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Nonlinear consensus via continuous, sampled, and aperiodic updates
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We consider a first-order multi-agent system with nonlinear control protocols performing consensus. We first
address the convergence properties of the continuous system. Then periodically sampled control inputs are
treated, where we derive explicit upper bounds on the sampling interval to preserve global stability. Moreover, we
design an aperiodic and event-triggered updating law to reduce the control efforts even further while ensuring the
closed-loop stability and providing a strictly positive lower bound on the inter-execution time. Finally, the
robustness of this approach with respect to additive disturbances is examined by applying L2 gain analysis.

Keywords: multi-agent consensus; nonlinear system; sampled control; event-triggered control; L2 stability

1. Introduction

Consensus is one of the most studied applications in
the multi-agent control area, in which a collection of
agents aim at agreeing upon certain quantities of
interest. The primary goal is to design a distributed
control law for each agent such that consensus is
achieved at steady state. The well-known linear
consensus protocol using convex combination of
relative states between neighbouring agents as control
parameters has been evaluated under static, switching
communication topologies and under communication
delays in Olfati-Saber and Murray (2004), over limited
and unreliable communication in Ren and Beard
(2005). Synchronisation in networks of identical
linear systems instead of single integrator agents, is
considered in Scardovia and Sepulchre (2009).

Recent literature extensively addresses the consen-
sus problem with additional design constraints like
connectivity preservation in Olfati-Saber (2006), finite
time convergence in Cortés (2006), Ren, Cao, and
Meng (2010), and quantised information in Ceragioli,
De Persis, and Frasca (2010), Guo and Dimarogonas
(2011). Nonlinear consensus protocols arise naturally
in most of the above applications. In Ajorlou,
Momeni, and Aghdam (2011) and Chen, Liua, and
Lua (2009), the dynamical agents performing consen-
sus are inherently described by nonlinear dynamics.
Nonlinearities of the control protocol increase the
difficulties of stability analysis due to the fact that it is
not possible to write the closed-loop system as
_x ¼ �Lx and further utilise the spectrum properties
of the Laplacian matrix L as in Olfati-Saber and

Murray (2004). While most of the aforementioned

papers tackle the consensus problem under nonlinear

protocols, we explore here not only the stability of the

continuous model but also the discrete-time counter-

parts due to sampled or event-triggered control

updates.
On the other hand, since continuous communica-

tion is an ideal assumption, it is more realistic to

assume that the participants can only interact at

discrete time instants. One choice is to use periodic

and synchronous clock for all agents so that they

communicate and update the control law synchro-

nously at the same sampling instants, as analysed in

Xie, Liu, Wang, and Jia (2009). It is mentioned that the

value of this sampling period greatly affects the
stability and performance of the resulting discrete-

time system. In case of large networks, an increasing

number of agents lead to a demand for reduced

computation and limited communication bandwidth

per agent. In that respect, an event-triggered approach

seems more favourable for multi-agent systems. The

application of event-triggered strategy to multi-agent

consensus problem can be found in De Persis, Sailer,

and Wirth (2011), Dimarogonas and Johansson (2009),

Dimarogonas, Frazzoli, and Johansson (2012),

Seyboth, Dimarogonas, and Johansson (2011) and

Wang and Lemmon (2011). Both stochastic event-

triggered strategies in Rabi, Johansson, and Johansson

(2008) and deterministic event-triggered strategies in

Wang and Lemmon (2011) have been considered.

Moreover, it is important to guarantee that all agents

had a strictly nonnegative inter-event time in order to
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avoid infinitely often triggering and also the robustness

of the proposed control law with respect to

additive noise in the system model as discussed in

Dimarogonas (2011).
The main contribution of this work can be

summarised as follows: we take into account the

first-order multi-agent system with a generic class of

nonlinear control protocols. We first examine the

convergence of the continuous system and then extend

the results to the same system with periodically

sampled inputs. Explicit upper bounds on sampling

intervals are derived to ensure global convergence.

Moreover, we design a decentralised event-triggered

law that substantially reduces both the control efforts

and the communication efforts. At the same time, the

case of infinitely frequent triggering is excluded by

showing that the inter-event interval is strictly larger

than a positive lower bound. Moreover the robustness

of this method with respect to additive disturbances is

examined by applying L2 gain analysis in the last part.
Compared with the event-triggered strategies

proposed in Dimarogonas et al. (2012) and

Dimarogonas (2011), we provide an approach that

allows for both event-triggered communication and

event-triggered control updates. Each agent broadcasts

its state information to its neighbours only at specific

event-based instants and the control law is updated,

whenever the agent receives new measurements. In

addition, the designed triggering condition is piecewise

constant, which means that continuous monitoring of

neighbours’ states is avoided. Similar arguments can be

found in Seyboth et al. (2011), where event-based

broadcasting is discussed, but this article treats a more

general problem by taking into account nonlinear

consensus protocols, under not only event-triggered

control updates, but also continuous and periodically

sampled control updates. Furthermore, the event-

triggered updating law proposed in this article is

purely decentralised in the sense that no global

knowledge is needed like the overall communication

structure required in Seyboth et al. (2011).
The rest of this article is organised as follows:

Section 2 presents some necessary backgrounds from

algebraic graph theory and introduces the system

dynamics we consider. In Section 3, we investigate

the stability of the continuous system and derive the

convergence rate under static and switching commu-

nication topologies. Section 4 is devoted to the same

multi-agent system but with periodically sampled

control inputs. The decentralised and event-triggered

control strategy is discussed in Section 5, followed by

the L2 gain robustness analysis for the case of additive

noise in each agent’s dynamics in Section 6. Some

numerical simulations are given in Section 7 while the

last section concludes the results and indicates further
research directions.

