors in N i

o. (II) Failure of an inspector: Assume that in-
spector j P N i

o has failed at tf ą 0, explorer i within the same
subgroup would detect its failure after waiting for a maximum
duration δ. Then, explorer i would exclude inspector j from
the subgroup by updating N i

o Ð N i
oztju, after which Alg. 2

is applied to reassign the remaining inspectors.
Beyond the above measures, communication instability be-

tween robots (GCS-explorer or explorer-inspector) can be
addressed via redundancy. While the baseline mechanism
identifies failures after prolonged period of disconnections
over δ, this might overreact to transient disruptions. Thus,
a recovery mechanism at the hardware level is proposed,
i.e., each robot carries an ad-hoc mesh network that can be
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activated during communication disruption. This network can
immediately relay critical status updates while maintaining
local coordination. This integrated approach ensures resilience
against both permanent failures of robots and temporary degra-
dation of the communication network.

2) Multiple GCS: Multiple GCS units are available, such
as in large-scale scenes. In this case, the GCS is assumed to
have similar capabilities and all-time connectivity with each
other, e.g., regarding the progress of exploration and inspected
features. Regarding the communication with explorers, since
a subset of explorers is pre-assigned to communicate with
a specific GCS, the intermittent communication protocol in
Sec. IV-B should be modified by replacing the single TSP-TW
with the multiple parallel TSP-TW formulations, to generate
a local plan of navigation and communication for each GCS,
thus improving overall efficiency.

3) High-priority Features: If the features have different
priorities, e.g., some features may require immediate response,
the feature allocation module in Alg. 2 can be modified by
adding precedence constraints to the inspection tasks associ-
ated with high-priority features. Namely, algorithms similar to
the MVRP with priority or precedence constraints (MVRP-
PC) should be employed. Thus, high-priority features can be
inspected first while minimizing the total idle time.

4) Spontaneous Meeting: During execution, the GCS, ex-
plorers or inspectors, might meet at locations other than the
confirmed meeting locations, which are called spontaneous
meetings. In this case, they exchange their local data, without
coordinating the next meeting event nor modifying their local
plans, such that all confirmed meetings remain valid.

5) Fully-unknown Environment: When the prior informa-
tion regarding BBoxes is unavailable, an adaptive partitioning
method for BBoxes is proposed to dynamically allocate the
unexplored regions in W based on the real-time progress of
collaborative exploration. It should be noted that the method
relies on prior information about the environmental shape
and size, where oddly-shaped workspaces are first enclosed
by a regular bounding box before partitioning. As shown in
Fig. 4 (b), the whole space W is initially divided into |Ne|

cubic subspaces with equal volume denoted by tBju. Then,
each subgroup autonomously explores its assigned Bj via the
framework proposed above, the completion of which is notified
to the GCS. The GCS keeps track of the set of unexplored
frontiers through Ψ fi Wz

Ť

jPIcomp Bj , where Icomp is the
set of explored regions. This set Ψ is dynamically partitioned
into new set of BBoxes via iterative octree partitioning that
preserves the alignment of all axes. This iteration terminates
when Ψ “ H or minpdimpBjqq ď 10.0m. Subsequent inspec-
tions follow the procedure described in Alg. 2, which ensures
a complete coverage through hierarchical decomposition.

6) Energy-constrained Fleet Management: When the
robots have limited energy capacity and require charging,
our framework can be adopted by applying modifications
across all layers. To begin with, the robot models should
incorporate these constraints. Namely, each robot i P N
has a limited energy capacity Eiptq ď E P R`, which
evolves by 9Eiptq “ ´αi with αi ą 0 during operation, and
9Eiptq “ βi with βi ą 0 when charging at the designated

station Pchg Ă W . The charging process is triggered when
Eiptq ď E P R` and the robot is at the charging station, with
a duration tb “ pE ´ Eq{βi for a full charge. This constraint
is formally stated as: 0 ă Eiptq ď E, @t P r0, T s, @i P N .

To address the above constraint, the proposed framework is
adapted with the following three key modifications: (I) The
prediction of completion time for an assigned BBox as pre-
sented in Sec. IV-B2 must account for the duration of recharg-
ing. Consequently, the planned communication time rtcm`1

between the GCS and an explorer is modified as follows:

rtcm`1 “ tcm`1 `

R

tcm`1 ´ tcm

E ´ E

V

¨ ptb ` Tchgq, (15)

where r¨s calculates the minimum recharge cycles, Tchg is the
round-trip travel time from one of the four corner points to
the charging station Pchg and tb is the maximum charging
duration; (II) During the coordination of GCS-to-SubGroups
as described in Sec. IV-B4, the planned meeting time tcm
between the GCS and explorers should also be modified
under the following cases: (i) when the remaining energy
pE0 ´ Eq{α ě ∆tm, where ∆tm “ tcm ´ tcm´1 denotes
the time interval between two consecutive meetings, the
planned tcm remains feasible under the energy constraint. (ii) if
pE0 ´Eq{α ă ∆tm, the GCS needs an intermediate charging,
for which the meeting time is adjusted by:

t̃cm “ tcm `

R

∆tm ´ E0

E ´ E

V

¨ pT 0
chg ` tbq,

where T 0
chg denotes the round-trip travel time between the

meeting point pcm and the charging station; (III) During the
coordination within each SubGroup, the initial assignment ϕi

computed via solving the MVRP as described in Sec. IV-C2
can be reformulated to generate an energy-unconstrained rout-
ing sequence F` for each inspector, i.e., by predicting the
energy consumption along the local plan of each inspector and
inserting charging events as needed. The planned timestamps
for subsequent inspection events are shifted accordingly.

