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Controlling the Relative Agent Motion in
Multi-Agent Formation Stabilization

Meng Guo, Michael M. Zavlanos, and Dimos V. Dimarogonas

Abstract—In this technical note, we propose a novel technique to con-
trol the relative motion of multiple mobile agents as they stabilize to a de-
sired configuration. In particular, we focus on the agents’ relative velocities
and the rate of change of their pairwise distances, and employ constructs
from classic navigation functions (NFs) to control these quantities. Control-
ling agent velocities requires nontrivial extensions of the NF methodology
to second-order models. Although in this work we propose a centralized
framework to control the relative agent velocities, it adds a new dimension
to the control of multi-agent systems with several advantages. In particular,
we provide a novel approach to control the transient dynamics of a network
that may facilitate the integration of continuous motion planing with dis-
crete topology control. The result is verified theoretically and via computer
simulations.

Index Terms—Agents and autonomous systems, cooperative control.

I. INTRODUCTION

The navigation function (NF) methodology, firstly introduced in the
seminal work of Rimon and Koditscheck [1], has been extensively ap-
plied to multi-agent cooperative navigation due to its mathematical
soundness [2], [3]. The primary control objective in these problems is
to guide a team of autonomous robots to a desired configuration, while
avoiding collisions both with teammates and obstacles. Different dy-
namic models of the agents have been analyzed including simple single
integrator [4], with limited sensing abilities [2], double integrator and
non-holonomic models [5]. Solutions are both centralized [3] and de-
centralized [4], [6] with the latter relying only on locally available in-
formation for control.
Other control schemes for multi-agent systems that do not employ

NFs have also been used in the context of consensus under dynam-
ical interaction topologies [7], cooperative search under limited com-
munication rage [8], and group coordination using nearest neighbor
rules [9]. In this technical note, we address the problem of coopera-
tive, multi-agent, formation stabilization subject to relativemotion con-
straints among neighboring agents. Specifically, we consider bounds
on the relative velocities between neighboring agents and on the rate
of change of their pairwise distances, which we enforce as the network
converges to its final configuration. An important motivation for this
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work stems from integrating continuous motion dynamics with dis-
crete network control. In fact, it is shown in our recent work [10]–[12]
that the convergence of distributed network optimization algorithm for
mobile networks depends not so much on the absolute velocity of the
agents, but on the rate at which the pairwise distances between agents
change. Specifically, [10] develops theoretical results that relate the dis-
tance to the optimal point to the rate at which the pairwise agent dis-
tances change.
An additional great advantage of this framework is that controlling

the dynamics of the pairwise distances within a network can indirectly
control its connectivity [13], which is critical to the convergence of,
e.g., state agreement algorithms [14]. Moreover, controlling the rela-
tive motion of the agents can facilitate integration of motion planning
with discrete topology control due to, e.g., flow control and routing
[11]. This development can lead to hybrid multi-agent systems that can
reliably relay information within the network. An alternative way to en-
sure a desired rate of change of the network structure is to enforce hard
bounds on the individual agent velocities [15]. However, this approach
is overly conservative, as it will generally require from the agents to
move slow, which hinders real time implementation of this algorithm.
Our approach by contrast only enforces bounds on the relative velocity
or the change rate of pairwise distance between neighboring agents.
To formulate the proposed problem using navigation functions, we

modify the repulsive potential in the resulting navigation function to
incorporate the relative motion constraints, while keeping the goal po-
tential as specified by the task. Due to the fact that both relative mo-
tion constraints explicitly involve the state variables of position and
velocity simultaneously, second-order dynamics must be considered,
which are known to be theoretically harder to deal with, compared to
their first-order counterparts [16]. Under some assumptions, we show
that the proposed navigation mechanism is free of local minima, while
it ensures that the evolution of the network satisfies the desired tran-
sient constraints. The proposed framework reveals a new technique to
tackle the multi-agent coordination problem under relative motion con-
straints involving velocity terms.
The main contributions of this technical note are as follows: (1) two

different relative motion constraints are considered to ensure the net-
work integrity; (2) a novel way is proposed to incorporate these con-
straints into the NF-based cooperative controller design of multi-agent
systems; and (3) two generic control schemes are proposed that are ap-
plicable to a class of cooperative formation tasks.
The rest of the technical note is organized as follows: Section II de-

scribes the system model and the problem in hand. A detailed descrip-
tion in Section III is given about how to modify the classic navigation
function to fit our needs. Stability and convergence of two different
control schemes are analyzed in Section IV. Section V shows how the
control scheme can be applied to several multi-agent formation tasks
and the results are illustrated by computer simulations. The last section
summarizes the main conclusions and indicates the further research
directions.