2. Problem statement

2.1 Graph theory and consensus preliminaries

First, we present some definitions and notations from
algebraic graph theory in Godsil and Royle (2001). For
an undirected graph G¼ (V, E) with N vertices, denote
by V ¼ 1, . . . ,N the set of vertices and by
E¼ {(i, j)2V �Vji2N j} the set of edges, where N j

denotes agent j’s communication set that includes the
agents with which it can communicate. Each agent
only has access to the state of agents that belong to its
communication set. In the sequel, G is assumed to be
undirected, namely i2N j, j2N i, 8(i, j)2E. When the
communication topology is static, G is time-invariant
and the sets N i are static. Otherwise G¼G(t) if the
neighbouring sets N i change over time.

In this article, we mainly consider weighted and
undirected graphs, for which the adjacency matrix
A¼A(G)¼ {aij} is the N�N matrix given by aij4 0, if
(i, j)2E, and aij¼ 0, otherwise. Agents i, j are called
adjacent if (i, j)2E. A path of length r from i to j is a
sequence of rþ 1 distinct vertices starting with i and
ending with j such that consecutive vertices are
adjacent. If there is a path between any two vertices,
then G is called connected. A connected graph is called
a tree if it contains no cycles. Let D be the N�N
diagonal matrix of di’s, where the degree di of each
vertex i is given by di ¼

PN
j¼1 aij. The Laplacian matrix

of G is the symmetric positive semidefinite matrix given
by L¼D�A. For a connected graph, L has non-
negative eigenvalues, Godsil and Royle (2001) and a
single zero eigenvalue with the corresponding eigen-
vector 1, where 1¼ (1, . . . , 1)T. Denote by �k(M) the
kth eigenvalue of matrix M in ascending order, then
�1(L)¼ 0 and �2(L)4 0. Note here, we do not restrict
aij to be uniformly one or equal, which means the edges
can have different weights.

2.2 System model

Consider N single-integrator agents:

_xi ¼ ui, i 2 V, ð1Þ

where xi2R denotes the state and ui2R the control
input of agent i. The control objective is to construct
distributed feedback controllers such that all agents
converge to an agreement state. In this article, we treat
only the system behaviour in the x-coordinates but the
analysis that follows applies directly in higher dimen-
sions. Denote by x¼ [x1, . . . , xN]

T the stack vector for
the agents’ coordinates in x-coordinates.

2 M. Guo and D.V. Dimarogonas
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We consider the following nonlinear consensus
protocol for system (1):

ui ¼ �
XN
j¼1

aij f ðxi � xj Þ , i 2 V, ð2Þ

where it is assumed that aij¼ aji4 0 if j2N i and aij¼ 0
otherwise. It means that we only take into account
undirected topologies with symmetric weights in this
article. The scalar function y¼ f(x): R!R and f2C

1,
has the following properties:

. f(x)¼ 0 if and only if x¼ 0

. f(x)¼�f(�x), 8x2R

. �1 x� f(x)� �2 x, where �24 �14 0, 8x2R
þ.

According to the definitions in Chapter 6, Khalil
(2002), the above scalar function y¼ f(x) is input-
feedforward passive and output strictly passive. Figure 1
illustrates an example of function f(x) and also the
sector [�1, �2]. f(x) belongs to a sector whose bound-
aries are the straight lines y¼ �1x and y¼ �2x. The
following inequalities can be easily verified that 8x2R:

. �1 jxj � jf(x)j � �2 jxj

. �1 x
2
� x f(x)� �2 x

2

. �1
�2
2

f 2ðxÞ � x f ðxÞ � �2
�2
1

f2ðxÞ.

Remark 1: All following results can be readily
extended to more general models that _xiðtÞ ¼
�
PN

j¼1 aij fijðxi � xj Þ, i.e. different nonlinear functions
for each edge, provided that fij¼ fji holds, 8(i, j)2E.

3. Stability and convergence

Given system (1) and the control law (2), the resulting
closed-loop system is given by

_xi ¼ �
XN
j¼1

aij f xi � xj
� �

, i 2 V: ð3Þ

First, we show that along the solution of system (3), the
sum of agent states

PN
i¼1 xi remains constant. Its time

derivative is given by
PN

i¼1 _xi ¼
PN

i¼1

PN
j¼1ðaij � ajiÞ

f ðxi � xj Þ ¼ 0, due to the symmetric properties of
both f(�) and aij¼ aji, 8i, j2V. Denote the initial average
of the states by 1

N

PN
i¼1 xið0Þ ¼ C. Then 1

N

PN
i¼1 xiðtÞ ¼ C,

8t� 0. We can compute the disagreement of each
agent’s state to this invariant centroid and use the
norm of this disagreement vector as the Lyapunov
function candidate:

V ¼
XN
i¼1

ðxi �
1

N

XN
i¼1

xiÞ
2
¼
XN
i¼1

ðxi � CÞ2:

Its level sets �¼ {xj V� c, c2R
þ} define compact sets

in the agents’ state space since V � c) C�
ffiffiffi
c
p
�

xi � Cþ
ffiffiffi
c
p

, which is closed and bounded for c4 0,
8i2V.