V. NUMERICAL EXPERIMENTS

To further validate the effectiveness of the proposed method,
extensive numerical experiments for large-scale systems are
conducted, of which the performance is compared against
several state-of-the-art methods. The proposed method is im-
plemented in Python3 within the framework of ROS, and
tested on a workstation with Intel(R) i9-13900KF 24-Core
CPU @3.0GHZ with a RTX-4090 GPU. Simulation videos
can be found in the supplementary material.

A. System Description

The simulated robotic fleet consists of UAVs as explorers
and inspectors, and UGVs as the GCS, which is deployed in
a light-weight simulator [45], [46]. As shown in Fig. 9, the
following four scenarios are considered. Scenario-A: 1 GCS, 2
explorers and 4 inspectors are deployed in a cluster of ancient
structures of size 60 ˆ 50 ˆ 9m3 to validate the performance
of the GCS-to-SubGroups layer as described in Sec. V-B1;
Scenario-B: 1 explorer and 3 inspectors are deployed in a large
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Figure 9: Scenarios tested in the numerical experiments: Scenario-
A with a set of small ancient structures; Scenario-B with a single
ancient structure; Scenario-C with a medium-scale city structures;
and Scenario-D with a large-scale ancient site.

and single architecture structure of size 18 ˆ 20 ˆ 15m3 to
validate the performance of the SubGroups layer as described
in Sec. V-B2; Scenario-C: 1 GCS, 4 explorers and 8 inspectors
are deployed in a medium-scale city of size 70ˆ60ˆ30m3, to
validate the performance of the overall scheme as described
in Sec. V-B3; and Scenario-D: 1 GCS, 8 explorers and 40
inspectors are deployed in a large-scale ancient site of size
120 ˆ 160 ˆ 20m3 to validate the overall performance.

To bridge the gap between theoretical validation and practi-
cal deployment in high-fidelity simulations, our experimental
framework is constructed with three meticulously designed
core modules: perception, planning, and communication. The
system implementation leverages a novel lightweight architec-
ture that diverges from conventional Gazebo-based workflows
through: (I) Perceptual realism via sensor emulation: Laser
rangefinders and RGB-D cameras are simulated with config-
urable noise models (±2cm ranging error, 5% depth distortion),
replicating Gazebo plugin functionalities while eliminating
computational overhead. (II) Environment abstraction: Opera-
tional spaces are discretized into point cloud representations
(0.1m resolution voxels) through RVIZ integration, preserving
geometric fidelity while enabling real-time collision check-
ing. (III) ROS-native interoperability: Standardized message
interfaces ensure seamless transition between simulated and
physical platforms. The system implementation details are
specified as follows: A 3D Euclidean Signed Distance Field
(ESDF) map is generated via [47] as local map, with a 5 m-
range depth camera and odometry sensor as a volumetric
map of the environment. Then, the Area of Interest (AoI)
identification pipeline concurrently processes the synchronized
data streams at 0.5 Hz: RGB images analyzed by predicting
the depth and semantic information via MiDas network and
DeepLabV3+ for 3D reconstruction of geometric features, and
object recognition by YOLOv7. Each explorer and inspector
navigates using a kinodynamic motion planner to generate
collision-free path, which contains multiple topologically dis-
tinct waypoints capturing the structural complexity of the 3D
environment, with a maximum speed of 2m{s and acceler-
ation of 2m{s2. Feature fitting, detection and inspection are
facilitated by inspectors equipped with a field-of-view (FOV)
camera, which has a left and right view of 90˝, a front view of

60˝, and a detection range of 5m. Once features are within the
FOV, the features can be fitted via Fitp¨q in (4) or inspected
via Inspectp¨q in (5) automatically by the explorers or
inspectors. Moreover, the communication within the robotic
fleet is restricted to a range of 5m and has a LOS.

B. Results

The results associated with the four scenarios are sum-
marized below, including generalization to robot failures,
multiple GCSs and high-priority features. Lastly, scalability
and robustness analyses are performed w.r.t. fleet size, various
uncertainties and different duration of inspection tasks.

1) Evaluation of the Layer of GCS-to-SubGroups: As de-
picted in Fig. 8, the scenario-A includes 1 GCS, 2 explorers
and 4 inspectors, to explore an area of 8 BBoxes. To initiate
the exploration process, the GCS assigns two inspectors to
each explorer as subgroups based on the fleet size and number
of BBoxes, using the rolling assignment strategy. Then, these
subgroups are assigned to the nearest BBoxes with an average
assignment time of 1ms. Subsequently, each explorer is guided
by Alg. 1 with an average planning time of 26ms, which
dynamically adapts the exploration path based on the current
position, velocity and the confirmed meeting events C. At the
same time, the communication coordination algorithm has an
average computation time of 3.5ms, which determines the
optimal visit sequence between the GCS and the explorers. For
instance, during the first meeting, the GCS is set to visit BBox-
1 to meet explorer 2, then proceed to BBox-2 for explorer 1,
return to BBox-1 for another interaction with explorer 2, and
finally head to BBox-5 for explorer 1 again, as shown in Fig. 8.
The prediction algorithm of the task completion time in (9)
takes on average 0.47ms, with an average prediction error
around 13.2s. The execution process can be further explained
in the following timeline. At t “ 54s, the GCS follows the
confirmed meeting event with explorer 2, and arrives early
at the meeting location of BBox-1, as shown in Fig. 11.
At t “ 80s, explorer 2 reaches the specified location to meet
with GCS. Similarly, the GCS waits for explorer 1 at t “ 97s
at the meeting location of BBox-2 earlier than the scheduled
time. At t “ 146s, explorer 1 meets with the GCS and a new
task to explore BBox-5 is assigned to it. After meeting with
GCS at t “ 312s, explorer 1 sends the inspected features, and
GCS assigns the nearest BBox-3 as the new task to explorer 1.
After t “ 788s, all 150 features are collected by the GCS.

