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Abstract— In this paper we propose a distributed real-time
fault detection, isolation and mitigation framework for multi-
agent systems performing cooperative tasks. Various system
models and detection schemes with respect to communication
and sensing are considered. Two communication protocols for
fault detection are introduced first and proved to be effective.
Then a scheme based on limited relative state measurements is
developed. Furthermore, we propose fault isolation and mitiga-
tion steps to guarantee the accomplishment of a global objective.
All schemes are distributed in the sense that at each step of the
fault detection, isolation and mitigation every agent only uses
locally available information. One key feature of the framework
is the significant reduction of required computational resource
when compared with the fault detection and isolation schemes
based on unknown input observers. Later we show that the
proposed framework can be applied to the consensus and other
cooperative formation problems. Several computer simulations
are presented to demonstrate the efficiency of the framework.

I. INTRODUCTION

A large number of multi-agent applications focuses on
achieving cooperative global objectives using distributed
control laws, like consensus [10], formation control [1], and
flocking [15]. On the one hand, decentralized structures are
suitable for large systems due to their scalability with respect
to the number of agents and the flexibility and complexity
a system can achieve. On the other hand, the lack of a
central authority that monitors the activity of the nodes of
the network renders the distributed system vulnerable to
malfunctions and attacks. For example, an immobile agent
in the group performing formation control could jeopardize
the performance significantly, such that all agents could get
stuck around this node. In the case of malicious behaviors,
the team is at risk of being led to any final configuration
desired by the hostile agents. Similar potential hazards can
be traced in many other cooperative control scenarios.

Thus it is of vital importance to add resilience to the
system in the sense that non-cooperative behaviors should
be detected and malicious or faulty agents should be isolated
from the group. Many related results have appeared and the
existing approaches can be separated into two categories. The
first scheme proposed in [13] and [14] is to use Unknown In-
put Observers (UIO), where after a sufficiently large number
of time-steps each node is expected to have enough informa-
tion to calculate the desired equilibrium point by estimating
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the initial states. Conditions on the connectivity of the graph
to correctly estimate the initial values in the presence of
faulty agents are obtained using properties of the observ-
ability matrix and fault matrix [11]. Faulty node removal
algorithms with or without external inputs are presented in
[13]. Instead of passive state estimation, [7] provides the
scheme to excite networked control systems with additional
excitation signals so that faults can be detected, using the so-
called motion probes. The fault detection step is followed by
the fault isolation and mitigation of the faulty agents’ impact
on the remaining agents. Heuristic test signals like square
waves are introduced and the rendezvous point is proved to
be preserved. Some other fault tolerance techniques designed
for certain applications can be found in [12] where faulty
agents are assigned higher priorities to be always visible
to other participants, and in [13] where the existence of
UIO for networks of interconnected second-order systems
is studied. The idea of local monitors is first introduced in
[4] and [6] where each agent is responsible for monitoring
all neighboring agents that lie within a safety region. The
cooperation rules are assumed to be a class of decentralized
logical conditions. Moreover, a communication-based repu-
tation consensus protocol is constructed in [5] in order to
confirm the network’s decisions on faulty targets.

In this paper, we propose a real-time distributed fault de-
tection framework that requires less computational resources
than UIO based methods and is easer to implement with
respect to motion-probes based approaches. Moreover, it is
easily applicable to many multi-agent cooperative control
scenarios. The main contributions of this work are: (i) a
formal definition of faults in a multi-agent system, (ii) a
fault detection framework in which each node monitors
its neighbors by using only local information, (iii) two
communication protocols for detecting potential faults at
different locations, (iv) a new network structure for multi-
agent systems with on-board relative state measuring sensors,
(v) a fault isolation and mitigation scheme to guarantee the
global performance, which is robust with respect to model
uncertainties and disturbances.

The rest of the paper is organized as follows: the system
model and problem descriptions will be stated in Section II.
We introduce our fault detection schemes and prove their
effectiveness under different system models in Section III.
Section IV is devoted to the discussion of fault isolation
and system recovery after certain faulty behaviors are de-
tected while Section V addresses the possible applications
to multi-agent consensus and formation problems. Computer
simulations to support the results can be found in Section VI.



II. MODEL DESCRIPTION

In this section, we first present the agent dynamics under
consideration and then the communication and sensing based
system models. A formal definition of faulty agents and the
problem statement are then provided.

