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a b s t r a c t

In this paper, cooperative control of multi-agent systems under limited communication between
neighboring agents is investigated. In particular, quantized values of the relative states are used as
the control parameters. By taking advantage of tools from nonsmooth analysis, explicit convergence
results are derived for both uniform and logarithmic quantizers under static and time-varying
communication topologies. Compared with our previous work, less conservative conditions that ensure
global convergence are provided. Moreover, second order dynamical systems under similar constraints
are taken into account. Computer simulations are provided to demonstrate the validity of the derived
results.
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1. Introduction

In the vast recent literature concerning the consensus prob-
lem of multi-agent systems, many results on stability and conver-
gence rate have been obtained by utilizing the spectral properties
of the graph Laplacian matrix and under the assumption of per-
fect communication, as in Dimarogonas and Kyriakopoulos (2007),
Olfati-Saber andMurray (2004) and Ren and Atkins (2007). Specif-
ically regarding static communication topologies, global conver-
gence to a consensus point is guaranteed if and only if the corre-
sponding Laplacian matrix has nonnegative eigenvalues with ex-
actly one of thembeing zero (Dimarogonas & Johansson, 2010). But
imperfect information exchange and communication constraints
may have a considerable impact on the performance of a multi-
agent system and also the implementation of the control algo-
rithms. Relevant topics have received attention for different sys-
tem dynamics and different constrained models, as in Carli, Fag-
nani, and Zampieri (2006), Fagnani, Johansson, Speranzon, and
Zampieri (2004), Kashyap, Basar, and Srikant (2007), Nedic, Ol-
shevsky, Ozdaglar, and Tsitsiklis (2008) for discrete-time dynamics
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and Ceragioli, Persis, and Frasca (2010), Dimarogonas and Johans-
son (2010) for continuous-timemodels. In particular, communica-
tion delays (Seuret, Dimarogonas, & Johansson, 2008; Xiao&Wang,
2006) and quantized information (Ceragioli et al., 2010; Dimarogo-
nas & Johansson, 2010; Fagnani et al., 2004; Shevitz & Paden, 1994)
are two of the most common constraints considered not only in
theoretical research but also in practice. Here we will put empha-
sis on multi-agent systems involving quantized information.

Compared to our previous work in Dimarogonas and Johansson
(2010), this paper considers the Filippov solution of both first-
order and second-order closed-loop systems under quantization
by using the tools from nonsmooth analysis (Shevitz & Paden,
1994), since the classical or Carathéodory solutions may not exist
from a set of initial conditions of measure zero (Ceragioli et al.,
2010). More importantly, the convergence results of first-order
systems established in this paper are less conservative than in
Dimarogonas and Johansson (2010), since they hold for both
tree graphs and general undirected graphs. Finally, the second
order consensus problem involving quantized relative states is not
treated in Dimarogonas and Johansson (2010), whereas in this
paper we derived explicit results on the convergence set and the
stability constraints.

Ceragioli et al. (2010) addresses the case where relative
quantized states (q(xi)−q(xj)), instead of quantized relative states
(q(xi − xj)) as in this paper, are used as control parameters for the
first-order system. This difference alters the techniques available
for deriving the closed-loop dynamics: in Ceragioli et al. (2010),
it has the form ẋ = −L q(x) and consequently the well-known
spectral properties of the Laplacian matrix L are used for showing
convergence; however, in our case it is not possible to include L
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in the closed-loop dynamics, which is also the motivation behind
introducing the edge dynamics. The results derived in Theorem
6 of Liu, Cao, and Persis (2011) are similar to Theorem 4 in this
paper, where convergence properties of second-order systems in
the presence of uniform or logarithmic quantizers are derived. We
tackle the problem here using different theoretical tools from Liu
et al. (2011). In particular, instead of introducing an integral term
(over the quantized relative positions) in the Lyapunov function
candidate, we design a quadratic Lyapunov function that utilizes
the structure of the underlying communication topology and the
spectral properties of the corresponding edge Laplacian matrix
(Guo, 2011). Thus the derivations of the current paper are also
novel with respect to the analytical contribution.

The rest of the paper is organized as follows. Section 2 presents
some background on algebraic graph theory and Filippov solutions.
In Section 3, we treat the first order system under static tree
topology, and then extend the results to switching trees and
general undirected graphs. Section 4 is devoted to quantized
second order systems under general undirected topologies. The
paper concludes with computer simulations in Section 5 and a
summary of the results in Section 6.