Moreover, as illustrated in Fig. 11, the number of meetings
for each BBox is less than 3, i.e., the proposed algorithm
can accurately predict the completion time of each exploration
task. Moreover, it is worth noting that the actual arrival times
of all explorers for the meeting events are consistently earlier
than the planned meeting time, indicating that Alg. 1 can
ensure the timely arrival within the specified time window,
thus reducing the idle time for the GCS and the explorers.

2) Evaluation of the Layer of SubGroups: This section
highlights the intra-group dynamics in Scenario-A, as depicted
in Fig. 9, and the influence of different inspection time tq .

(I) Overall execution. As illustrated in Fig. 10, the robot
motion and actions within the subgroup are monitored during
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Figure 10: Evolution of the layer of SubGroups in Scenario-B consisting of one explorer and three inspectors: (a) snapshots of the planned
trajectories of the explorer and inspectors at different time instants; (b) the entire trajectories and the complete meeting events of all robots.

Figure 11: The planned and actual meeting events between the GCS
and two explorers in Scenario-A. The planned meeting time for the
GCS (blue dashed lines) aligns with the explorers (pink and purple
dashed lines), indicating the confirmed meeting event and the target
BBox. The solid lines represent the actual arrival time, which are
bound with the planned time of the same meeting by latticed areas.

the execution in Scenario-B, along with the exploration and
fitting of features. The Alg. 2 is triggered every 5s if new fea-
tures F` are discovered to optimize the subgroup solutions Ξi

with an average computation time of 1.384s. Specifically,
given the executing local plans tξ´

j u of all inspectors, the
explorer utilizes the SmapleLosp¨q function which has an
average runtime of 1.3s, while the OptMeetp¨q has an average
runtime of 0.04ms to optimize the inspectors pNi and the
meeting events ci. Subsequently, the explorer assigns the
newly-fitted features to the selected inspectors by invoking
the modified MVRPp¨q algorithm with an average runtime
of 0.08s. Lastly, the local plans tξ`

j u of the inspectors are
updated based on the executing local plans tξ´

j u and assigned
features φi, by invoking the Navip¨q with an average com-
putation time of 0.05s. During the communication phase, the
explorer transmits the allocated features φi and the updated
local plans tξ`

j u to the respective inspectors, ensuring the
consistency of tasks across the subgroup. Some representative
moments are described as follows: At t “ 57s, the explorer
decides to meet with the inspector 1 which is assigned 2
features, then with the inspector 3 which is assigned 2 features,
and finally the inspector 2 which is assigned 2 features.
At t “ 466s, the explorer meets with the inspector 3 first
which is assigned 1 feature, followed by the inspector 1
and assigned 1 feature. The explorer avoids meeting with
inspector 2 due to longer travel distance, thereby reducing
the total idle time. At t “ 736s, the explorer chooses to
meet only inspector 2, which is assigned the newly discovered

features. These features are in the proximity of inspector 2
and there are no remaining features to inspect. At t “ 801s,
the explorer meets with no inspectors, as all inspectors have
ongoing inspection tasks and are far away. Moreover, the entire
trajectories of all robots within the subgroup and the meeting
locations of the subgroup are also shown. It can be seen
that the trajectory of the explorer is rather complex due to
the online adaptation to meeting events with all inspectors,
whereas the trajectories of the inspectors are smoother as the
features are appended to their local plans incrementally.

Last but not least, the online change of the status of each
robot is shown in Fig. 12, e.g., “explore”, “travel”, “inspect”
and “wait”; the evolution of the number of “registered”,
“found”, “allocated”, and “inspected” features; and the com-
munication events between the explorer and inspectors. It
can be seen that the explorer spends 60.35% of the time to
explore and fit AoIs across the entire scenario. The inspectors
primarily travel to features for inspection with an average
waiting time of 33s. In addition, the middle figure shows that
the explorer meets with all, some or none of the inspectors
at different moments, with the average communication cycle
of 6.8s. The bottom sub-figure shows that 150 features are
fully inspected within 1006s, yielding a 100% coverage.

(II) Different Inspection Time. To evaluate the effect
of different inspection times tq on the performance of our
proposed method, we have conducted a series of experiments
with different tq , ranging from 1s to 10s. The metric to
compare includes the average number of features assigned per
meeting. The results show that the number of assigned features
monotonically decreases from 3.11 to 1.65 as tq increases
from 1s to 8s. Thus, more frequent meetings are required if
it takes shorter duration to inspect the features.

3) Full-process Simulation: To validate the complete per-
formance as shown in Fig. 13, large-scale simulations are
conducted under different sizes of workspace and robotic
fleets: Scenario-C with 1 GCS, 4 explorers and 8 inspectors,
and Scenario-D with 1 GCS, 8 explorers and 40 inspectors.
As described earlier, the two layers are integrated with dif-
ferent frequencies. In Scenario-C, the average meeting cycle
is 40.6s between GCS and explorers, and the average meeting
cycle is 6.8s between explorers and inspectors. In contrast to
Scenario-D, these rates are 63.2s and 5.5s, respectively. The
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Figure 12: Top: Evolution of the status of all robots within the subgroup in Scenario-B: explorers with exploring (deep blue), traveling
(deep orange) and meeting (green); inspectors with inspecting (light orange), traveling (pink) and waiting (cyan). Middle: Planning results
of explorers during the meetings with inspectors, represented by gray boxes. Hammer-shaped symbols with different inspectors along the
timeline indicate the sequence of planned meeting events, with the number of features assigned to each inspector. Bottom: Progression of
different status associated with the features over time: undiscovered (red), discovered by explorers (orange), assigned to inspectors (yellow),
and inspected by inspectors (green).