A. Agent Dynamics
Consider a sampled model of single integrator agents:

zi((k + 1)T ) = zi(kT ) + ui(kT )T, i = 1, · · · , N, (1)

where T is the sampling time. For brevity, we denote zki =
zi(kT ) and uki = ui(kT ), ∀k ∈ Z+. zki = [xki , y

k
i ]T ∈ R2

is the position coordinate in the 2-D configuration space and
uki ∈ R2 the control input of agent i at time step k. Multi-
agent cooperation is achieved on the basis of information
exchange among the group, either by means of direct wire or
wireless communication or perception with on-board sensors.
The inter-agent communication or sensing network can be
encoded in terms of undirected graphs G = {V, E}, which
consist of a set of vertices V = {1, · · · , N} indexed by the
the team members and a set of edges E ⊂ V ×V . We define
that agent i and j are neighbors and namely (i, j) ∈ E when
they have communications with each other or they stay in
each other’s sensing zone. Let N k

i be the set of agent i’s
neighbors at time step k and |N k

i | denotes its cardinality.
In the sequel, we always assume that G is undirected, i.e.,
(i, j) ∈ E ⇔ (j, i) ∈ E.

We further assume that the distributed control law of (1)
has the following structure:

uki = Pi(zki , Iki ), (2)

where the function Pi : R2 → R2 prescribes the control
objective, Iki = {zki1 , · · · , z

k
ip
} is the set of agent i’s

neighbors’ states at time step k, where N k
i = {i1, · · · , ip}

and p = |N k
i |. The form of (2) is frequently encountered

in multi-agent cooperative controllers. Moreover, we denote
by P = {P1, · · · ,PN} the set of considered cooperative
protocols. P is called homogeneous if Pi = Pj , ∀(i, j) ∈
V × V , otherwise it is non-homogeneous.

B. Communication-based Model
We will first assume that each agent’s perception of the

environment is communication based. We refer to this model
as the communication-based model, where N k

i is defined as
the subset of agents with which agent i communicates at
time step k. We consider here two protocols designed for
the communication-based model to perform fault detection,
the effectiveness of which will be analyzed in Section III-A.

Protocol I: Agent i ∈ V transmits the value of uki which
is computed by (2), along with its absolute state zki to all its
neighbors j ∈ N k

i at each time step k.
Protocol II: Agent i ∈ V transmits its absolute state zki

and all the elements in the set Iki to all its neighbors j ∈ N k
i

at each time step k.
As a result, the information or message any agent i ∈ V

receives at time step k is the set mk
i ⊂ R2, which is given by

mk
i = {zkj , ukj }, ∀j ∈ N k

i in Protocol I and mk
i = {zkj , Ikj },

∀j ∈ N k
i in Protocol II.

C. Sensing-based Model
Another practical way of environment perception is based

on taking measurements from on-board sensors. In particular,
we assume each agent is capable of measuring the relative
states between itself and agents within a certain range R ∈
R+. Namely, the measurement set is given as zki − Iki =
{zki − zki1 , · · · , z

k
i − zkip} and N k

i = {i1, · · · , ip} = {j ∈
V | 0 < ‖zki − zkj ‖ ≤ R}. Thus the control law (2) is
implemented as uki = Pi(zki , Iki ) = Pi(zki , zki − (zki − Iki )).
We refer to this type of model as the sensing-based model. A
special designed sensing network structure for sensing-based
models is introduced below:

Control Network: This network is intended for the control
objective and it is defined as N c,k

i = {j ∈ V | 0 < ‖zki −
zkj ‖ ≤ rc}, where 0 < rc < R and N c,k

i is called the control
neighboring set at time step k. rc is the control range and
{z ∈ R2|‖zki − z‖ ≤ rc} stands for the control zone. Thus
the control protocol P is implemented as uki = Pi(zki , I

c,k
i ),

where Ic,ki = {zki1 , · · · , z
k
ip
} and N c,k

i = {i1, · · · , ip}.
Fault Detection Network: This network is used for the

purpose of fault detection. We have N f,k
i = {j ∈ V | 0 <

‖zki − zkj ‖ ≤ rf}, where 0 < rf < R and N f,k
i is called the

fault detection neighboring set at time step k. rf stands for
the detection range and {z ∈ R2|‖zki − z‖ ≤ rf} is called
the detection zone.

In this case, any agent i ∈ V has two different set of
measurements at time step k, i.e., mc,k

i = {zki − Ic,ki }
and mf,k

i = {zki − I
f,k
i }, obtained by detecting the control

network and fault detection network.