II. PROBLEM DESCRIPTION

Since the proposed relative motion constraints involve the state
variables of both velocity and position, it is necessary to consider
autonomous agents satisfying second order dynamics, i.e.,

(1)

where stand for agent ’s position and velocity with dimension ,
i.e., , , and is the set of agents. Denote
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further by the stack vectors composed of , and
, for . To simplify the navigation problem, we neglect collision

avoidance as we assume agents of zero volume operating within a large
workspace. Furthermore, we assume that no static or moving obstacles
are present in the operating workspace.
We call agent and neighbors if they exchange information with

each other and denote , where is the edge set of
the communication topology [17] . denotes the
neighboring set of agent so that if . In this technical
note, we only consider static and undirected graphs that satisfy
for all if at , and if and only if

, respectively. This implies that is constant and pre-defined
at the system startup. Furthermore, we assume that is connected [17],
namely there exists a path from any node to another node .
In what follows, we employ the two different relative motion con-

straints below:
(C.1) Constraints on relative agent velocities:

(2)

where and denotes the Euclidean norm.
These constraints impose upper bounds on the relative velocities
between neighboring agents.
(C.2) Constraints on the rate of change of the pairwise relative
agent distances:

(3)

where . To obtain (3) note that the squared relative distance
between is given by and its changing rate
is .

The constraint (C.1) can be thought of as an alternative way to con-
trol the relative distances. Zero relative velocity means that the relative
distance stays the same and small relative velocities means that the rel-
ative distance changes slowly. The constraint (C.2) directly controls
the change rate of relative distances.
Controlling the relative motion of the agents in multi-agent systems

can allow to indirectly control the connectivity of the network, which
can have a significant impact in, e.g., convergence of state agreement
algorithms. Moreover, controlling the relative agent motion can allow
to control the rate of change of the network structure, which may fa-
cilitate integration of motion planing with iterative optimization algo-
rithms, such as communication control, that depend on static or slowly
varying networks for convergence. On the other hand, we intend to de-
sign a generic control scheme that serves various formation objectives,
while satisfying constraints on the agents’ relative motion. Such objec-
tives can be:

(O.1) consensus, captured by the condition , ,
or , where is the pre-defined consensus
point; or
(O.2) formation stabilization, captured by the condition
, , where is the relative position between

neighbors and , or the condition , , where is
the absolute destination for agent .

In the sequel, we develop and study the stability properties of navi-
gation functions that minimize generic objectives including consensus
and formation stabilization, as discussed above, while respecting the
relative motion constraints (2) and (3). It is worth mentioning that even
with the centralized approaches, it is not trivial to tackle the coordina-
tion of multi-agent system under relative motion constraints.

III. CLASSIC NAVIGATION FUNCTIONS

In this part, we first briefly discuss the notion of a navigation function
and then describe the method of modify the classic navigation function

in order to take into account the relative motion constraints. The nav-
igation function firstly proposed by Rimon and Koditschek in [1] is
given by

(4)

where represents the potential, the attractive potential from the
goal and the repulsive potential from the sphere obstacles in the
workspace. Note that is the critical tunning parameter that guarantee
its correctness, namely there exits a lower bound of such that is a
valid navigation function [1]. Besides its provable mathematical cor-
rectness, another strength of (4) is that it provides a straightforward
motion planning algorithm. By simply following the negated gradient

, it is guaranteed that when and holds for
all . That is to say, a collision free path is guaranteed from almost
any initial position (except a set of measure zero) to any goal position
in a valid workspace [1].
In particular, for an agent satisfying single integrator model ,

convergence of the closed loop system under the control law
could be verified by considering the Lyapunov function can-

didate . Since , it has been
shown in [1] that only if except a set of measure zero
points. Furthermore, similar arguments also hold for double integrator
models as in (1). In this case, the control law is given by
. Consider the Lyapunov function candidate ,
where represents the kinetic energy of the system [3], [16].
Its time derivative along the solution of the closed-loop system is

. holds when , which im-
plies and further , with only if
except for a set of measure zero points. Moreover, it is of great impor-
tance to point out why is ensured during the process. Since we
have shown that the Lyapunov function candidate is monotonically de-
creasing before the agent reaches the goal position, ,