Theorem 3.1: Assume the communication graph G
remains static and undirected. Then the solution of the
closed-loop system (3) converges to the invariant set {xj
xi¼ xj, (i, j)2E}. Moreover, the average consensus can
be reached exponentially if and only if G is connected.

Proof: The time derivative of V along the trajectories
of system (3) is given by

_V¼ 2

�XN
i¼1

xi � _xi�C
XN
i¼1

_xi

�
¼�2

XN
i¼1

XN
j¼1

xi �aij fðxi�xj Þ

¼�
XN
i¼1

XN
j¼1

aij½ðxi�xj Þ f ðxi�xj Þ�

��
XN
i¼1

XN
j¼1

�1aijðxi�xj Þ
2
� 0:

By LaSalle’s Invariance principle Khalil (2002),
asymptotic convergence to the invariant set
fxj _V ¼ 0g is guaranteed. _V ¼ 0 implies that
aij(xi� xj)

2
¼ 0, i, j2V. Since aij¼ 0, 8(i, j) =2E and

aij4 0, (i, j)2E, the invariant set fxj _V ¼ 0g is equiva-
lent to {xj xi¼xj, (i, j)2E}. If the underlying
communication graph G is connected, it leads to the
conclusion that all agents have the same states, which
should coincide with the initial average, due to the fact
that the average state is invariant. Furthermore, we can
bound _V in such a way that

_V � ��1
XN
i¼1

XN
j¼1

aijðxi � xj Þ
2
¼ �2�1 x

TLx

¼ �2�1 ðx� C 1ÞTL ðx� C 1Þ,

where we used the facts that L1¼ 0 and 1
TL¼ 0

T.
Assume that G is static and the Laplacian matrix is
time-invariant. By the Courant-Fisher Theorem in
Horn and Johnson (1990), since 1T(x�C1)¼ 0, we
have (x�C1)T L (x�C1)� �2(L) (x�C1)T(x�C1),
where �2(L) is the second largest eigenvalue of the
Laplacian matrix, which is strictly positive for a
connected G. Thus, _V ¼ �2�1 ðx� C1ÞTL ðx� C1Þ �
�2�1�2ðLÞ ðx� C1ÞTðx� C1Þ ¼ �2�1�2ðLÞ V: By
applying the Comparison Lemma from Bacciotti and
Rosier (2005), we get

VðtÞ � e�2�1�2ðLÞt Vð0Þ ) jxðtÞ � C1j

� e��1�2ðLÞt jxð0Þ � C1j ,

which ensures all agents approach the average
consensus exponentially fast, with the worst-case rate
�1�2(L). œ

Since the agents in the network are moving, it is
reasonable to assume that communication links can
fail and be created. Namely, certain number of
edges might be added or removed from the

International Journal of Control 3
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communication graph. We are interested in analysing
whether it is possible to reach the average consensus in
case of a network with switching topology.

Corollary 3.2: Assume that G(t) is time-varying but
keeps connected. The closed-loop system (3) converges to
the average consensus exponentially.

Proof: Consider the same Lyapunov function candi-
date for system (3) under switching topologies. Since V
does not depend on the network topology G, V is
continuous over the switching instants. We have shown
that V is non-increasing with static topologies. Thus,
we can conclude that V is non-increasing along the
solutions of the switching system. Denote the sequence
of underlying switching topologies as {Gk},
k¼ 1, 2, . . . . Since Gk is always connected, following
Theorem 2.1 in Liberzon (2003) and Theorem 3.1 in
this paper, it holds that

_V � �2�1�2ðLÞ V � �2�1 �
�
2 V ,

where ��2 ¼ minkf�2ðLðGkÞÞg, i.e. the minimal second
largest eigenvalue of the Laplacian matrices corre-
sponding to all graphs in {Gk}. Thus, V is a valid
common Lyapunov function for the switching system.
Moreover the disagreement vector globally converges
to the origin by jxðtÞ � C1j � e��1�

�
2
tjxð0Þ � C1j, where

�1�
�
2 is the worst-case rate for all connected graphs

with N vertices. œ

4. Sampled system

The stability and performance of continuous system (3)
was discussed in the previous section. In many cases, in
order to reduce the control effort and favour digital
implementations, the control laws are updated peri-
odically according to a constant sampling period Ts.
Moreover, it is well known that the value of the
sampling period greatly affects the stability and
performance of the resulting discrete-time system.
While system (3) is a continuous process, we can
sampled control law (2) with sampling period Ts4 0,
so that

uiðtÞ ¼�
XN
j¼1

aij fðxiðkTsÞ�xj ðkTsÞÞ, t2 ½kTs,kTsþTsÞ:

ð4Þ

Then the discrete-time closed-loop system is given by

xiðkþ 1Þ ¼ xiðkÞ �
XN
j¼1

aij f ðxiðkÞ � xj ðkÞÞTs ,

where we simplify the notation kTs by k because all
agents share the same sampling clock. Similarly it can

be verified that the sum of states
PN

i¼1 xiðkÞ remains

invariant and the invariant centroid is denoted by C as

in the continuous case.
Consider the discrete-time Lyapunov function

candidate VðkÞ ¼
PN

i¼1ðxiðkÞ � CÞ2. The level sets of

V are closed and bounded as before. Since VðkÞ ¼PN
i¼1 x

2
i ðkÞ �NC2, the difference V(kþ 1)�V(k) is

computed as

Vðkþ 1Þ � VðkÞ

¼
XN
i¼1

½xiðkþ 1Þ þ xiðkÞ�½xiðkþ 1Þ � xiðkÞ�

¼
XN
i¼1

"
2xiðkÞ �

XN
j¼1

aij f ðxiðkÞ � xj ðkÞÞTs

#

�

"
�
XN
j¼1

aij f ðxiðkÞ � xj ðkÞÞTs

#

¼ �Ts

XN
i¼1

XN
j¼1

aij ½xiðkÞ � xj ðkÞ� f ðxiðkÞ � xj ðkÞÞ

þ T2
s

XN
i¼1

"XN
j¼1

aij f ðxiðkÞ � xj ðkÞÞ

#2

, ð5Þ

where in the last equation we use the symmetric

property of both f(x) and aij.