D. Problem statement
The intuitive idea of the model-based fault diagnosis

technique introduced in [3] is to reconstruct the process
behavior on-line by creating either hardware redundancy or
software redundancy. The process model will run in parallel
to the real process and driven by the same inputs. It is
expected that they share the same process variables otherwise
the difference between the reconstructed process variables
and actual measurements will be recorded as residual signals.

In our multi-agent system, each agent is treated as a
process and needs an individual fault detection system. Since
it is of considerable interest to monitor the consecutive
displacement zk+1

i − zki , or namely the velocity input uki
of the agents, we use uki as the performance index [3] to
generate the residual rki = ur,ki −u

a,k
i , where ur,ki ∈ R2 is the

reasonable movement at time step k based on the cooperation
law P and ua,ki ∈ R2 is the actual movement estimated from
real-time measurements. We will specify how ur,ki and ua,ki
are defined for each of the models in Section III. We firstly
introduce the following definition of faulty agents:

Definition 1: Let us consider the system (1) under control
laws (2). One agent i participating in the cooperative task
described above is classified as faulty at time step k if

‖rki ‖ = ‖ur,ki − u
a,k
i ‖ > χ(‖ur,ki ‖, δ) (3)

where χ(‖ur,ki ‖, δ) is a threshold function, depending on the
input signal norm ‖ur,ki ‖ and the disturbance δ.



One possible structure of χ(‖ur,ki ‖, δ) given in [3] is
χ(‖ur,ki ‖, δ) = γ1 + γ2 ‖ur,ki ‖, in which the constant part
γ1 depends on disturbance δ, while the time varying part
γ2 ‖ur,ki ‖ is related to the instantaneous energy of the input.

Our goal for the system involving possible faulty agents is
to accomplish the desired global objective while at the same
time detecting and isolating these faulty agents. Since those
faulty agents are unable to participate in the global task, we
consider the task accomplished when the non-faulty agents
fulfill their parts of the global objective.

III. DISTRIBUTED FAULT DETECTION

Most of the existing approaches mentioned previously
require every participating member to estimate the current
state or initial value of the whole system to observe possible
unknown inputs at any other node. This is not only computa-
tionally expensive for local controllers, but also not scalable
to large systems. Motivated by this observation, we believe
that it is intuitive and reasonable to rely on neighboring
agents to monitor each other’s behavior, rather than those
connected by long paths, which will inherently lead to a
distributed fault detection framework. Moreover we make the
assumption that every agent in the group should participate
and perform the fault detection and isolation mechanism.
Before introducing our main fault detection framework, we
establish the following definition:

Definition 2: Given a multi-agent system as described
above, the objective of our fault detection framework is
achieved if every non-faulty agent successfully detects pos-
sible faulty agents belonging to its (i) communication set for
communication-based models, (ii) control neighboring set for
sensing-based models.

In our fault detection framework, every agent acts as a
local monitor that monitors the behavior of its neighboring
agents. Thus every agent needs to generate a residual signal
for every one of its neighbors, i.e., agent i ∈ V has to
generate a residual signal rkj for each j ∈ N k

i at time step k.
In order to generate and evaluate the residual signal rkj

based on (3), we need to determine two terms: ua,kj and
ur,kj . The first term is estimated by ua,kj = h(zk+1

j , zkj ),
if agent j’s consecutive states zk+1

j and zkj are available.
The function h : R2 × R2 → R2 can be simply first oder
differentiation (zk+1

j − zkj )/[(k + 1)T − kT ] or combined
with other post-processing techniques.

So the main challenge of agent i acting as a local monitor
is to reconstruct ur,kj correctly for each j ∈ N k

i . Due to the
limited sensing range and communication constraints, agent
i may not have full access to the control elements of agent j,
i.e., the state of agent j’s neighbors Ikj . In the following, we
will introduce different approaches to reconstruct ur,kj under
the communication-based or sensing-based models.

A. Communication-based Fault Detection

Given the communication-based models, possible faults in
different locations can be identified by taking advantage of
Protocol I and Protocol II.