. Due to the fact that when , it is guaran-
teed that , .
Inspired by the reasoning above, we incorporate the relative motion

constraints (2) and (3) into two different repulsive potential functions
and , respectively. In particular, constraint (C.1), namely (2) is

equivalent to , which can be cap-

tured by the repulsive potential
. Similarly, constraint (C.2), namely (3) is equivalent to

, which can be captured by the repulsive

potential . We
want to keep both of the repulsive potentials positive, like the collision
avoidance mechanism. In what follows, we assume a general form of
the goal potential function that satisfies the following conditions: (a)

; (b) ; and (c) and if and only
if , where is the set of desired formations. Specific
choices for that meet the requirements in (a), (b), and (c), but also
model objectives (O.1) and (O.2) are discussed in Section V.

IV. CONTROLLER DESIGN

In this section, we propose two different controller designs to ensure
the satisfaction of the relative motion constraints (2) and (3), respec-
tively. Our deigns can accommodate a variety of formation objectives
and their correctness is shown using Lyapunov stability.

A. Relative Velocity Constraints

In this part, we mainly consider the multi-agent formation control
problem subject to relative velocity constraints (2), namely
, , where and is the edge set. Let
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denote the repulsive potential, where
. The function in matrix form is equivalent to

(5)

where is defined as , with de-
noting the Kronecker product [18] and having the fol-
lowing structure:

...
. . .

...

Specifically, is a symmetric matrix, with the and entries
being 1 and the and entries being 1, while the rest being
zero. The resulting potential function in this case is given by

(6)

where , is defined in Section III and is given by
(5). Furthermore, the gradients of with respect to the state variables

are given by

(7)

(8)

where we use the fact that as is a function of and
as is a function of . For brevity, set

. Then we have

The gradient of the modified repulsive potential with respect to is
given by:

where and is the
omit product.
Lemma 1: is positive semidefinite when in (5),
. Moreover, is positive definite for any
.

Proof: is symmetric and therefore so is
. Let be any nonzero vector. The quadratic term

can be computed as follows:

where . The term ,
. The equality holds when , , implying

because the underlying communication topology

is connected, where is the row vector with all ones. The terms ,
and are all positive as is assumed. Thus is positive

semidefinite, and is actually a standard Laplacian matrix [19] of the
underlying communication graph with nonnegative edge weights with

, .
Moreover and the equality holds only when .

Thus , . This means that
is positive definite and therefore invertible.

Theorem 2: Assume that , initially, and the commu-
nication topology is undirected and connected. System (1) is globally
stabilized to the invariant set by fol-
lowing the control law:

(9)

Moreover, the relative velocity constraints (2) are satisfied for all .
Proof: Consider the following Lyapunov candidate

where is a control parameter that depends on the control prefer-
ence. The time derivative of along the solution of system (1) under
control law (9) is given by

(10)

where we have used (7), (8). Then is given by

which means that remains decreasing as long as . At ,
we assume that , i.e., zero initial velocity. Thus

, and . The Lya-
punov function at is evaluated as

. Thus ,
. The fact that is maintained during the whole process

can be proved by contradiction, In fact, if at certain time in-
stants, then , which violates the condition that , .
Similar arguments can be applied to show that , is
ensured. Since , are independent continuous variables
and initialized as positive numbers, they need to approach zero be-
fore becoming negative. If one of becomes zero, then ,
which is in contradiction to the fact that , . Thus
we can draw the conclusion that the constraint (2) is fulfilled, namely

, and . It is worth men-
tioning that implies , namely the upper bound is
inversely proportional to .
By Lemma 1 the matrix is positive

definite for any and , . Conse-
quently, always exists, which verifies
the feasibility of the proposed control scheme. By LaSalle’s In-
variance principle [20], the system converges to the invariant set

. Within this invariant set , implies
, namely .