Theorem 4.1: Assume G is static and undirected. The

solution of the multi-agent system (1) under sampled

control law (4) is guaranteed to converge to the average

consensus asymptotically if G is connected and the

sampling time Ts satisfies

05Ts 5
�1
�22

1

max
i
f
PN

j¼1 aijg
:

Proof: Applying the Cauchy–Schwarz inequality to

the second part of (5), we get

"XN
j¼1

aij f ðxiðkÞ � xj ðkÞÞ

#2

¼

"XN
j¼1

ffiffiffiffiffiffiffiffi
ðaijÞ

p ffiffiffiffiffiffiffiffi
ðaijÞ

p
f ðxiðkÞ � xj ðkÞÞ

#2

�
XN
j¼1

aij
XN
j¼1

aij½ f ðxiðkÞ � xj ðkÞÞ�
2:

Moreover since x � f ðxÞ � �1
�2
2

½ f ðxÞ�2, 8x2R, which can

be applied to the first part of (5), we get

Vðkþ1Þ�VðkÞ ��
�1
�22

Ts

XN
i¼1

XN
j¼1

aij ½ fðxiðkÞ�xj ðkÞÞ�
2

þT2
s

XN
i¼1

XN
j¼1

aij
XN
j¼1

aij½ f ðxiðkÞ�xj ðkÞÞ�
2:

4 M. Guo and D.V. Dimarogonas
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Denote by zi ¼
PN

j¼1 aij ½ f ðxiðkÞ � xj ðkÞÞ�
2
� 0 and di is

the degree of agent i defined earlier. We have

Vðkþ1Þ�VðkÞ ��
�1
�22

Ts

XN
i¼1

ziþT2
s

XN
i¼1

di zi

��
�1
�22

Ts

XN
i¼1

ziþT2
s max

i
fdig

�
XN
i¼1

zi¼Ts

�
Ts max

i
fdig�

�1
�22

�XN
i¼1

zi:

If it holds that

05Ts 5
�1
�22

1

max
i
fdig
¼
�1
�22

1

max
i
f
PN

j¼1 aijg
,

where maxi{di} is the maximum degree of all agents,
then V(kþ 1)�V(k)� 0, where the equality V(kþ 1)¼
V(k) holds only when zi¼ 0, 8i2V. Since
zi ¼

PN
j¼1 aij ½ f ðxiðkÞ � xj ðkÞÞ�

2
� 0 and f(x)¼ 0 only

if x¼ 0, it implies that xi¼ xj, 8(i, j)2E. Moreover, as
the underlying graph G is connected, it leads to the fact
that x1¼ � � � ¼ xN, which should coincide with the
invariant average state. Application of LaSalle’s
Invariance principle for discrete time systems from
Lygeros, Johansson, Simic, Zhang, and Sastry (2003),
establishes the convergence of system (4) to the average
consensus as t!1. œ

Moreover by Gers̆gorin Disk theorem in Olfati-
Saber and Murray (2004), the maximal eigenvalues of
the Laplacian matrix �max(L) should satisfy j�max(L)�
maxi{di}j �maxi{di}, which implies maxifdig �

�maxðLÞ
2 .

Thus it holds that

05Ts �
�1
�22

1

max
i
fdig
�
�1
�22

2

�maxðLÞ
:

As expected, the constraint on the sampling time is
tighter than the linear counterparts discussed in Xie
et al. (2009) when �24 1 and �15 �2.

Remark 2: The above conclusions can also be
extended to switching topologies by applying similar
arguments as in Corollary 3.2. The Lyapunov function
candidate V can serve as a common Lyapunov
function for the sampled system under switching
topologies.

5. Aperiodic control design

In this section, we relax the requirement for periodic
sampling at pre-specified instants by considering
aperiodic event-triggered control strategy. An event-
driven approach seems more suitable in order to allow
more agents into the system without increasing the

communication and computational cost, as discussed

in Astrom and Bernhardsson (2002). In particular, the

distributed event-triggered rules given in Dimarogonas

et al. (2012) enforce each agent to update its control

input whenever a certain state error measurement

threshold is violated, as well as when the control law of

its neighbours is updated. Moreover, the

communication among the neighbouring agents can

also be event-triggered as proposed in Seyboth et al.

(2011). Whenever one agent sends or receives a new

state measurement, its control law is updated, which

renders that both communication and control-law

update are event-triggered and they obey the same

triggering conditions.
In the sequel, we use the same notations as in

Dimarogonas et al. (2012). Assume there exists a

separate sequence of events defined for each agent i,

occurring at times ti1, t
i
2, . . . , tik, k¼ 1, 2, . . . . An event

for agent i is triggered as soon as the triggering

condition (12) is fulfilled. The control strategy for

agent i is given by

uiðtÞ ¼ �
X
j2N i

aijf xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� �
, i 2 V, ð6Þ

where k0ðtÞ ¼ argminl2N: t�t j
l
ft� tjlg is the last event

time of agent j. At agent i’s event time tik, it updates its

control law (6) by letting xiðt
i
kÞ ¼ xiðtÞ while at the

same time it broadcasts its latest state xiðt
i
kÞ to all its

neighbours j2N i. Consequently, any agent j2N i

updates its control law by letting xiðt
i
k0ðtÞÞ ¼ xiðt

i
kÞ.