Figure 13: Snapshots of overall execution for Scenario-C under 1 GCS, 4 explorers and 8 inspectors (Top); and Scenario-D under 1 GCS, 8
explorers and 40 inspectors (Bottom).

rolling assignment strategy further improves the efficiency of
different subgroups by dynamically reallocating BBoxes. In
Scenario-C, the explorers complete tasks at 578s and 993s,
which are then reassigned to nearby BBoxes to minimize idle
time. Similarly, in Scenario-D, explorers are reallocated at
1163s and 2321s. On average, each explorer is assigned 2.5
BBoxes in Scenario-C and 3.3 BBoxes in Scenario-D, with an
average mission time of 529s and 513s, respectively. This indi-
cates that the proposed method can effectively balance the task
allocation for each subgroup across different scenarios. It is
worth noting that the explorers achieve a 100% success rate in
reaching meeting locations on time in both scenarios, while the
GCS occasionally experiences minor delays in Scenario-D due
to overlapping tasks in cluttered environments. Moreover, the
average number of communications between the GCS and each
subgroup is less than 3 in both scenarios, indicating that the
proposed algorithm is effective in predicting the completion
time. The layer of SubGroups also demonstrates adaptability in
complex environments, such as cluttered buildings in Scenario-
C and intricate structures in Scenario-D. In both cases, the
proposed method achieves 100% feature coverage for 1006s
in Scenario-C and 2006s in Scenario-D.

The overall efficiency is influenced by multiple factors, with
the exploration efficiency of the explorers being particularly
critical for enhancing the feature discovery and the inspection
process. A key metric quantifying exploration efficiency is the

overlap rate, which reflects redundant coverage across robots.
In our framework, the inter-group exploration overlap is fully
eliminated via the pre-assigned bounding boxes (BBoxes) for
the dedicated explorers in the robotic fleet. However, intra-
group operations by single explorer rather than multi-explorer
exploration exhibit an average 15% overlap rate across the
four scenarios, i.e., 20%, 10%, 13%, and 17% in Scenario A–D
respectively. This result aligns with the overlap rate for single-
robot exploration in [48]. By enforcing a strict zero inter-group
overlap rate and suppressing intra-group overlap to minimal
levels, the proposed approach enhances exploration efficiency
through systematic reduction of redundant exploration.

C. Comparisons

To further validate the effectiveness of the proposed method
(as SLEI3D), a quantitative comparison is conducted against
six strong baselines:

(i) CARIC, which is based on a hierarchical framework
for simultaneous exploration and inspection proposed
in [34]. The robots are partitioned into teams, where each
team is independently assigned to specific sub-regions,
and then relays the inspection results to a static GCS
under the LOS communication. For a fair comparison,
a modification is added such that the GCS can move to
communicate with the explorers.
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Figure 14: Comparison of the final score between the proposed method (SLEI3D) and six baselines in Scenario-A and Scenario-C.

(ii) SOAR, which is built upon the work in [33]. Only
one explorer identifies the unknown areas and generates
viewpoints that are subsequently assigned to inspectors
through global all-to-all communication. However, it can-
not handle scenarios involving multiple explorers under
limited communication, nor does it account for the need
to return information back to the GCS. To ensure a fair
comparison with our method, SOAR is only adopted for
the task of assigning features from explorers to inspec-
tors, while the rest of components follows the proposed
framework to be compatible with the problem settings.

(iii) MU-CPPI, which is based on the exploration-then-
inspection framework proposed in [32], The robots first
explore the entire environment, and then the local plans
of inspection are generated based on the exploration
results. However, as this approach does not account
for a movable GCS, limited communication constraints
and simultaneous exploration and inspection. Therefore,
above method can be only leveraged for the subgroups
layer to guide explorers to meet with the inspectors in the
subgroup. The rest of components follow the proposed
framework to match the problem settings.

(iv) MARL, a multi-robot strategy for collaborative explo-
ration via multi-agent reinforcement learning (MARL) as
seen in [25], [49], [50]. These works develop end-to-end
coordination strategies that jointly optimize exploration
policies and collision-free motion planning. However,
they exclusively focus on the exploration phase within our
problem formulation, without addressing communication
requirements between inter-and-intra groups. Thus, the
MARL module is adopted only to replace the exploration
strategy for explorers as presented in Sec. IV-B3 while
retaining other components of the proposed framework to
ensure system compatibility.

(v) SLEI-PRE, where all BBoxes are initially allocated to
the explorers, i.e., each explorer follows a fixed order
to explore the designated BBoxes, instead of relying on
dynamic allocation by the GCS.

(vi) SLEI-FIX, where the GCS remains stationary at its initial
position throughout the entire process. Consequently, the
explorers are required to return to the GCS at fixed
intervals for communication.

The above methods are evaluated across both scenario-A
and scenario-C, each of which 3 tests are conducted. The
experimental results are summarized in Fig. 14 and Table I.

Figure 15: Comparison of the number of collected features over time,
between the proposed method and six baselines over three runs.

Collected features by the GCS over time are shown in Fig. 15,
where the execution time for scenario-A is 600s and 1660s
for scenario-C. For both scenarios, SLEI3D takes the least
amount of time 743.7s and 1699s to collect all features (thus
the highest efficiency) in scenario-A and scenario-C, compared
to CARIC (1009s and 2659s), SOAR (1110s and 1908s), MU-
CPPI (1239s and 2117s), MARL (932.5s and 1648s), SLEI-
PRE (988.7s and 1767s), and SLEI-FIX (939.7s and 2462s).