To make the idea more clear, as shown in Fig. 1, we divide
the process, from when agent j receives the information
mk
j from its neighbors l ∈ N k

j to when it actually moves
accordingly from zkj to zk+1

j , into two phases. In phase one,
agent j computes the reasonable control input ur,kj according
to the protocol P on its digital platform. In phase two, the
derived ur,kj is relayed and transmitted through electrical or
mechanical components to the actuation parts like motors,
leading to agent j’s actual movement ua,kj , which is in turn
directly estimated as h(zk+1

j , zkj ) by agent i ∈ N k
j .
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Fig. 1. Communication-based detection

Since phase one only involves the digital implementation
of the protocol P and phase two may contain mechanical
transmission hazards or inaccurate actuation models, we
first tackle the case where ur,kj is assumed to be correctly
computed in phase one and possible bias and malfunctions
are introduced in phase two.

Theorem 1: Faults in phase two can be detected in real-
time for communication-based models using Protocol I.

Proof: By applying Protocol I, agent i can generate the
residual signal rkj easily for each j ∈ N k

i . This is because
rkj = ua,kj −u

r,k
j = h(zk+1

j , zkj )−ur,kj , where zk+1
j , zkj and

ur,kj are all obtained directly from mk+1
i and mk

i through the
definition of Protocol I. Given the suitable threshold function
χ(‖ur,kj ‖, δ) in (3), potential faults appearing in phase two
of agent j ∈ N k

i can be identified in real-time by agent i.
Note that the approach described above can be applied to the
group of agents performing different tasks, which means Pi
is not necessarily the same as Pj , ∀j ∈ V .

On the other hand, when faults are found in phase one,
in the sense that either agent j is unable to compute ur,kj
correctly based on the protocol P or it maliciously transmits
a fake ur,kj to its neighbors and acts accordingly, then the
previous approach becomes infeasible because now ur,kj and
ua,kj are nearly identical if there are no faults in phase two.
This poses some difficulty since now agent i needs full state
information of both agent j and agent j’s neighbors, namely
zkj and Ikj , to reconstruct ur,kj by Pj(zkj , Ikj ).

Theorem 2: Faults in phase one and two can be detected
in real-time for communication-based models using Protocol
II, if P is homogeneous, i.e., Pi = Pj , ∀(i, j) ∈ V × V .

Proof: According to Protocol II, agent j transmits
the absolute state of itself and its neighbors: zkj and Ikj to



all its neighbors including agent i. Therefore, agent i can
reconstruct ur,kj precisely by Pj(zkj , Ikj )), using the received
information {zkj , Ikj } ⊂ mk

i and the homogeneous function
Pj = Pi. Then agent i can generate the residual signal
rkj = h(zk+1

j , zkj ) − ur,kj for each j ∈ N k
i , using received

information mk+1
i and mk

i . Given the suitable threshold
function χ(‖ur,kj ‖, δ) in (3), every agent in the group is
capable of detecting possible faults in its neighborhood. Note
that we require P to be homogeneous here so that agent i
can reconstruct ur,kj using its own control law Pi.

It is worth mentioning that Protocol I does not increase the
communication load of the whole system too much as only
one extra real number is added for one neighbor, while more
information exchange is demanded in Protocol II especially
with strongly connected and large graphs. However, since
the amount of extra transmission depends on the number of
communication links in the network, we can reduce it by
limiting the number of neighbors each agent is allowed to
communicate with.

B. Sensing-based Fault Detection

We now consider sensing-based models in which all agents
have on-board sensors with the same control range rc and
fault detecting range rf . Furthermore, We assume that each
agent has at least one neighbor and the group of faulty agents
is connected to at least one non-faulty agent.

Following the definitions of control network and fault
detection network in Section II-C, we can establish an
important relation between N c,k

i and N f,k
i at time step k.

Lemma 3: Given that 0 < 2rc < rf ≤ R holds,
the following relation is guaranteed for the sensing-based
models: j ∈ N c,k

i ∧ l ∈ N c,k
j ∧ (i 6= l)⇒ l ∈ N f,k

i .

Proof: We choose j ∈ N c,k
i and l ∈ N c,k

j in the control
zone. Since 2rc < rf ≤ R, we have |zki − zkl | = |zki − zkj +
zkj −zkl | ≤ |zki −zkj |+ |zkj −zkl | ≤ rc+rc = 2rc < rf , which
means agent l must belong to agent i’s fault detection zone.
We exclude the case i = l since i ∈ N c,k

j but i /∈ N f,k
i by

definition. Thus the neighbors of agent i’s neighbors in the
control zone must belong to agent i’s fault detection zone.