Since is positive definite, it means that
, which implies . Since

only if from Section III, this leads to the conclusion that
, i.e., all agents keep still at the desired

formation. This completes the proof.
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B. Constraints on the Change Rate of Relative Distances

In the second part, we mainly consider the formation control
problem with constraints (3) on the rate of change of the relative
distance, namely , , where

and is the edge set. Let where

. The function
denotes the repulsive potential, which can be written in matrix form as

(11)

where , and are defined in the same way as in Section IV-A. In
particular, the potential function in this case is defined as

(12)

where , is defined in Section III and is given by (11). Fur-
thermore, in this case the gradients of with respect to , are given
by

Since is a function of both and , the gradients of with respect
to and are computed as

where is the omit product and

. Note here, that unlike
defined in (8), is neither a standard Laplacian matrix nor positive
semidefinite, because the edge weights
are not guaranteed to be positive. Consequently, the previous approach
does not apply in this case. However by simple calculations, we can
verify that

This observation gives rise to the following transformation that plays
an important role in the stability analysis:

(13)

where the second equality follows from the fact that is a
scalar. Namely, and

. For brevity, set , and
then

Lemma 3: is symmetric and positive semidefinite when
in (11), .

Proof: Clearly, is symmetric. Let be any nonzero
vector. Then the quadratic term can be computed as:

Since and , .
The equality holds only when or as the
underlying communication topology is connected. This completes the
proof.
Theorem 4: Assume that , initially, and the commu-

nication topology is undirected and connected. System (1) is globally
stabilized to the invariant set by using
the control law

(14)

Moreover, the constraints on the rate of change of pairwise distances
(3) are satisfied for .

Proof: Consider the Lyapunov candidate

where is a control parameter as before. Its time derivative along
the solution of system (1) under control law (14) is given by

(15)

Through combining (14) and (15), becomes

which means that keeps decreasing as long as . The state-
ment that holds for can be verified by applying similar ar-
guments as in Theorem 2. Namely, at , we assume that , i.e.,
zero initial velocity. Thus ,
and . The Lyapunov function at is evaluated

as .
Since we have shown that keeps decreasing until the system reaches
, it implies . Thus , . Then

by contradiction, if at certain time instants, , which
violates the condition that , . Furthermore, since
are independent continuous variables, initialized as positive numbers,
they need to approach zero before becoming negative. If one of
becomes zero, then , which contradicts the observation that

, . Thus we can conclude that the constraint (3) is sat-
isfied, namely , and .
Similarly as in Theorem 2 we can derive that as ,
namely the upper bound is inversely proportional to .
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Fig. 1. Twenty agents perform consensus under the relative velocity constraint.
The final consensus point is .

Fig. 2. Norm of relative velocity between neighboring agents stays below the
bound .

Due to Lemma 3, is positive semidefinite when ,
. Hence, is positive definite and in-

vertible for any positive and . Thus
always exists and this validates the proposed controller. By LaSalle’s
Invariance Principle, the closed-loop system converges to the invariant
set . Moreover, within the invariant set ,
implies , i.e., .
On the other hand, implies , which in turn by (14)
indicates and . Consequently, the invariant set
is equivalent to ,
i.e., agents stay still at the desired formation.
At last, we would like to point out that it is not trivial to extend

the existing technique to take into account collision avoidance among
the group or with static obstacles in the workspace. Actually, including
another term containing position variables in the function will change
the invariant set of the closed-loop system andmay introduce undesired
local minimal. In particular, (7) would be altered by adding the gradient
of with respect to , namely . As a result, dose not
imply , which is the desired equilibrium. As stated before,
this challenging issue is a topic of future research.

Fig. 3. Consensus from another initial state under constraint (3). The consensus
point is .

Fig. 4. Change rate of pairwise relative distances is below .

V. APPLICATION TO FORMATION CONTROL

In this section, we will apply the control law (9) and (14) to dif-
ferent formation objectives. Results from Theorem 2 and 4 are valid
for generic goal potential function satisfying ,
and if and only if , where is the set of
desired formations.

A. Consensus

Consensus is one of the most fundamental formation stabilization
problems that aims at aligning all agent positions at the same location
[7], [9]. Even thoughmany distributed control protocols have been pro-
posed and studied, the same problem for second-order agents under rel-
ative motion constraints has not received significant consideration.
The goal potential is given by , similar to the Lyapunov

function proposed in [19], where and ,
where is the standard Laplacian matrix [17] for the static under-
lying communication graph. Clearly, if belongs to the de-
sired consensus set, i.e., . Also if

. The corresponding control scheme under relative ve-
locity constraints is given by substituting the gradient in
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Fig. 5. Twenty agents start from and form a circle with radius 2 under
constraint (2).

Fig. 6. Under control law (9), the norm of pairwise relative velocity stays below
the bound .