2. Systemmodel and background

2.1. Graph theory and consensus preliminaries

For an undirected graph G = (V, E), denote by V = 1, . . . ,N
the set of vertices and by E = {(i, j) ∈ V × V | i ∈ Nj} the
set of edges, where Nj denotes agent j’s communication set that
includes the agents withwhich it can communicate. G is undirected
if i ∈ Nj ⇔ j ∈ Ni, ∀(i, j) ∈ E. Its Laplacian matrix (Godsil &
Royle, 2001) L = {lij}, where lii =


j∈Ni

aij and lij = −aij, i ≠

j, ∀i, j = 1, . . . ,N . Note here we do not restrict aij to be uniformly
one or equal as in Guo and Dimarogonas (2011). A path of length r
from i to j is a sequence of r + 1 vertices starting with i and ending
with j such that consecutive vertices are adjacent. If there is a path
between any two vertices, then G is called connected. A connected
graph is called a tree if it contains no cycles. For a connected graph,
L has nonnegative eigenvalues and a single zero eigenvalue (Ren &
Atkins, 2007)with the corresponding eigenvector 1 = (1, . . . , 1)T .
Denote by λk(M) the kth eigenvalue ofM in the ascending order.

An orientation on G is an assignment of a direction to each edge.
The incidence matrix B = B(G) = {bij} is the {0, ±1} matrix, where
bij = 1 if the vertex i is the head of the edge j, bij = −1 if vertex
i is the tail of the edge j, and bij = 0 otherwise. Denote by Γ

the m × m diagonal matrix of wk, k = 1, . . . ,m. wk stands for
the weight of the kth undirected edge of G (Godsil & Royle, 2001).
Then L = BΓ BT , where Γ is uniquely defined by the sequence of
edges in B. Denote by x̄ = BT x the stack vector of relative states
(head–tail) between neighboring agents. If G is connected, Lx = 0
if and only if x has all its elements equal (Fax & Murray, 2002),
implying that x̄ = BT x = 0.

2.2. System model

We first consider N single-integrator agents:

ẋi = ui, i = 1, . . . ,N, (1)

where xi ∈ R denotes the position and ui ∈ R the control input
of agent i. The goal is to construct distributed feedback controllers
that lead the system to an agreement point. On the other hand,
since a broad class of vehicles requires a second-order dynamics,
a double-integrator model is also considered

ẋi = vi, v̇i = ui, i = 1, . . . ,N, (2)
where xi, vi ∈ R denotes the position and velocity, and ui ∈ R
the acceleration input. The desired configuration is that all agents
move with the common speed as one point. In this paper, we treat
only the system behavior in the x-coordinate but the analysis that
follows holds in higher dimensions.

The consensus protocol in Fax and Murray (2002); Olfati-Saber
and Murray (2004) for system (1) is given by ui = −


j∈Ni

aij(xi −
xj) and the closed-loop nominal system (without quantization) is
ẋi = −


j∈Ni

aij

xi − xj,


, i = 1, . . . ,N , or equivalently ẋ = −Lx.

On the other hand, the protocol defined in Ren and Atkins (2007)
for system (2) isui = −


j∈Ni

aij[(xi−xj)+γ (vi−vj)], whereγ > 0
is the control gain. Similarly we have ẋ = v, v̇ = −Lx − γ Lv. As
in Dimarogonas and Johansson (2010), we assume that each agent
i has only quantized measurements of the relative position q(xi −
xj), ∀j ∈ Ni, where q(·) : R → R is the quantization function. In
this paper, we mainly consider two quantization models: uniform
and logarithmic. The uniform quantizer, qu, R → R is defined as
qu(x) = δu


x
δu


, where [·] denotes the nearest integer operation

and
 1
2


= 1. The following relations hold: (i) x qu(x) ≥ 0, (ii)

|qu(x) − x| ≤
δu
2 , (iii) qu(−x) = −qu(x), (iv) qu(0) = 0. The

logarithmic quantizer ql, R → R (Speranzon, 2006) is defined as
ql(x) = sign(x) · exp(qu(ln(|x|))) when x ≠ 0, where qu(·) is the
uniform quantizer with gain δu and ql(0) = 0. Similarly, we have
(i) x ql(x) ≥ 0, (ii) ql(−x) = −ql(x), (iii) |ql(x) − x| ≤ δl |x|, where
δl = e

δu
2 − 1.