Theorem 4: When 0 < 2rc < rf ≤ R holds, possible
faults in the sensing-based models can be detected in real-
time, if P is homogeneous, i.e., Pi = Pj , ∀(i, j) ∈ V × V .

Proof: We continue the discussion of generating the
residual signal rkj = ur,kj −u

a,k
j . Agent i ∈ N c,k

j can estimate
the actual movement ua,kj = h(zk+1

j , zkj ) locally because the
processing function h is pre-defined and zkj is obtained by
zkj = zki − (zki − zkj ), given agent i’s absolute state zki and
its measurements zki − zkj ∈ m

c,k
i at time step k and k + 1

respectively. The reasonable control input ur,kj is given by
ur,kj = Pj(zkj , I

c,k
j ) = Pi(zki − (zki − zkj ), zki − (zki − I

c,k
j ))

where zki − I
c,k
j = {zki − zkj1 , · · · , z

k
i − zkjp} and N c,k

j =

{j1, · · · , jp}. Lemma 3 ensures that N c,k
j ⊂ N f,k

i . The
problem is how to determine the set N c,k

j out of N f,k
i ,

corresponding to each j ∈ N c,k
i . Due to the fact that the

control sensing range uniformly equals to rc, N c,k
j can be

determined by validating the distance between agent j and
any agent l ∈ N f

i , so that N c,k
j = {l ∈ N f,k

i | 0 <

‖(zki − zkj )− (zki − zkl )‖ < rc}∪ {i}, where zki − zkj ∈ m
c,k
i

and zki − zkl ∈ m
f,k
i . Consequently agent i can predict the

reasonable movement ur,kj as described above and generate
the residual signal rkj for each j ∈ N c,k

i , which provides the
index of faults given the threshold function χ(|ur,ki |, δ).

To give an example, one typical sensor model takes range
and bearing measurements in 2-D state space. The above
frameworks can be applied directly by replacing zi − zj

with zi − zj =

[
xi − xj
yi − yj

]
=

[
rij cos θij
rij sin θij

]
, where

we denote the measurements of agent i: rij = ‖zi − zj‖,
θij = arctan(

yi−yj
xi−xj

), for j ∈ N c,k
i . In particular, agent i can

determine the network N c
j as {l ∈ N f

i | 0 < ‖r2ij + r2il −
2rijril cos(θij − θil)‖ < rc} ∪ {i}.

For any fault detection system, there is essentially an trade-
off between the false alarm rate (FAR) and the fault detection
rate (FDR) [3]. In our framework, the design preferences are
embodied in the threshold function χ(‖urj‖, δ). If needed,
a confirmation mechanism can be added that one agent is
confirmed as faulty if it is detected with a high rate during
a certain period of time, which requires more sophisticated
confirmation mechanisms.

IV. FAULT ISOLATION AND RECOVERY

The fault detection task is usually followed by the fault
isolation and recovery step to eliminate the impact of
emerged faults. Regarding a multi-agent network, the task
of fault isolation is simply to isolate the faulty agents so that
they have no impact on the non-faulty agents. The step of
fault recovery is introduced to remove the impact of faulty
agents by applying external excitations [7]. Because each
agent acts as a local monitor while monitored by others at
the same time. There are two basic issues to be addressed:
(i) when to apply the isolation or recovery step and (ii) how
much the external excitation should be.

The first issue may not be trivial, particularly when we
consider multi-agent systems. On the one hand, if we make
the assumption that one agent g ∈ V will be detected
simultaneously by all its neighbors the moment it becomes
faulty, it would be disconnected from the group simply
by excluding it from all local neighboring sets, namely
Ni ← Ni \ g, ∀i ∈ V . Thus faulty agents are isolated
immediately after being detected. On the other hand, since
these local monitors are running independently with different
threshold functions and neighboring sets, it is more realistic
to assume that one fault may be detected by different agents
at different time instants. Then without the existence of a
central authority, it is of vital importance that all agents
synchronize the isolation and recovery step. Otherwise if
one agent tries to isolate a faulty neighbor or apply extra
excitation without any notice or negotiation to its neighbors,
this isolation and recovery behavior will highly likely be
detected as faulty, which may lead to a chain reaction in the
system. To avoid this we introduce a new parameter called



the fault detection and recovery cycle time Tp = p∗T , where
the constant p∗ ∈ Z+ and T is the sampling time. Typically,
for every period of time Tp, each agent detects possible faults
for k ∈ [k∗Tp +T, (k∗+ 1)Tp−T ] and applies the external
excitation simultaneously at k = (k∗ + 1)Tp, k∗ ∈ Z+.