Furthermore, it is evident that employing a movable GCS
facilitates faster task completion and less idle time, compared
with SLEI-FIX (939.7s and 2462s). In addition, while both
SLEI3D and SLEI-PRE achieve similar finish rates ((94.0%
and 96.7%) vs. (92% and 95.3%)), the dynamic allocation of
BBoxes allows for much less idle time, compared with SLEI-
PRE. SLEI3D also facilitates more effective collaboration
between explorers and inspectors. This is evident by the higher
number of meeting events between explorers and inspectors,
particularly in scenario-C, where SLEI3D achieves an average
of 279.7 meetings, compared to 199.3 for SLEI-PRE and
188.7 for SLEI-FIX. This difference is even more pronounced
in comparison to CARIC and SLEI3D. While CARIC adopts
a simpler intra-group communication strategy, it lacks the
adaptability for complex tasks. SLEI3D achieves faster task
completion ((743.7s and 1699s) vs. (1009s and 2659s)) and
less idle time ((1434.5s and 7920.3s) vs. (1967s and 10032s)).
Additionally, MARL trained specifically on scenario-A, ex-
hibits significant performance degradation when transferred
to scenario-C. This is evident from the substantial drop in
success rate (from 92.4% to 77.8%) between the two scenarios,
as shown in Table I. In contrast, our approach demonstrates
superior generalization capability with consistent success rates
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TABLE I
COMPARISON OF BASELINES ACROSS TWO SCENARIOS.

Scene Method Finish Rate (%) Finish Time (s) GCS-EXP Meeting (#) EXP-INS Meeting (#) Total Waste Time (s)
Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min

Scenario
A

CARIC 97.6 2.1 100 96 1009 29.6 1037 978 7.3 0.6 8 7 57.3 1.15 58 56 1967 72.4 2018.31884.2
SLEI-PRE 92 2 94 90 988.7 116.3 1100 868 10.3 0.6 11 10 90 6.1 97 86 2259.4292.9 2586.22020.5

SOAR 73 1 74 72 1110 141.1 1254 972 10.3 1.5 12 9 174 14.1 189 161 2716.1603.9 3304.62097.8
MU-CPPI 83.7 2.5 86 81 1239 72.4 1322 1189 9.7 1.5 11 8 83 4.4 86 78 3104.1467.9 3616.82700.1
SLEI-FIX 96 2.7 98 93 939.7 66.30 1002 870 10 0 10 10 52.7 1.2 54 52 1551.985.9 1636.61464.8

MARL 92.4 4.2 97.1 87.5 932.5 120.3 1060 800.3 13.5 4.2 18 9 93.5 13.2 108 88 2218.8512.9 3000.81737.2
SLEI3D 94.0 1 94 93 743.7 208.5 976 573 13.7 3.5 17 10 84.7 11.9 98 75 1434.517.0 1454.11423.6

Scenario
C

CARIC 98.7 0.6 99 98 2659 317.5 3007 2385 8.7 0.6 9 8 182.711.1 194 172 10032 2178.212288 7940.4
SLEI-PRE 95.3 1.2 96 94 1767 102.9 1882 1684 38.3 1.2 39 37 199.36.8 207 194 8085.5411.1 8459.77645.4

SOAR 94 1 95 93 1908 54.2 1954 1848 43 3 46 40 415.311.2 425 403 8542.1616.3 9229.88039.9
MU-CPPI 94.7 0.6 95 94 2117 51.5 2172 2070 44 10.2 55 35 165.329.1 198 142 9725.31048.110742 8648.6
SLEI-FIX 96.7 1.2 98 96 2462 365.5 2870 2165 14 0 14 14 188.725.5 218 172 8809.4490.1 9252.38282.9

MARL 77.8 5.5 85 70 1648 210.8 2000 1314 37 0 37 37 162.728.6 200 130 8479.1504.2 9000.17800.5
SLEI3D 96.7 1.5 98 95 1699 66.7 1776 1658 42 3.5 44 38 279.780.8 353 193 7920.3733.6 8767.47496.8
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Figure 16: Comparison of computation time between SLEI3D and
other methods in different scenarios.

across both scenarios (94.0% vs. 96.7%). This performance
disparity highlights the inherent limitations of pure learning-
based methods like MARL, which tend to overfit to their train-
ing environments. Our hybrid architecture effectively mitigates
this issue through its adaptive task allocation mechanism and
geometric-aware coordination, enabling robust performance
in both familiar and novel scenarios. Furthermore, MARL
shows high instability with large success rate deviations (4.2%
vs. 5.5%), while SLEI3D demonstrates consistent robustness
across runs (1.0% vs. 1.5%). Lastly, SLEI3D achieves the
lowest idle time in both scenarios, with 1434.5s and 7920.3s in
scenario-A and scenario-C, respectively, compared to CARIC
(1967s and 10032s), SOAR (2716.1s and 8542.1s), MU-
CPPI (3104.1s and 9725.3s), MARL (2218.8s and 8479.1s),
SLEI-PRE (2259.4s and 8085.5s), and SLEI-FIX (1551.9s
and 8809.4s). In summary, SLEI3D effectively addresses the
challenges posed by the state-of-the-art frameworks such as
CARIC, SOAR and MARL, as well as the SLEI variants.

Furthermore, as Fig. 16 illustrates, the comparative analysis
of computation time with baseline methods (CARIC, SOAR
and MU-CPPI) reveals SLEI3D exhibits higher average com-
putation times (0.6325 s vs. 0.2128 s vs. 0.0662 s vs. 0.1827 s)
across scenarios, primarily due to the SOEIp¨q optimization.
MU-CPPI achieves the shortest processing times, whereas
SLEI3D exhibits stable computation times (0.118–1.4225s).
Despite higher computational costs, SLEI3D’s method yields
significant performance improvements as analyzed in Table I.