2.3. Filippov solution

Given the system ẋ = f (x(t)) where f : Rn
→ Rn is

measurable and essentially locally bounded, a Filippov set-valued
map F [f ](x(t)) : Rm

→ B(Rd) is defined in Shevitz and
Paden (1994) and Filippov and Arscott (1988) by F [f ](x(t)) =

∩δ>0 ∩µ(S)=0 c̄o{f (B(x(t), δ) \ S)}, x(t) ∈ Rm,where B(x(t), δ) is
an open ball centered at x with radius δ, c̄o denotes convex clo-
sure, µ denotes Lebesgue measure, and B(Rd) denotes the col-
lection of subsets of Rd. Moreover, a Filippov solution defined on
[t0, t1) ⊂ R is an absolutely continuous map x : [t0, t1) → Rm

that satisfies the differential inclusion ẋ ∈ F [f ](x(t)) for almost
all t ∈ [t0, t1). For simplicity, we use the notation S ≥ 0 for a set
S ⊂ R if v ≥ 0, ∀v ∈ S.

3. First-order quantized agreement under time-varying
topology

The control law for system (1) with quantized relative states
is given by ui = −


j∈Ni

aij q

xi − xj


, i = 1, . . . ,N. Thus the

closed-loop system becomes

ẋi = −


j∈Ni

aij q

xi − xj


, i = 1, . . . ,N. (3)

It was observed in Proposition 1 in Ceragioli et al. (2010)
that quantized consensus controllers may have a set of initial
conditions of measure zero from which no classic or Carathéodory
solutions exist. Thus we consider here more general solutions of
(3) in the Filippov sense. The local existence of Filippov solution is
guaranteed as the right hand side of (3) is measurable and locally
bounded (Shevitz & Paden, 1994). Since q (−a) = −q (a) , ∀a ∈ R
holds for both quantizers, the Filippov solution of (3) is given by

ẋ ∈ F [−BΓ q](BT x) = −BΓ F [q](BT x) = −BΓ F [q](x̄), (4)

where q(x̄) is the stack vector of all pairs q

xi − xj


, ∀(i, j) ∈ E.

ThematrixΓ is defined in Section 2.1. Note thatF (−BΓ q(BT x)) =

−BΓ F [q](BT x) follows from statement 5 of Theorem 1 in Shevitz
and Paden (1994).
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3.1. Static tree topology

We start from the case that the underlying communication
topology is a static tree. By multiplying BT at both sides of Eq. (4),
we get ˙̄x = BT ẋ ∈ −BTBΓ F [q](x̄) = −M Γ F [q](x̄), where
M = BTB. By Lemma 1 in Dimarogonas and Johansson (2010), M
is always positive definite with a tree graph. Let V = x̄TM−1x̄ be
a candidate Lyapunov function. Since M is positive definite, M−1

exists and is also positive definite (Horn & Johnson, 1990). Since
V is smooth and regular, the generalized time derivative (Paden &
Sastry, 1987) of V satisfies
˙̃V ⊂ (2M−1x̄)T (−MΓ F [q](x̄)) = −2 x̄T Γ F [q](x̄)

= −2
m
i=1

wi x̄i F [q](x̄i). (5)

In the case of q(x) being uniform, the Filippov set-valued map for
qu(x) is given by F [qu](x) = qu(x) when x ≠


k −

1
2


δu, k ∈

Z; F [qu](x) = [(k−1)δu, kδu], otherwise. Note that aF [qu](a) ≥

0, ∀a ∈ R and the equality holds when |a| ≤
δu
2 . Thus

x̄T Γ F [qu](x̄) ≥ 0 and ˙̃V ≤ 0 where the equality holds only
when |xi − xj| ≤

δu
2 , ∀(i, j) ∈ E. Since the level sets of V are

compact, we can apply the nonsmooth version of the LaSalle’s in-
variance principle (Shevitz & Paden, 1994). System (3) converges to
the consensus set I =


x| |xi − xj| ≤

δu
2 , (i, j) ∈ E


, which implies

x| |x̄| ≤
δu
2

√
m


, a ball centered in the desired equilibrium point

|x̄| = 0, with radius δu
2

√
m (Liberzon, 2003). This point coincides

with the average of the initial states by virtue of Lemma 5 which
will be stated in the sequel. When x ∈ I, we have u = 0; thus all
agents stay in the set I.