Thus, the decentralised control law (6) for each agent is

updated both at its own event times as well as the event

times of its neighbours. Namely, the time instants when

agent i updates its control law (6) are ftikg [ ft
j
kg,

8j2N i.
Before we present the triggering condition, some

useful variables are introduced. The state measurement

error for agent i is defined as

eiðtÞ ¼ xiðt
i
kÞ � xiðtÞ , ð7Þ

where t 2 ½tik, t
i
kþ1Þ. ei(t) is set to zero whenever t 2 ftikg,

k2Z. The control law (6) indicates that each agent

takes into account the latest state information of its

neighbours in the control law. The closed-loop system

is given by

_xi ¼ �
X
j2N i

aijf xiðt
i
kÞ � xj ðt

j
k0 Þ

� �
¼ �

X
j2N i

aijf
�
xiðtÞ � xj ðtÞ þ ðeiðtÞ � ej ðtÞ

��
: ð8Þ

Since 1
N

PN
i¼1 _xiðtÞ ¼ �

PN
i¼1

P
j2N i

aijf
�
xiðtÞ � xj ðtÞþ

ðeiðtÞ � ej ðtÞÞ
�
¼ 0, the average of the states is still

invariant, i.e. 1
N

PN
i¼1 xiðtÞ ¼

1
N

PN
i¼1 xið0Þ ¼ C.
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We consider the same Lyapunov function candi-

date V ¼
PN

i¼1ðxi � CÞ2. The level sets of V are

compact as before. In the sequel, we omit the time

index t for brevity. The time derivative of V along the

trajectory of system (8) is given by

_V ¼ �
XN
i¼1

X
j2N i

aij ðxi � xj Þ f ðxi � xj þ ei � ej Þ

¼ �
XN
i¼1

X
j2N i

aij ðxi � xj þ ei � ej Þ f ðxi � xj þ ei � ej Þ

þ
XN
i¼1

X
j2N i

aijðei � ej Þ f ðxi � xj þ ei � ej Þ

� �
XN
i¼1

X
j2N i

aij
�1
�22

f2ðxi � xj þ ei � ej Þ

þ
XN
i¼1

X
j2N i

ðjeij þ jej jÞ jaij f ðxi � xj þ ei � ej Þj:

Denoting zij¼ aij f(xi� xjþ ei� ej) and using the

inequality jxyj � a
2 x

2 þ 1
2a y

2, a4 0, we can bound _V as

_V �
XN
i¼1

X
j2N i

ða�
�1
�22
�iÞjzijj

2 þ
XN
i¼1

1

a
jN ijjeij

2, ð9Þ

where �i ¼
1

max
j2N i

faijg
. By enforcing the condition

e2i �
�i að

�1
�2
2

�i � aÞ

jN ij

X
j2N i

z2ij þ "i , i 2 V, ð10Þ

where 05 a5 �1
�2
2

�i, 05 �i5 1 and "i4 0 are scalars,

with (9) we get

_V � �
XN
i¼1

ð1� �iÞ

�
�1
�22
�i � a

�X
j2N i

z2ij �
1

a
jN ij"i

0
@

1
A,

which is negative definite if

XN
i¼1

ð1� �iÞ

�
�1
�22
�i � a

�X
j2N i

z2ij 4
XN
i¼1

1

a
jN ij"i: ð11Þ

Let each agent i update the control input (6) whenever

the triggering condition

e2i �
�i a

�
�1
�2
2

�i � a
�

jN ij

X
j2N i

z2ij þ "i ð12Þ

is fulfilled, in addition to its neighbours’ event times.

It should be emphasised that the composing elements

of the triggering condition (12), zij ¼ aijf ðxi � xjþ

ei � ej Þ ¼ aijf ðxiðt
i
kÞ � xj ðt

j
k0 ÞÞ are constant between

two consecutive control law updating events, which

means the right-hand side of (12) is piecewise-constant.

In addition, it is worth mentioning that (12) can be

evaluated only by locally available measurements.

Theorem 5.1: Consider the first-order system (1) with

the control law (6) and updating rule (12). Assume the

underlying graph G is connected, 05 a5 �1
�2
2

1
maxði,j Þfaijg

,

"i4 0 and 05 �i5 1, 8i2V. Then for any initial

condition the solution of the closed-loop system (8)

converges to the invariant set (15). Moreover, the inter-

event interval is strictly lower bounded by the positive

number (16).