D. Generalizations

1) Robot Failure: As described in Sec. IV-E, the proposed
method can detect and recover from potential robot failures

Figure 17: Failure detection and recovery when explorer 1 fails at t “

338s in Scenario-A.

of explorers and inspectors during execution. Particularly, the
parameter δ is set to 10s.

(I) Explorer Failure. Consider the same setting as in
Sec. V-B1 with 1 GCS, 2 explorers and 4 inspectors in
Scenario-A, where one explorer fails online. The final meeting
results between GCS and explorers are shown in Fig. 17.
Explorer 1 fails at t “ 338s before the meeting with GCS at
BBox-3. This failure is then detected by GCS at the predefined
time and location after waiting for 10s. Then, the GCS directly
proceeds to the next meeting event at BBox-8 to communicate
with explorer 2. As shown in Fig. 17, the waiting period of
GCS results in a slight delay of its arrival at BBox-8 compared
to the planned time. Following the proposed failure recovery
mechanism, the whole subgroup belonging to explorer 2 is
reassigned to BBox-3 to restart the task, as the failed explorer 1
is unable to relay the inspection results of BBox-3 to the GCS.
The overall mission is completed at 1215s, which is slightly
longer than the 788s in Fig. 8 without failures.

(II) Inspector Failure. Consider the same setup as in
Sec. V-B2, but two inspectors fail consecutively during ex-
ecution. The overall changes in robot state, decision-making
results, and completion status of features are summarized in
Fig. 18. Inspector 2 fails at t “ 683s before meeting with the
explorer, of which is detected by the explorer after waiting
for 10s at the end of its local plan. Then, inspector 2 is
excluded from the set of active inspectors that are known to the
explorer. In addition, it is clear that once the explorer detects
the failure of inspector 2, no further features are assigned to
inspector 2. After inspector 3 fails at t “ 825s, the explorer
behaves similarly to detect this failure. Lastly, the overall
mission is completed at t “ 1380s, which is higher than
the 1006s in the nominal scenario without failures. It is worth
noting that after the failures of inspectors 2 and 3, the explorer
tends to have fewer meetings but assign more features.
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Figure 18: Failure detection and recovery when inspector 2 fails first
at t “ 683s, followed by inspector 3 fails at t “ 825s in Scenario-B.

Figure 19: Scenario-D with 4 GCS, 8 explorers and 40 inspectors:
final meeting trajectories of all GCSs (Left); comparison of collected
features over time (Right).

2) Multiple GCS: The proposed SLEI3D algorithm is eval-
uated in Scenario-D under two configurations: one leveraging
a multi-GCS setup with 4 GCSs, 8 explorers, and 40 inspec-
tors, and the other employing a single-GCS configuration.
Specifically, each GCS is pre-assigned to specific subsets
of BBoxes and a subset of explorers, each of which acts
independently. The final trajectories of all GCSs and the
collected features along with time are shown in Fig. 19.
It is evident that each GCS successfully meets with the
assigned explorers, thus collecting all features. However, it is
interesting to notice that SLEI3D with multiple GCSs initially
achieves a faster feature collection compared to its single-
GCS counterpart. However, as the process progresses, the
SLEI3D catches up and eventually surpasses the performance
of the multi-GCS configuration. This is due to the fact that
all explorers start from the same location and are assigned
BBoxes of similar sizes. In other words, the completion times
of these BBoxes are almost synchronized via the proposed
routing scheme for multiple GCSs, which allows each GCS
to concurrently collect features from its assigned BBoxes.
In contrast, SLEI3D can only sequentially collect features
from multiple BBoxes, yielding a much slower collection of
features. As the mission proceeds, the subsets of BBoxes to
be explored varies significantly in volume, yielding a diverse
distribution of completion time. Consequently, the benefits of
having multiple GCSs diminish as the rate of feature collection
becomes less dependent on the distributed coordination. Thus,
it shows that the multi-GCS counterpart is particularly suitable
for scenarios requiring simultaneous feature collection across
a wide distribution of locations.

3) High Priority Features: To further validate SLEI3D
with high-priority features, 50 features of the 150 features in
Scenario-B are selected as high-priority features. Snapshots
of the inspector trajectory along with the priority of these
features are shown in Fig. 20, which highlights the fact that
high-priority features are inspected first. Namely, the inspector
prioritizes 3 high-priority features out of 5 features. More-
over, the collection of high-priority features or all features

Figure 20: High-priority features in Scenario-B with 150 features
and 50 high-priority features: inspection sequence of features with
high-priority (Left); comparison of collected high-priority features
over time (Right).

Figure 21: Overall evolution for our system without any priors under
Scenario-C (left); comparison of collected features over time (Right).

over time are also shown. It can be seen that SLEI3D with
consideration for high-priority features achieves much faster
collection of high-priority features than SLEI3D, while the
overall completion time is slightly longer (842s vs. 893s).
This is because prioritizing high-priority features prevents
simultaneous optimization of the allocation for all features,
resulting in an increase in the overall completion time.

4) Fully-unknown Environment: To validate SLEI3D’s ca-
pability in completely unknown environments, comparative
experiments are conducted for Scenario-C under 1 GCS, 4
explorers, and 8 inspectors with and without prior information
regarding BBoxes. As shown in Fig. 21, prior-free exploration
exhibits significantly slower feature discovery rates for explor-
ers. This delay is due to the absence of BBoxes, compelling
explorers to exhaustively explore uniform subspaces without
prioritizing targeted areas. Consequently, the GCS experiences
significant delays in collecting the features (1832s vs. 4000s),
which validates the effectiveness of the proposed mechanism
for adaptive partitioning. It also highlights how prior informa-
tion regarding BBoxes can accelerate the overall mission of
exploration and inspection.