In the case of q(x) being logarithmic, the Filippov set-valued
map for ql(x) is given as F [ql](x) = ql(x) when x ≥ 0 and x ≠

e

k− 1

2


δu

, k ∈ Z; F [ql](x) = [e(k−1)δu , ekδu ] when x = e

k− 1

2


δu

,
k ∈ Z. Moreover, F [ql](−x) = −F [ql](x). Since aF [ql](a) >

0, ∀a ≠ 0, x̄Γ F [ql](x̄) ≤ 0 and ˙̃V ≤ 0, where the equality holds
when xi = xj, ∀(i, j) ∈ E. For a connected tree graph, this corre-
sponds to a consensus point. The nonsmooth version of LaSalle’s
invariance principle guarantees that (3) converges to the consen-
sus point asymptotically for any δl = e

δu
2 − 1 > 0. The previous

analysis is summarized as follows.

Theorem 1. Assume that G is a weighted static tree. Let x(t) be a
Filippov solution of system (3).

(1) In the case of uniform quantizers, x(t) converges to the consensus
set


x| |xi − xj| ≤

δu
2 , (i, j) ∈ E


.

(2) In the case of logarithmic quantizers, x(t) asymptotically
converges to the average consensus for all δl > 0.

Remark. Compared to Dimarogonas and Johansson (2010), a
smaller convergence set is obtained for uniform quantizers and the
bound on the logarithmic gain is less conservative. It will be shown
in Theorem 6 that the convergence in case 1 occurs in finite time.

3.2. Time-varying communication topology

In this section we treat the case when the communication
topology is time-varying or in particular switching among
different tree topologies. Note that the stack vector x̄ changes
discontinuously whenever edges are added or deleted. In the
following, we will show that the same function V = x̄T (BTB)−1x̄
can serve as a common Lyapunov function under time varying
topologies.

There are always N − 1 edges for undirected tree graphs with
N vertices, i.e.,m = N − 1. Thus the incidence matrix B of any tree
topology has dimension N × (N −1). We assume its singular value
decomposition to be B = UΣW T , where U and V are orthonormal
andΣ(N×(N−1)) has zero entries but bi for i = (N−1), . . . , 1 on the
upper diagonal, which are the singular values of B in descending
order.

Lemma 2. BBT has N nonnegative eigenvalues; one of them is zero,
corresponding to the eigenvector 1

√
N
1 and the others are the same as

the eigenvalues of BTB.

Proof. The proof follows directly from the fact that BBT of a tree
graph is positive semidefinite and has only one zero eigenvalue
with eigenvector 1

√
N
1. Moreover, BBT has the same non-zero

eigenvalues as BTB (Horn & Johnson, 1990). �

Lemma 3. H = B(BTB)−1BT is identical for all incidence matrices B
corresponding to undirected trees.

Proof. Inserting B = UΣW T into H we have

H = B(BTB)−1BT
= UΣW T (WΣTΣW T )−1WΣTUT

= UΣW T (WTW T )−1WΣTUT
= UΣ T−1ΣTUT .

Then we denote G = Σ T−1ΣT , which has the first N − 1 diagonal
elements as 1. Consider the matrix UN×N = [uN−1 uN−2 · · · u0],
where uk are the normalized column eigenvectors of BBT , k =

0, . . . ,N − 1. Denote by uk(i) the ith element of uk. Since U is
orthonormal, we get

N−1
k=0 uk(i) uk(i) = 1 and

N−1
k=0 uk(i) uk(j) =

0 for i ≠ j, for all i, j = 1, . . . ,N . In Lemma 2 we have shown
that the last eigenvector corresponding to the eigenvalue zero is
u0 =

1
√
N
1. Computing each entry of H = UGUT element-wise, we

have H(i, j) =
N−1

k=1 uk(i) uk(j) =
N−1

k=0 uk(i) uk(j) − u0(i) u0(j)

=


1 −

1
√
N

1
√
N

=
N − 1
N

for i = j

0 −
1

√
N

1
√
N

= −
1
N

for i ≠ j,

bywhichwe can conclude thatH = B(BTB)−1BT is identical for any
B corresponding to a tree graph. This completes the proof. �

Let T = {t1, t2, . . . , tK } denote the set of switching instants of
G(t), where K → ∞ as we assume that G(t) remains a tree for an
infinite switching sequence. To avoid infinitely frequent switching
we define a strictly positive dwell time (Bacciotti & Mazzi, 2005)
τ > 0 such that tk+1 − tk > τ, k = 1, . . .. Proposition S2 in
Cortes (2008) guarantees that there exists a Carathéodory solution
of system (4). We consider the Lyapunov function candidate V =

xTHx, where H = B(BTB)−1BT from Lemma 3. We will show that V
serves as a common Lyapunov function (Bacciotti & Mazzi, 2005)
for system (4).

Denote the tree topology during time interval t ∈ [tk, tk+1)
as Tk and the corresponding incidence matrix as Bk, the edge
set as Ek, the edge vector as x̄k = Bkx, k ∈ Z+. Since H is
invariant by Lemma3,V is continuously differentiablewith respect
to state x. Furthermore, V is positive semidefinite and its time
derivative can be computed as in (5), ˙̃V ⊂ −2 x̄Tk Γ F [q](x̄k) ≤

0. Namely, v ≤ 0, ∀v ∈
˙̃V . In particular, ˙̃V = 0 only when

F [q](x̄k) = 0, k ∈ Z+. Thus V serves as a common Lyapunov
function for system (4). Based on the invariance principle for the
nonlinear switched system, namely Theorem 1 in Bacciotti and
Mazzi (2005), the solutions of system (4) is attracted by the union
of all weakly invariant sets contained in {x ∈ Rn

| F [q](x̄k) =

0}, ∀k ∈ Z+. Even though the sequence of tree graphs is infinite,
the set of all possible tree graphs with N vertices is finite. For
uniform quantizers, F [qu](x̄k) = 0 implies that |xi − xj| ≤
δu
2 , ∀(i, j) ∈ Ek. Given any undirected tree with N vertices, there
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always exists a path with maximal length N − 1 connecting any
two nodes (Godsil & Royle, 2001). Thus the union of the invariant
sets


x ∈ RN

| |xi − xj| ≤
δu
2 , ∀(i, j) ∈ Ek


, k ∈ Z+, is given by

x ∈ RN
| |xi − xj| ≤ (N − 1) δu

2 , ∀(i, j) ∈ V × V

. For logarithmic

quantizers, as ql(a) = 0 if and only if a = 0, F [ql](x̄k) = 0 implies
that xi = xj, ∀(i, j) ∈ Ek. Since a tree graph is always connected,
xi = xj, ∀(i, j) ∈ Ek implies that xi = xj, ∀(i, j) ∈ V ×V . The union
of the invariant sets {x ∈ Rn

| xi = xj, ∀(i, j) ∈ V × V }, k ∈ Z+

is uniquely the invariant set {x ∈ Rn
| x1 = x2 · · · = xN}. Hence

asymptotic convergence of system (3) to consensus is achieved
instead when logarithmic quantizers are used. The above results
are summarized in the following theorem.

Theorem 4. Assume that G(t) remains a tree with infinite switching
sequences and positive dwell time. Let x(t) be a Filippov solution of
system (3).

(1) In the case of uniform quantizers, x(t) converges to the invariant
set


x| |xi − xj| ≤

δu
2 (N − 1), ∀(i, j) ∈ V × V


.

(2) In the case of logarithmic quantizers, x(t) asymptotically
converges to the average consensus point for all logarithmic gains
δl > 0.

3.3. General undirected graphs

The above results are useful whenever the communication
graph retains the tree structure. A more practical situation
however occurs if we allow for the tree assumption to be relaxed.

Lemma 5. Let x(t) be a Filippov solution of system (3). The average
of all agent states 1

N

N
i=1 xi is invariant in the case of undirected

topologies.