An intuitive solution for the second issue is that after a
faulty agent is detected, its accumulated contribution from
t = 0 is removed from the whole system by applying extra
excitation locally at each agent [7]. But in order to keep track
of earlier contributions of faulty agents that are previously
unknown, each agent needs to record the contribution of
both faulty and non-faulty agents before some faults are
detected. It would become infeasible especially when the
underlying topology is time-varying and the running time
is long. Therefore we choose to only record and remove the
contribution of faulty agents after they become faulty.

Theorem 5: Suppose that the control law (2) has the sum-
mation form: uki = Pi(zi, Ic,ki ) =

∑
j p(z

k
i , z

k
j ), j ∈ N c,k

i ,
where p : R2 × R2 → R2. Then previously detected faults
by Theorem 1 - 4 can be isolated and recovered. Moreover,
the global task excluding faulty agents can be accomplished.

Proof: When the control law (2) has the summation
form, we can easily separate the contribution of agent j ∈
N c,k
i to agent i, i.e., p(zki , z

k
j ). Note here N c,k

i stands for
N k
i for communication-based models. Assume that agent g

becomes faulty at time step k = ke > 0 and remains faulty
for k ≥ ke, where ke ∈ [k∗Tp+T, (k∗+1)Tp−T ], k∗ ∈ Z+.
Agent i detects that agent g is faulty and starts accumulating
its contribution uex =

∑
k∈[ke, (k∗+1)Tp−T ] p(z

k
i , z

k
g ) within

one cycle time. Then agent i applies the external excitation
ui = −uex at time step (k∗+1)Tp and resets the accumulated
value uex to zero. Fault detection mechanism is disabled at
the next step (k∗ + 1)Tp + T and resumed afterwards. Each
agent repeats the same procedure independently every Tp
but they share the synchronized clock. With respect to the
global objective, we denote the set of faulty agents as Vf
and the set of non-faulty agents as Vn so that Vf ∪ Vn = V .
If agent g is faulty for k ≥ ke, g ∈ Vf for k > ke. Consider
the accumulated input of any agent i ∈ Vn for k > ke:∑
k>ke

ui(t) =
∑
k>ke

∑
j∈Ni

p(zki , z
k
j ) −

∑
k>ke

uex =∑
k>ke

[
∑
j∈N c,k

i
p(zki , z

k
j ) −

∑
j∈(N c,k

i ∩Vf )
p(zki , z

k
j )] =∑

k>ke

∑
j∈(N c,k

i ∩Vn)
p(zki , z

k
j ), which means all faulty

agents will not have contribution or impact on the dynamics
of non-faulty agents after the time instants when they are
detected as faulty. But their contribution before they are
detected is still considered. Thus the final state would be
the same as the system with only non-faulty agents but
considering the contribution of faulty agents before they
become faulty.
Remark: Note that the value of cycle time Tp should be
relatively small to avoid abrupt changes in states when the
extra excitations are applied.

V. APPLICATION TO CONSENSUS AND FORMATION
PROBLEMS

In the sequel, we apply our fault detection, isolation and
recovery frameworks to two popular aspects of multi-agent

cooperative control: consensus and formation problems.

A. Consensus Problem

The consensus protocol proposed in [10] for first-order
systems is ui =

∑
j∈Ni

aij(zj − zi), where aij > 0 are the
weights of each edge. We analyze communication-based and
sensing-based models respectively.

First we assume the value of aij is identical or uniformly
all one, ∀(i, j) ∈ E. Applying exactly the same arguments
as the proofs of Theorem 1-5, we have a direct conclusion:

However it could be the case that the weights may
vary with respect to different edges under different com-
munication graphs, which means P is not homogeneous
anymore. Protocol I is still useful to detect possible faults
in phase one as Theorem 1 holds for both homogeneous
and non-homogeneous P . But Protocol II needs small mod-
ifications: instead of Iki , agent i transmits a new set of
information Cki = {aii1(zi1−zi), · · · , aiip(zip−zi)}, where
{i1, · · · , ip} = N k

i , to its neighbors, so that any j ∈ N k
i can

reconstruct the reasonable input uri locally.
On the other hand, for sensing-based models, without

direct information exchange agent i needs to estimate the
weights ajp dynamically in real-time using only the relative
state measurements zj − zp, regarding each j ∈ N k

i . But we
are not going to discuss it here.