5) Heterogeneous Capability of Explorers: To verify the
support for heterogeneous fleets, the explorers in Scenario-
C are set to different sensing ranges (6m, 8m, 10m, 12m)
versus homogeneous units (uniform 5m sensors). As shown
in Fig. 22, the heterogeneous system achieves faster feature
discovery and inspector dispatch through longer ranges. This
takes 40% less time to collect around 90% of features (1005s
vs. 1656s), compared to the homogeneous counterparts. No-
tably, explorers with larger sensing ranges are prioritized for
larger BBoxes via receding-horizon allocation by GCS , which
aligns with the time-minimization objective as presented in (7).
The results confirm the compatibility of the proposed frame-
work to heterogeneous fleets, with the overall performance
positively correlating with increased sensor ranges.
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Figure 22: Heterogeneous sensor range of explorers in Scenario-
C with 1 GCS, 4 explorers and 8 inspectors (left); comparison of
collected features over time (right).

Figure 23: The representative snapshots of recharging for diffrent
role of robots via returning to the fixed charging station under
Scenario-A and the overall evolution of energy status for entire fleet.

6) Energy-constrained Fleet Management: To validate that
the proposed framework can handle energy constraints as
described in Sec. IV-E6, a team comprising of 1 GCS with
E0 “ 800 mAh energy, 2 explorers (Ei “ 400 mAh,@i P

Ne), and 4 inspectors (Ej “ 300 mAh,@j P NO) is deployed
within the Scenario-A. A unified protocol for recharging is
activated when the energy level of any robot drops below
E “ 20%E, with all charging stations providing β “ 10%E
charging rate per second. The key events captured in Fig. 23
demonstrate the overall efficiency under energy constraints: At
t “ 332 s, Explorer 1 initiates the protocol of recharging once
it reaches the critical threshold E (as visualized in the plot
of energy status), followed by a similar event for Inspector 3
at t “ 540 s. The GCS executes its scheduled recharge at
t “ 780 s while maintaining the planned communication
events with the explorers. During 878 s when all AoIs are
inspected, the team performs in total 1, 2 and 3 recharging
events for the GCS, explorers and inspectors, respectively. The
energy levels are above 5% at all time.

E. Computation Complexity Analysis

To facilitate the broader application of the proposed frame-
work by practitioners, the computation complexity of the
proposed framework is analyzed across scenarios of varying
scales, different inspection time and fleet sizes. Specifically,
the computation time mainly consists of three parts: (I)
the local planning for GCS, including the coordination of
communication events and the rolling assignment of BBoxes;
(II) the local planning for explorers, involving the FF3Ep¨q

for exploration, the planning via SOEIp¨q and the predictor
of completion time; (III) the local planning for inspectors,
encompassing the update of local plan tξ`

j u.
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Figure 24: Computation time of main components of the proposed
method: for three scenarios (Top); change of computation time under
different inspection time in Scenario-C (Middle); with different fleet
sizes in Scenario-A (Bottom).

To begin with, the computation time of each step above
is analyzed in different scenarios, where 1 GCS, 4 explorers
and 8 inspectors are deployed in three scenarios from Fig. 9
under inspection time tq “ 3s. As summarized in Fig. 24,
all modules except the SOEIp¨q for the explorers, take less
than 0.1s across all scenarios. The SOEIp¨q algorithm, which
relies on an iterative optimization process, dominates the
computation time of the local planning of GCS. Nonetheless,
the total computation time of each step is less than 1.3s on
average. Second, the same analysis is examined for different
inspection time tq , i.e., 1s, 3s, and 5s in Scenario-C with 1
GCS, 4 explorers and 8 inspectors. It shows that the inspection
time slightly affects the computation time of SOEIp¨qmodule,
but the overall computation time of each step is less than 0.25s
on average. The same analysis is performed across different
fleet sizes, i.e., 4 (1 GCS, 1 explorer, 2 inspectors), 13 (1
GCS, 4 explorers, 8 inspectors), 49 (1 GCS, 8 explorers, 40
inspectors), 65 (5 GCS, 10 explorers, 50 inspectors), and 75 (5
GCS, 10 explorer, 60 inspectors) in Scenario-A. It shows that
the computation time grows steadily as the fleet size increases,
ranging from 0.13s to 6.91s on average, as the planning
requires more interactions to converge when the number of
explorers and inspectors increases. Nonetheless, the overall
computation for N “ 75 remains below 8.82s, showcasing its
scalability to large-scale robotic fleets.

F. Hardware Experiments
1) Experimental Setup: Hardware experiments are also

conducted to validate the practical feasibility of the proposed
framework. As shown in Fig. 25, there is a 5m ˆ 5m ˆ 3m
arena containing two mini-nature 3D structures, a T-shape
structure of size 1.8mˆ0.3mˆ1.9m and a rectangular struc-
ture of size 0.5mˆ0.5mˆ2.0m. In total, 9 features of interest
as cracks are printed at unknown locations on their surfaces.
Moreover, two “Tello” UAVs [51] equipped with monocular
cameras serve as explorers, to perform exploration via 3D re-
construction. These explorers navigate at the speed of 0.7m{s
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Figure 25: Snapshots of the hardware experiments involving 2 explorers (marked by yellow and pink circles), 4 inspectors (marked by indigo
circles), and 1 GCS for the collaborative inspection of 2 structures and 9 AoIs. (a): The explorers initiate the exploration; (b): Explorer 1
identifies 2 AoIs and coordinates with inspectors 1&2; (c): AoIs are allocated to inspectors 1&2; (d): Explorer 2 detects 2 additional AoIs
and coordinates with inspectors 3&4; (e): AoIs are allocated to inspectors 3&4 to start inspecting; (f): Explorer 1 initiates its first data
transmission to the GCS; (g): Explorer 1 discovers another AoI and coordinates with inspector 1; (h): Explorer 2 establishes its first GCS
communication; (i): Explorer 1 transmits the inspected features and subsequent meetings to the GCS; (j): Explorer 2 transmits the inspected
features and subsequent meetings to the GCS.