Proof: The Lyapunov function candidate V is posi-

tive definite, smooth and regular. V¼ 0 when all states

equal to the initial average. The level sets of V define

compact set with respect to agents’ states. In parti-

cular, V� c implies jxi � Cj � c) C�
ffiffiffi
c
p
� xi � Cþffiffiffi

c
p

, 8i2V and c4 0. Moreover, we have shown that
_V � 0 as long as the triggering condition (12) is

enforced and (11) holds. Regarding (11), when

XN
i¼1

ð1� �iÞ

�
�1
�22
�i � a

�X
j2N i

z2ij �
XN
i¼1

1

a
jN ij"i , ð13Þ

we can bound V that

VðtÞ ¼
XN
i¼1

ðxi�CÞ2�
2

�2ðLÞ

XN
i¼1

X
j2N i

aij ½ðxi�xjþ ei� ej Þ
2

þðei� ej Þ
2
�

¼
2

�2ðLÞ

"XN
i¼1

X
j2N i

aij ðxi�xjþ ei� ej Þ
2

þ
XN
i¼1

X
j2N i

aij ðei� ej Þ
2

#

�
2

�2ðLÞ

XN
i¼1

X
j2N i

�

�21
z2ijþ�maxðLÞ

XN
i¼1

e2i

2
4

3
5, ð14Þ

where � ¼ 1
minði,j Þfaijg

and we use the fact thatPN
i¼1

P
j2N i

aijðei � ej Þ
2
¼ eTLe � �maxðLÞ e

Te:
By (13), the first term of (14) is bounded by

�

�21

XN
i¼1

X
j2N i

z2ij�
�

min
i
fð1��iÞð

�1
�2
2

�i�aÞg�21

XN
i¼1

1

a
jN ij"i¼M1:

The second term is bounded by the condition (10),

namely

XN
i¼1

e2i �
XN
i¼1

� �i a ð�1�2
2

�i � aÞ

jN ij

X
j2N i

z2ij þ "i

�

� max
i

	 �i a ð�1�2
2

�i � aÞ

jN ij



�21
�

M1 þ
XN
i¼1

"i ¼M2:
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Consequently, (13) implies that the level set of V is
bounded by

VðtÞ �
2

�2ðLÞ
ðM1 þ �maxðLÞM2Þ: ð15Þ

To conclude, since V4 2
�2ðLÞ
ðM1 þ �maxðLÞM2Þ implies

(11) and _V � 0, the solution of system (8) reaches the
invariant set (15) and remains inside. Note that M1,
M2! 0 when "i! 0.

Next, we show that the inter-event time is lower
bounded by a strictly positive lower bound. Applying
similar arguments as in the proof of Theorem 1,
Dimarogonas (2011), the minimum lower bound is
given by tikþ1 � tik �

ffiffi
"
p

i

�ui
, where �ui is an upper bound on

the admissible control input (6) of agent i. In our case,
�ui is determined by

juiðtÞj ¼ �
X
j2N i

aij f xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� �������
������

�
1

�i

X
j2N i

f xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� ���� ���
�
�2
�i

X
j2N i

xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� ���� ���
�
�2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN ij

X
j2N i

xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� �2s

�
�2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN ij

XN
i¼1

XN
j¼1

xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� �2vuut
¼
�2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN ijVðt

i
kÞ � 2N

q
�
�2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NjN ijVð0Þ

p
¼ �ui ,

where we use the fact V ¼ 1
2N

PN
i¼1

PN
j¼1ðxi � xj Þ

2 and
jf(x)j � �2jxj, 8x2R. Thus for agent i, the inter-event
time should satisfy

tikþ1 � tik �

ffiffiffi
"
p

i

�ui
�

�i
ffiffiffiffi
"i
p

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NjN ijVð0Þ

p , i 2 V: ð16Þ

Thus, the inter-event interval of all agents are lower
bounded by a strictly positive number. œ

Remark 3: The extension of Theorem 5.1 to switch-
ing topologies is possible, given the assumption that
each agent has the knowledge of when the underlying
communication topology switches. Then those switch-
ing instants can be added to every agent’s triggering
sequence, which means that all agents update their
control law simultaneously at the switching instants.

6. L2 gain analysis

Inspired by the work in Dimarogonas (2011), we would
like to examine the robustness of the proposed

event-triggered strategy (12) with respect to additive

disturbances in the system model. In particular, we

assume that each agent’s dynamics are perturbed by an

additive noise that

_xi ¼ �
X
j2N i

aijf xiðt
i
kÞ � xj ðt

j
k0 Þ

� �
þ wi, i 2 V, ð17Þ

where each wi2R is a one-dimensional L2 function and

is uniformly bounded as jwij5 �w51, 8i. We consider

the same Lyapunov function candidate

V ¼
PN

i¼1ðxi �
1
N

PN
i¼1 xiÞ

2, but this time 1
N

PN
i¼1 xi is

not constant anymore since
PN

i¼1 _xi ¼
PN

i¼1 wi is not

necessarily zero. The time derivative of V along the
trajectories of system (17) is given by

_V ¼ �
XN
i¼1

X
j2N i

aij ðxi � xj Þ f ðxi � xj þ ei � ej Þ

þ 2
XN
i¼1

xi �
1

N

XN
i¼1

xi

 !
wi:

It has been shown in (9) that the first term is bounded

by
PN

i¼1

P
j2N i
ða� �1

�2
2

�iÞjzijj
2 þ

PN
i¼1

1
a jN ijjeij

2. The

second term fulfills 2
PN

i¼1ðxi �
1
N

PN
i¼1 xiÞwi � �

PN
i¼1

ðxi �
1
N

PN
i¼1 xiÞ

2
þ 1

�

PN
i¼1 w

2
i , where �4 0. Moreover,

following the same calculation in (14) we can show thatPN
i¼1ðxi �

1
N

PN
i¼1 xiÞ

2
� 2

�2ðLÞ
½
PN

i¼1

�i

�2
1

P
j2N i

z2ij þ �maxðLÞPN
i¼1 e

2
i � where �i ¼

1
min
j2N i

faijg
. Thus, _V can be bounded as

_V �
XN
i¼1

a�
�1
�22
�i þ

2� �i

�2ðLÞ�21

� �X
j2N i

z2ij

þ
XN
i¼1

1

a
jN ij þ

2�maxðLÞ

�2ðLÞ
�

� �
e2i þ

1

�

XN
i¼1

w2
i :