It is necessary to examine the final consensus value in
the presence of faulty agents. Based on Theorem 5, after
all faulty agents are detected they have no impact on the
non-faulty agents. As the average state keeps constant under
normal consensus behaviors, the final agreement point is
the average state of all non-faulty agents, which is not the
same as the initial average x̄(0) as we still consider the
contribution of faulty agents before they become faulty.

B. Formation Control

Inspired by the discussion above, we consider the multi-
agent formation problems, like distance-based formation [1],
swarming [2] and flocking [9]. We set the desired distances
dij between neighboring agents be uniformly d so that the
local subjective for each agent is homogeneous.

The control protocols for distance formation [1] is ui =

−2
∑
j∈Ni

β2−d4
β2 (zi − zj) where β = ‖zi − zj‖2. The

distributed control law for flocking [9] to achieve uni-
form distance and velocity alignment, is given by ui =
−2
∑
j∈Ni

sij(zj − zi) + c(vj − vi) where c is a constant
and sij =

φ(‖zj−zi‖−d)
‖zj−zi‖ . zj − zi and vj − vi are the relative

position and relative velocity for second-order systems. It is
proposed for distributed swarm aggregation [2] that ui =
−2
∑
j∈Ni

[ pij(‖zi − zj‖) + ρij(‖zi − zj‖) ](zj − zi) where
pij represents the attractive force and ρij the repulsive force.
Both pij and ρij take relative states as input arguments.

Since the communication-based fault detection schemes
can be easily applied using Protocol I and Protocol II. We
will put emphasis on the case of sensing-based models.

By taking a closer look at the above listed control proto-
cols, we may notice that the local control law is homoge-
neous for each agent and has the exactly the same structures.
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Fig. 2. Consensus without faulty
agents
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Fig. 3. One faulty agent and one
malicious agent
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Fig. 4. Desired performance without
faults
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Fig. 5. One faulty agent and one
malicious agent

In particular, they belong to the following generic class of
control laws ui =

∑
j∈Ni

ρ(‖zi − zj‖)(zi − zj), i ∈ V
where this function ρ(·) only takes relative distance as input
arguments. It satisfies the pre-assumption of Theorem 4 and
5 that Pi = Pj , with the summation form

∑
j∈Ni

P(zi, zj).

VI. SIMULATIONS

We now provide computer simulations to support the
presented theory. We introduce two kinds of common faults
[8] in the simulation: (i) Stuck at and (ii) Malicious act.

In the first part, eight first-order agents with sensing-based
models perform consensus in 1-D configuration space. Fig. 2
shows the desired performance without faulty behaviors,
while one breaks down and another one dissipates as in
Fig. 3. We investigate the case of sensing-based models. The
underlying graph is dynamically time-varying and each agent
has two neighboring set N c,k

i and N f,k
i . Uniform weights

(aij = 1) are chosen and Tp = 10T . As expected, non-faulty
agents can still achieve the consensus as shown in Fig. 3,
where the final agreement value depends on average state of
all non-faulty agents.

The second simulation involves eight first-order agents
performing distance-based formation [1] in 2-D state space.
They initially form a square and the underlying topology is
required to be a static star in [1]. N1 = {2, 3, 4, 5, 6, 7, 8}
and Ni = {1} for i = 2, · · · , 8. Let the desired distance
between neighboring agents be uniformly d = 0.2. Fig. 4 il-
lustrates the formation outcome without any faulty behaviors
in the group, while Fig. 5 show the scenarios where one agent
breaks down and another one dissipates from the group. As
expected, the distance between non-faulty neighboring agents
converges to the desired value eventually.

VII. CONCLUSIONS AND FUTURE WORK

This paper considers the problem of fault detection, iso-
lation and mitigation in cooperative control of multi-agent
systems. Decentralized and real-time fault detection frame-
works are proposed for two different system models based
on communication or relative state sensing. They are easy to
implement and requiring much less computational resources.
Furthermore, we address the importance of synchronization
when performing fault isolation and mitigation step in multi-
agent systems, where a robust solution is introduced to
guarantee the global performance. Applications to the con-
sensus and formation problems are discussed, of which the
performance is verified through computer simulations.

Future research focuses on finding the fundamental limits
of the presented framework, i.e., the maximal set of coop-
erative control laws that can be tackled with this approach.
Moreover, the framework is going to be extended to more
general agent dynamics.
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