(9). Similarly, the corresponding control scheme under constraints on
the rate of change of the relative distance is given by substituting the
gradient in (14).
We simulate a multi-agent system of twenty agents in 2-D config-

uration space in favor of better visualization. All agents, satisfying
double integrator dynamics (1), start from twenty random positions
within the circle with center and radius 2. The underlying
communication graph is a static line graph, namely agent is con-
nected with agent , . The simulation step-size
is set to 0.001 s. Fig. 1 shows the full trajectory when the limit

, and , under the constraints (2). Fig. 2 illus-
trates the evolution of relative velocities ,

, corresponding to nine communication edges in the
network along with time. All start from zero and eventually converge
to zero, while staying below the constraint given in (2) during all
time. On the other hand, Fig. 3 shows the agent trajectories under
the constraints (3) when , remain the same. Fig. 4 il-
lustrates the evolution of the rate of change of relative distance

among neighboring agents.

Fig. 7. Twenty agents form a circle under constraint (3).

Fig. 8. Under control law (14), the norm of the change rate of pairwise relative
distances is below .

B. Relative Formation

The relative formation [21] is another cooperative task we take into
account for multi-agent systems. In other words, the desired formation
is specified by the set , where

is the desired relative position of neighboring agents. Cor-
respondingly, the goal potential is defined as

. Then its gradient with respect to is computed by

(16)

It is easy to verify that when and also when
. The corresponding control scheme under relative velocity con-

straints is obtained by combining (9) and (16). The corresponding con-
trol scheme under constraints on the changing rate of relative distance
is given by combining (14) and (16). The above control schemes are
validated by computer simulations over the same twenty-agent system.
All agents start from the origin initially and the desired formation is

the circle with center and radius 2. This is to mimic the inverse
consensus or dispersion [22]. The communication topology is now a
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static spanning tree the root of which is chosen randomly. In partic-
ular, in (16) is defined by

, where and . Fig. 5
shows the trajectory when the limit , and , under
the constraint (2). The evolution of relative velocities among neigh-
boring agents are shown in Fig. 6, with respect to
time. All start from zero and eventually converge to zero, while staying
below the constraint given in (2) during all time. On the other hand,
Fig. 7 and 8 illustrate the agent trajectories under the constraint (3)
and the evolution of the change rate of relative distances among neigh-
boring agents. Red circles are used to denote the final positions.
We did not encounter any computational issues regarding the matrix

inverse operation, which relies on the inv function in MATLAB. It is
worth mentioning that the simulation time step needs to be kept small.

VI. CONCLUSIONS AND FUTURE WORK

In this technical note we propose a novel method to control the rel-
ative agent motion in multi-agent systems as they stabilize to a de-
sired configuration. We focused on the agents’ relative velocities and
the rate of change of their pairwise distances, and we employed con-
structs from classic navigation functions (NFs) to impose bounds on
these quantities. The proposed controllers were analyzed theoretically
in terms of their ability to stabilize the system at the desired configura-
tion while respecting relative motion constraints, and verified by var-
ious computer simulations. The contribution of our proposed approach
lies not only in its theoretical merit, but also in its potential impact in
providing a powerful technique to control the connectivity of mobile
networks and facilitate integration of path planning with network con-
trol. Our future work will involve extensions of this framework to more
challenging settings, involving e.g., collision and obstacle avoidance.
Emphasis will also be given to distributed implementations.
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H-Infinity Kalman Estimation for Rectangular Descriptor
Systems With Unknown Inputs

Chien-Shu Hsieh, Member, IEEE

Abstract—This note considers filtering and prediction for rectan-
gular descriptor systems with unknown inputs that affect both the system
and the output. An optimal descriptor Kalman estimator (HDKE),
which can simultaneously solve the filtering and prediction problems
for rectangular descriptor systems with unknown inputs, is developed
based on the maximum likelihood descriptor Kalman filtering method.
The HDKE serves as a unified solution to solve and Kalman filtering
for descriptor systems and standard systems with or without unknown
inputs. To reduce the computational complexity problem, some efficient al-
ternatives to the developed HDKE are further proposed. The relationship
between the HDKE and the existing literature results is also addressed. An
illustrative example is given to show the usefulness of the proposed results.

Index Terms—Descriptor systems, filtering, Kalman filtering, un-
known inputs.

I. INTRODUCTION

Unknown input filtering (UIF) serves as a useful technique to solve
many practical state estimation problems that often arise in systems
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