Denote by �i ¼
�1
�2
2

�i � a�
2� �i

�2ðLÞ�21
and �i ¼

1
a jN ijþ

2�maxðLÞ
�2ðLÞ

�, 8i2V. Assume that 05 a5
�
�1
�2
2

�i �
2��i

�2ðLÞ�21

�
so that �i4 0, 8i2V. By enforcing the condition

e2i �
�i �i
�i

X
j2N i

z2ij þ "i , ð18Þ

where 05 �i5 1 and "i4 0 are scalars, we have

_V � �
XN
i¼1

ð1� �iÞ�i
X
j2N i

z2ij þ
XN
i¼1

�i "i þ
1

�

XN
i¼1

w2
i

� �
XN
i¼1

ð1� �iÞ�i
jN ij

�X
j2N i

zij

�2

þ
XN
i¼1

�i "i þ
1

�

XN
i¼1

w2
i

� �min
i

	
ð1� �iÞ�i
jN ij



kzk2 þ

1

�
kwk2 þ

XN
i¼1

�i "i ,
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where z, w represent the stack vector composed of ui
and wi respectively. Based on Wang and Lemmon
(2009), the closed-loop system (17) is finite L2-gain
stable with an induced gain less than 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�minif
ð1��iÞ�i
jN i j
g

q .

Moreover it is guaranteed that _V � 0 as long as

XN
i¼1

ð1� �iÞ�i
X
j2N i

z2ij 4
XN
i¼1

�i "i þ
1

�

XN
i¼1

w2
i : ð19Þ

Consequently, by (18) each agent i updates the control
input (17) whenever the condition

e2i �
�i �i
�i

X
j2N i

z2ij þ "i ð20Þ

is fulfilled.

Theorem 6.1: Consider the closed-loop system (17)
with the updating rule (20). Assume the underlying graph
G is connected, 05 a5 ð�1

�2
2

�i �
2��i

�2ðLÞ�21
Þ, "i4 0 and

05 �i5 1, 8i2V. Then, for any initial condition its
solution converges to the invariant set (21). Moreover,
the inter-event triggering interval is strictly lower
bounded by the positive number (22).

Proof: Similar analyses as in the proof of
Theorem 5.1 are applies here. When (19) is not fulfilled,PN

i¼1ð1� �iÞ�i
P

j2N i
z2ij �

PN
i¼1 �i "i þ

1
�

PN
i¼1 w

2
i , which

implies
PN

i¼1

P
j2N i

z2ij �
1

minifð1��iÞ�ig

PN
i¼1 �i "i þ

1
�

PN
i¼1

w2
i ¼M3: By (14) and (18), we can bound V as follows

VðtÞ �
2

�2ðLÞ

XN
i¼1

X
j2N i

�

�21
z2ijþ�maxðLÞ

XN
i¼1

e2i

2
4

3
5

�
2

�2ðLÞ

�

�21
M3þ�maxðLÞ max

i
f
�i�i
�i
gM3þ

X
i

"i

 !" #

¼M4: ð21Þ

As a result, since V(t)4M4 implies (19) and _V � 0, the
solution of system (17) reaches the invariant set (21)
and remains inside. Note that the above set converges
to zero when "i, wi! 0.

As stated in Theorem 5.1, the minimum lower
bound on the inter-event time is given by
tikþ1 � tik �

ffiffi
"
p

i

�ui
, where �ui is an upper bound on the

admissible control input (17) of agent i. In the presence
of additive noise, �ui is given by

juiðtÞj ¼ �
X
j2N i

aij f xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� �
þ wi

������
������

�
1

�i

X
j2N i

f xiðt
i
kÞ � xj ðt

j
k0ðtÞÞ

� ���� ���þ jwij

�
�2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NjN ijVð0Þ

p
þ �w ¼ �ui ,

where we use the same techniques as deriving (16) and
�w ¼ maxifwig51. Thus, for each agent i, the inter-
event interval should satisfy

tikþ1 � tik �

ffiffiffi
"
p

i

�ui
�

ffiffiffiffi
"i
p

�2
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NjN ijVð0Þ

p
þ �w

, i 2 V: ð22Þ

The lower bound is a strictly positive number as
Vð0Þ, �w51. This completes the proof. œ

7. Example

In this section, we provide numerical simulations to
support our results. We consider a network of four
first-order agents moving in x-coordinates. The neigh-
bouring sets are given by N 1¼ {2}, N 2¼ {1, 3},
N 3¼ {2, 4} and N 4¼ {1, 3}. Furthermore, the
nonlinear function f: f(x)¼ x (2� cos2 x), x2R

is chosen.
As illustrated in Figure 1, it satisfies that �1¼ 1 and

�2¼ 2. Four first-order agents start from arbitrary
initial conditions and evolve under the event-triggered
control system (6) and (12), aiming at the average
consensus in x-coordinates. We assume that �i¼ 0.9
and "i¼ 0.1 for each agent i. Figure 2 shows the
trajectories of four agents, where the red dots denote
the event times when the triggering condition (12) at
each agent is satisfied. It can be seen that the inter-
event interval is strictly positive. Figure 3 illustrates the
evolution of the measurement error (7) in red and
the triggering condition (12) in blue. It can be seen that
the boundary of the triggering condition is piecewise
constant and the measurement error is reset to zero
when it meets the boundary. The observation that the
boundary converges to a positive constant as t!1 is
due to fact that the first term of (12) approaches zero
when jxi� xjj! 0 and "i is a constant design
parameter. On the other hand, Figures 4 and 5 show
the same multi-agent system but perturbed by additive
noises w¼ [0.01 0.03 0.02 0.01] as in (17).
Similar performances are achieved by applying the
event-triggered law (17) and (20). An invariant set
close to the average consensus is obtained and the
inter-event interval is shown to be strictly lower
bounded.