Proof. By definition, the Filippov solution x(t) satisfies ẋ ∈

−BΓ F [q](x̄) from (4). The time derivative of 1
N

N
i=1 xi is given

by 1
N

N
i=1 ẋi. Equivalently we have 1

N 1T ẋ ⊂ −
1
N 1

TBΓ F [q](x̄) =

{0}, where the final equality is due to the fact that 1TB = 0. Hence
the centroid is preserved during the evolution. �

We denote the invariant centroid by the constant C ∈ R and
propose a new Lyapunov function candidate for system (3): Vg =N

i=1


xi − 1

N

N
i=1 xi

2
=

N
i=1(xi − C)2, which is known as the

quadratic disagreement function (Olfati-Saber & Murray, 2004) to
the invariant centroid. Vg is continuously differentiable and Vg = 0
only when all states equal to the initial average. The level sets
of Vg define compact sets with respect to the agents’ states. Its

generalized time derivative is given by ˙̃V g ⊂ (∇Vg)
T ẋ = −2(xT −

C1T )BΓ F [q](x̄) = −2 x̄TΓ F [q](x̄),where x̄T Γ F [q](x̄) has been
proved to be positive semidefinite in Theorem 1.

Theorem 6. Assume that G is undirected and static. Let x(t) be a
Filippov solution of system (3). Then x(t) converges to the invariant
sets

(1)

x| |xi − xj| ≤

δu
2 , ∀(i, j) ∈ E


with uniform quantizers, in finite

time.
(2) {x| xi = xj, ∀(i, j) ∈ E} asymptotically with logarithmic

quantizers satisfying δl > 0.

Proof. As stated above, we have shown that v ≤ 0 for all v ∈
˙̃V g .

The nonsmooth version of LaSalle’s Invariance Principle (Shevitz &
Paden, 1994) ensures the convergence of the system to the largest
invariant subset In = {x| F [q](xi − xj) = 0, ∀(i, j) ∈ E}, which
depends on the edge set E of the static topology. For uniform
quantizers, if at least one pair (i, j) ∈ E satisfies |xi − xj| >
δu
2 , it holds that F [qu](xi − xj) ≥ δu. Then we have ˙̃V g ⊂
−2
m

i=1 wi x̄i F [qu](x̄i) ≤ −aij δ2
u , which is strictly negative. Since

Vg is bounded from below, there exists a settling time T ∈ [0, ∞)

such that x(t) ∈

x| |xi − xj| < δu

2 , ∀(i, j) ∈ E

for t ≥ T (Carli

et al., 2006). For the case of logarithmic quantizers, due to the fact
that ql(x) → 0 when x → 0, asymptotic convergence can be
achieved instead. �

Remark. The finite-level quantizer model proposed in Li, Fu, Xie,
and Zhang (2011) is given by qf (·) : R → Γ , where Γ =

{0, ± i, i = 1, 2, . . . , K} and K ∈ Z+. We refer the interested
readers to the above paper for detailed definition. When qf (·) is
used, the closed-loop system becomes ẋi = −


j∈Ni

aij qf (xi −

xj), i = 1, . . . ,N . Similar to the case of infinite-level quantizers,
as qf (x) = qf (−x), ∀x ∈ R, the Filippov solution satisfies ẋ ∈

−BΓ F [qf ](x̄). Consider the same Lyapunov function candidate as

in Theorem 6 that Vg =
N

i=1(xi − C)2 and ˙̃V g ⊂ −2x̄TΓ F [qf ](x̄),
where x̄TΓ F [qf ](x̄) ≥ 0 as x qf (x) ≥ 0, ∀x ∈ R. Thus v ≤

0, ∀v ∈
˙̃V g . The largest invariant subset is given by {x| F [qf ](xi −

xj) = 0, ∀(i, j) ∈ E} =

x| |xi − xj| ≤

1
2 , ∀(i, j) ∈ E


. Thus the

conclusions obtained for uniform quantizers in Theorems 1, 4 and
6 still hold if the finite-level quantizer is used.

4. Second-order quantized agreement under static topology

The control law for second-order system (2) with quantized
relative states is given by ui = −


j∈Ni

aij[ q(xi−xj)+γ q(vi−vj)],

for i = 1, . . . ,N . Thus we have the closed-loop system

ẋi = vi

v̇i = −


j∈Ni

aij[ q(xi − xj) + γ q(vi − vj)].
(6)

Due to similar reasons as in the first order system, theCarathéodory
solution of system (6) may not exist. Thus we consider its solution
in the Filippov sense. Given that x̄ = BT x and v̄ = BTv, (6) is equiv-
alent to ˙̄x = v̄ and ˙̄v = −BTBΓ q(x̄) − γ BTBΓ q(v̄).