Figure 26: Complete trajectories of all 8 robots over the mission
duration of 200s, with arrows indicating the timeline in different of
views: Front view (left), top view (right-top), and side view (right-
bottom).

with a kinodynamic planner for obstacle avoidance and the
communication range of 0.4m. In addition, four “Crazyflie”
drones [52] operate as inspectors at 0.3m{s, employing an
improved A‹ algorithm with priority-based collision avoidance
and a communication range of 0.2m. The AoIs on the surfaces
are identified via the YOLOv7 package, the semantic segmen-
tation module guides the FOV of the explorers towards to the
target buildings, and reconstruction of the 3D environment by
fusing RGB images with estimated depth information, which
is predicted from monocular images of “Tello” using the
MiDas network [53]. Lastly, one “LIMO” [54] four-differential
ground robot acts as the moveable GCS, utilizing a EAI
XL2 LiDAR for the real-time mapping and the move_base
package for autonomous navigation. All robots are tracked by
an OptiTrack motion capture system with 20 infrared cameras
for positioning data, while all inter-robot communications are

Figure 27: The planned and actual meeting events between the GCS
and two explorers in the hardware experiments. The planned meeting
time for the GCS (blue dashed lines) aligns with the explorers (pink
and purple dashed lines), indicating the confirmed meeting event and
the target BBox.

strictly limited to Line-of-Sight (LOS) constraints. It should
be noted that the communication constraints among the robots
are enforced centrally via a central node, including the relative
distance, obstacle occlusion and bandwidth.

2) Results: The hardware experiment validates the perfor-
mance of the proposed framework during the 200s mission.
As shown in Fig. 25, 2 explorers initiate the exploration at
t “ 30s, as marked by red boxes in Fig. 25(a). Explorer 1
identifies 2 AoIs that might contain cracks by t “ 77s and
coordinates with inspectors 1&2 through subsequent com-
munication meetings as shown in Fig. 25(b). The AoIs are
allocated following the SOEI algorithm, which directs the
inspectors to their respective regions in Fig. 25(c). Simulta-
neously, explorer 2 detects 2 additional AoIs at t “ 88s in
Fig. 25(d) and coordinates with inspectors 3&4 in Figs. 25(e-
f). Concurrently, explorer 1 initiates its first data transmission
to the movable GCS at t “ 112s in Fig. 25(f), including the
inspected features and the subsequent meetings. At t “ 131s,
explorer 1 discovers another AoI and coordinates with inspec-
tor 1, while explorer 2 establishes its first GCS communication
at t “ 140s in Fig. 25(h). Both explorers strictly follow the
confirmed meeting events, with the last communication to
GCS at t “ 168s and t “ 196s shown in Figs. 25(i-j). By
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Figure 28: Perception results in the 3D environment via 2 explorers
with the monocular cameras, including: re-constructed 3D environ-
ment for explorer 1((a)) and explorer 2((b)), recognition results of
the AoIs and building structures with the raw camera images, AoI
detection, semantic segmentation and depth estimation for explorer 1
((c)), and explorer 2 ((d)).

then, all 3D structures and inspected AoIs are available at the
GCS. Furthermore, the trajectories of all robots are recorded
in Fig. 26, which indicate that (i) the explorers achieve a
complete coverage and all AoIs are successfully inspected, as
shown in Fig. 28; (ii) the GCS coordinates with both explorers
for the optimal meeting events at four locations, as shown
in Fig. 27; and (iii) all robots are collision-free with other
robots and the 3D structures. Lastly, the detailed evolution of
robot status within the first subgroup is summarized in Fig. 29,
which validates the robustness of the proposed scheme under
fluctuations in navigation time due to motion uncertainties
and collision avoidance. Detailed videos of the hardware
experiments can be found in the supplementary material.

VI. CONCLUSION

This work tackles the challenge of simultaneous exploration,
inspection, and communication in large-scale, unknown 3D
environments, via heterogeneous robotic fleets under limited
communication. The proposed framework SLEI3D employs
a multi-layer and multi-rate strategy, dividing the fleet into
subgroups based on sensing capabilities, explorers equipped
with long-range sensors identify areas of interest (AoIs), while
inspectors with close-range sensors inspect the features. A
ground control station (GCS) allocates tasks and facilitates
communication using an intermittent protocol between the
GCS and explorers, and a proactive protocol between explorers
and inspectors to streamline task allocation and data collection.
Extensive simulations validate its scalability and applicability
to diverse scenarios and large-scale robotic fleets.

Future work includes: (I) enhancing the exploration ef-
ficiency of subgroups by enabling multi-robot exploration,
which necessitates more sophisticated communication pro-
tocols; (II) developing exploration strategies that are inde-
pendent of prior information, such as bounding boxes; (III)
incorporating diverse feature types and inspector roles to
handle more complex task requirements; (IV) integrating more
realistic communication models, including Non-Line-of-Sight

Figure 29: Top: Evolution of the robot status within one subgroup;
Middle: Planning results during the meeting events between the
explorer 1 and the inspectors 1 and 2; Bottom: Evolution of number
of features being discovered, assigned and inspected over time.

(NLOS), signal attenuation, and multi-path effects, to enhance
the system’s robustness for real-world complex environments.
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