It is worth mentioning that �i and "i are the key
control-design parameters in our event-triggered con-
trol laws. Clearly, the upper bound for jeij from (12)
and (20) becomes tighter when we decrease �i or "i,
which leads to more frequent triggering and shorter
inter-event intervals, and consequently more control
effort. On the other hand, the invariant set around the
average consensus becomes smaller when �i or "i are
decreased in (15) and (21). Thus, the choice of �i and "i

8 M. Guo and D.V. Dimarogonas

D
ow

nl
oa

de
d 

by
 [

K
un

gl
ig

a 
T

ek
ni

sk
a 

H
og

sk
ol

a]
 a

t 0
0:

25
 1

5 
Ja

nu
ar

y 
20

13
 



is to determine the trade-off between consensus
precision and control effort.

8. Conclusions

In this article, we take into account the first-order
multi-agent system with a generic class of nonlinear

control laws. We first analyse the stability of the
continuous system and then extend the results to
the same system with periodically sampled inputs.
Explicit upper bounds on sampling intervals are
derived to ensure global convergence. Moreover,
we design a decentralised event-triggered law
that substantially reduces both the control efforts

Figure 1. f(�) belongs to the sector [�1, �2].

Figure 2. Trajectories of four agents, red dots denote the triggered instants.
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and the communication efforts. At the same time, the
case of infinitely frequent triggering is excluded by
showing that the inter-event interval is strictly larger
than a positive lower bound. Moreover, the robustness
of the event-triggered control law with respect to

additive disturbances is examined by applying L2 gain
analysis in the last part. Further research could take
into account the same multi-agent system under
directed communication topologies and other
cooperative tasks than consensus.

Figure 4. Trajectories of four agents with additive noises.

Figure 3. Measurement error and the event-trigger condition (the upper line) of agent 1.
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Lygeros, J., Johansson, K.H., Simic, S., Zhang, J., and

Sastry, S. (2003), ‘Dynamical Properties of Hybrid

Automata’, IEEE Transactions on Automatic Control, 48,

2–17.

Olfati-Saber, R. (2006), ‘Flocking for Multi-agent Dynamic

Systems: Algorithms and Theory’, IEEE Transactions on

Automatic Control, 51, 401–420.
Olfati-Saber, R., and Murray, R.M. (2004), ‘Consensus

Problems in Networks of Agents with Switching Topology

and Time-delays’, IEEE Transactions on Automatic

Control, 49, 1520–1533.
Rabi, M., Johansson, K.H., and Johansson, M. (2008),

‘Optimal Stopping for Event-triggered Sensing and

Actuation’, in 47th IEEE Conference on Decision and

Control, pp. 3607–3612.

Figure 5. Measurement error and the event-trigger condition (the upper line) of agent 1.

International Journal of Control 11

D
ow

nl
oa

de
d 

by
 [

K
un

gl
ig

a 
T

ek
ni

sk
a 

H
og

sk
ol

a]
 a

t 0
0:

25
 1

5 
Ja

nu
ar

y 
20

13
 



Ren, W., and Beard, R. (2005), ‘Consensus Seeking in
Multiagent Systems under Dynamically Changing

Interaction Topologies’, IEEE Transactions on Automatic
Control, 50, 655–661.

Ren, W., Cao, Y., and Meng, Z. (2010), ‘Decentralised
Finite-time Sliding Mode Estimators and their

Applications in Decentralised Finite-time Formation
Tracking’, Systems & Control Letters, 59, 522–529.

Scardovia, L., and Sepulchre, R. (2009), ‘Synchronization in

Networks of Identical Linear Systems’, Automatica, 45,
2557–2562.

Seyboth, G.S., Dimarogonas, D.V., and Johansson, K.H.

(2011), Control of Multi-agent Systems via Event-based

Communication, 18th IFAC World Congress,
pp. 10086–10091.

Wang, X., and Lemmon, M.D. (2009), ‘Finite-gain L2
Stability in Distributed Event-triggered Networked
Control Systems with Data Dropouts’, in European
Control Conference, pp. 452–467.

Wang, X., and Lemmon, M.D. (2011), ‘Event-triggering in
Distributed Networked Control Systems’, IEEE
Transactions on Automatic Control, 56, 586–601.

Xie, G., Liu, H., Wang, L., and Jia, Y. (2009), ‘Consensus in
Networked Multi-agent Systems via Sampled Control:
Fixed Topology Case’, in American Control Conference,

pp. 3902–3907.

12 M. Guo and D.V. Dimarogonas

D
ow

nl
oa

de
d 

by
 [

K
un

gl
ig

a 
T

ek
ni

sk
a 

H
og

sk
ol

a]
 a

t 0
0:

25
 1

5 
Ja

nu
ar

y 
20

13
 