Denote the stack vector y = [x̄T v̄T
]
T and M = BTB. By

performing a coordinates transformation, we have

ż =


0m×m Im
0m×m 0m×m


z +


0m×m
Im


ũ

ũ =

−J −γ J


P q(y),

(7)

where ũ = Pu and

P =

√
Γ 0
0

√
Γ


, z = P y =

√
Γ x̄

√
Γ v̄


=

√
Γ BT x

√
Γ BTv


.

√
Γ is the element-wise square root of the weight matrix Γ and

Jm×m =
√

Γ M
√

Γ =
√

Γ BTB
√

Γ is symmetric. Denote by
DN×m = B

√
Γ , then J = DTD. If the undirected graph G is con-

nected, then J =
√

Γ BTB
√

Γ and the Laplacian matrix L = BΓ BT

both have nonnegative eigenvalues and moreover the same posi-
tive ones. Let

V (z) = zT

 γ J
1
2
Im

1
2
Im

γ

2
Im

 z

be the Lyapunov function candidate for system (7). Note that V (z)
is continuously differentiable for a static graph G. The generalized
time derivative of V (z) along the Filippov solution of system (6) is
given by

˙̃V (z) ⊂ −zTQz + zTWP (F [q](y) − y), (8)
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where

Q =


J 0m×m

0m×m γ 2J − Im


, W =


−J −γ J
−γ J −γ 2J


.

Lemma 7. sT Js ≥ λ2(L)|s|2 for a connected G, where sm×1 =

DT x, x ∈ Rn×1. Moreover, zTQz ≥ min{λ2(L), γ 2λ2(L) − 1}|z|2 if
γ >


1

λ2(L)
.

Proof (Sketch). We have J =
√

Γ BTB
√

Γ = DTD and L = DDT .
Ds = 0 only if s = 0 because Ds = 0 ⇒ DDT x = 0 ⇒ Lx = 0 ⇒

x ∈ span{1} ⇒ s =
√

Γ BT x = 0. Denote by ci the eigenvectors of
DTD associated with the eigenvalue zero, i = 1, . . . ,m+1−N . By
definition, Dci = 0. Moreover, since cTi s = cTi D

T x = (Dci)T x = 0,
we have ci ⊥ s, ∀i = 1, . . . ,m + 1 − N . By the Courant–Fischer
Theorem (Horn & Johnson, 1990), minci⊥s, s≠0i=1,...,m+1−N

sTDTDs
sT s

=

λm+2−N(DTD), where λm+2−N(DTD) = d21 = λ2(DDT ) = λ2(L).
Thus sT Js ≥ λ2(L) |s|2. Then since z = [xTD vTD]

T , it is easy to
verify that Q ≥ 0 if γ >


1

λ2(L)
. The first part of ˙̃V (z) in (8)

can be lower bounded by zTQz ≥ λmin(Q )|z|2, where λmin(Q ) =

min{λ2(L), γ 2λ2(L) − 1}. �

Lemma 8. ∥W∥2 = (1 + γ 2)λmax(L).

Proof (Sketch). Let θi be the eigenvalues of J, i = 1, . . . ,m. It can
be verified that W TW has an eigenvalue at 0 with multiplicity m
and another m non-zero eigenvalues θ2

i (1 + γ 2)2 corresponding
to each eigenvalue θi of J . The maximal one is λmax(W TW ) =

λ2
max(J)(1 + γ 2)2, yielding ∥W∥2 = (1 + γ 2)λmax(J) = (1 +

γ 2)λmax(L) by Lemma 7. �

When q = qu, since |ã − a| ≤
δu
2 , ∀ã ∈ F [qu](a), a ∈ R, |ỹ −

y| ≤
δu
2

√
2m, ∀ỹ ∈ F [qu](y), y ∈ R2m. Then by combining

Lemmas 7 and 8, we can bound ˙̃V (z) by ˙̃V (z) ≤ −λmin(Q )|z|(|z| −
(1+γ 2)λmax(L)

λmin(Q )

δu
√

wmax
2

√
2m), where λmin(Q ) = min{λ2(L), γ 2λ2

(L) − 1} and wmax = max(i,j)∈E{aij}. Based on the nonsmooth ver-
sion of LaSalle’s Invariance principle (Shevitz & Paden, 1994), all
solutions of system (6) enter the ball
z| |z| ≤

(1 + γ 2)λmax(L)
√

wmax

2λmin(Q )

√
2m δu


, (9)

which is centered at the consensus point x̄ = v̄ = 0.
When q = ql, since |ǎ − a| ≤ δl |a|, ∀ǎ ∈ F [ql](a), a ∈ R, then

|y̌ − y| ≤ δl |y|, ∀y̌ ∈ F [ql](y), y ∈ R2m. Moreover, given that P
is a positive diagonal matrix, it holds that |P (y̌ − y)| ≤ δl |P y| =

δl|z|, ∀y̌ ∈ F [ql](y), y ∈ R2m. Thus ˙̃V (z) ≤ −|z|2(λmin(Q ) − (1 +

γ 2)λmax(L) δl). If the logarithmic gain δl satisfies

0 < δl <
λmin(Q )

(1 + γ 2)λmax(L)
, (10)

we have ˙̃V (z) ≤ 0 and equality holds only when |z| = 0, i.e.,
x̄ = v̄ = 0. This implies that the logarithmic gain should be smaller
than an upper bound to guarantee asymptotic convergence.

Theorem 9. Assume that the undirected graph G is static and
connected. If γ >


1

λ2(L)
, system (6) has the following convergence

properties:
(1) With uniform quantizers, the agents converge to the consensus set

(9).
(2) With logarithmic quantizers, the agents asymptotically converge

to a consensus point and move with the same velocity, for all δl
satisfying (10).
Fig. 1. Switching tree topologies and uniform quantizers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 2. Switching tree topologies and logarithmic quantizers. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

5. Simulations

We now provide computer simulations to support the pre-
sented results. Four different communication graphs are used:
G1 = {N1 = {2}, N2 = {1, 3}, N3 = {2, 4}, N4 = {3}},G2 =

{N1 = {4}, N2 = {3}, N3 = {2, 4}, N4 = {1, 3}},G3 = {N1 =

{3}, N2 = {4}, N3 = {1}, N4 = {2}},G4 = {N1 = {2}, N2 =

{1}, N3 = {4}, N4 = {3}}. G1,G2 are tree graphs and G3,G4 are
disconnected. δl = 10 for the logarithmic gain and δu = 0.01 for
the uniform case. The first simulation involves a switching topol-
ogy fromG1 toG2, then back toG1 for both uniform and logarithmic
quantizers. The trajectories for uniform quantizers are depicted in
Fig. 1 while the case of logarithmic quantizers is shown in Fig. 2.
The red circles denote the instantswhen the communication topol-
ogy switches. As expected by Theorem 4, in the case of uniform
quantizers all agents reach the invariant set while with logarith-
mic quantizers the average consensus is achieved asymptotically.
The same systemundermore general graphs is tested in the second
part where the graph G is switching from G3 to G1 and finally to G4.
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Fig. 3. General topology and uniform quantizers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. General topology and logarithmic quantizers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

The simulation results in Figs. 3 and 4 illustrate different conver-
gence results with uniform and logarithmic quantizers.

In the last part, we simulate a group of second-order agents
moving only along x-coordinate to visualize the trajectories of both
velocity and position. The communication graph G1 is used as in
the first order case. Figures to the right are zoomed details of the
final configuration. Logarithmic quantizers with δl = 0.05 <

λmin(Q )

(1+γ 2)λmax(L)
= 0.056 are used and asymptotic convergence in both

velocity and position is shown in Figs. 5 and 6.

6. Conclusions

In this paper, we analyzed the consensus problem of multi-
agent systems under distributed control laws, composed of quan-
tized values of relative states between neighboring agents. In
particular, we distinguished between uniform and logarithmic
Fig. 5. Second order system with uniform quantizers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Second order systemwith logarithmic quantizers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

quantizers as well as between static and time-varying communi-
cation topologies. The derived results are less conservative than
our previous work with the same quantization constraints. It was
established that a tree structure provides convergence guarantees
in these cases. Similar conclusions were also shown to hold in the
case of general undirected topologies. Second order dynamicswere
then taken into account and explicit convergence properties were
obtained.

Future work includes extensions to the same multi-agent
systemwith directed topologies or agents with non-homogeneous
quantizers. Moreover, possible combinations with event-based
control techniques may be of great interest in order to reduce the
communication load further.
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