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Abstract— A reconfiguration method for the model-checking-
based motion planning of single- and multi-agent systems under
infeasible local LTL specifications is proposed. The method
describes how to synthesize the motion plan that fulfills the
infeasible task specification the most, and how the infeasible
task specification is relaxed. The novelty is the introduction
of a metric within the atomic proposition domain, and the
relative weighting between the implementation cost of a motion
plan and its distance to the original specification. For multi-
agent systems, a dependency relation and relative priorities are
incorporated when the tasks are assigned independently to each
agent. Simulations are presented to illustrate the method.

I. INTRODUCTION

Temporal-logic-based motion planning provides a fully au-
tomated correct-by-design controller synthesis approach for
autonomous robots. Temporal logics such as Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) provide
formal high level languages that can describe planning objec-
tives more complex than the well-studied point-to-point nav-
igation [14], [25], [27]. In this paper, we follow an approach
that has gained significant popularity in recent years. The
task specification is given as an LTL formula with respect to a
discretized abstraction of the robot motion [1], [6], [19], [30].
Then a high-level discrete plan is found by off-the-shelf
model-checking algorithms given the finite transition system
and the task specification [2], [3], [11], [18]. This plan
is then implemented through the corresponding low-level
hybrid controller [10], [20], [24].

As stressed in [16], [17], [31], the above motion planning
framework reports a failure when the given task specification
is not realizable in the current workspace and under the agent
dynamics. It is desired that users could get feedbacks about
why the planning has failed and how to resolve this failure.
This problem is addressed by [16] and [17] for single-agent
systems by a systematic way to find the relaxed specification
that is closest to the original one and can be fulfilled by the
system. Detailed comparisons between our work and [17] can
be found at the beginning of Section III. In short, this paper
emphasizes mainly how to synthesize the motion plan that
fulfills the infeasible task specification the most, and how
the task specification is relaxed. [31] introduces a way to
analyze the environment and system components contained
in the infeasible specification, and identify the possible cause.
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On the other hand, this work complements the topic about
revising the motion plan under fixed LTL specifications when
the workspace model or agent dynamics are updated, like in
the cases of real-time revising [13] and local “patching” [26].

More importantly, we investigate the reconfiguration prob-
lem within the same framework also for multi-agent systems.
Many existing works [10], [15], [32] consider the problem of
decomposing a global specification to bisimilar local ones in
a top-down manner. We, from an opposite viewpoint, assume
that the local task specifications are assigned independently
to each agent and there is no specified global task. The joined
execution of these tasks may not be mutually feasible even
if the individual one is. A decentralized solution is proposed
to synthesize the individual motion plans that violate the
mutual specification the least. Moreover, the priorities among
the agents play an important role in the reconfiguration for
multi-agent systems. This issue was indicated in our earlier
work [12] where a framework for decentralized verification
from local LTL specifications is proposed. However the way
to resolve the conflicting specifications is not considered
there. Real-time replanning for multi-vehicle networks is
considered in [4] under safety constraints.

The main contribution of this work is the proposal of a
generic framework to reconfigure the infeasible task specifi-
cations for both single- and multi-agent systems. In particu-
lar, the motion plans that fulfill the infeasible specifications
the most are obtained. We allow the user-defined choice of
the relative weighting between the implementation cost of
the motion plan and how much this plan fulfills the original
task specification. Multi-agent systems are also exploited
and a decentralized approach is proposed by considering the
dependency and priority relations.

The rest of the paper is organized as follows: Section II
briefly introduces the model-checking-based motion plan-
ning. In Section III, we discuss the reconfiguration problem
for single-agent systems. Section IV extends the results to
multi-agent systems under local infeasible LTL specifica-
tions. Numerical simulations are presented in Section VI.

II. MODEL-CHECKING-BASED MOTION PLANNING

A. Task Specification in LTL

We focus on the task specification ϕ given as an Linear
Temporal Logic (LTL) formula. The basic ingredients of
an LTL formula are a set of atomic propositions (APs)
and several boolean and temporal operators. LTL formulas
are formed according to the following grammar [3]: ϕ ::=
true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 ∪ ϕ2, where a ∈ AP
and © (next), ∪ (until). For brevity, we omit the derivations



of other useful operators like � (always), ♦ (eventually), ⇒
(implication) and refer the readers to Chapter 5 of [3].

Given an LTL formula ϕ over AP , there is a union of infi-
nite words that satisfy ϕ: Words(ϕ) = {σ ∈ (2AP )ω |σ |=
ϕ}, where |= ⊆ (2AP )ω × ϕ is the satisfaction relation.
There exists a Nondeterministic Büchi automaton (NBA) Aϕ
over 2AP corresponding to ϕ, which is defined as:

Aϕ = (Q, 2AP , δ, Q0, F), (1)

where Q is a finite set of states; Q0 is the initial state, 2AP

is an alphabets; δ ⊆ Q×2AP ×Q is a transition relation and
F ⊆ Q is a set of accepting states. Denote by χ(qm, qn) =
{l ∈ 2AP | (qm, l, qn) ∈ δ} the set of all input alphabets that
enable the transition from qm to qn. An infinite run r of a
NBA is an infinite sequence of states and is called accepting
if Inf(r) ∩ F 6= ∅ where Inf(r) is the set of states that
appear in r infinitely often. Denote by Lω(Aϕ) the accepted
language of Aϕ, which is the set of infinite words that have
an accepting run in Aϕ, i.e., Words(ϕ) = Lw(Aϕ). There
are fast translation algorithms [28] from an LTL formula to
NBA. This process can be done in time and space 2O(|ϕ|) [3].

B. Discretized Abstraction

A labeled finite transition system [3] is used to describe
the behavior of a robot within a workspace. The workspace
we consider is geometrically partitioned into N regions,
denoted by the set Π = {π0, π1, . . . , πN}. These regions
can be in different shapes, such as points of interests [21],
triangles [6], polygons [1] and hexagons [29]. There are
different cell decomposition schemes available, depending
on the robot dynamics and associated control approaches,
see [1], [2], [10] and [13]. Formally the control-driven finite
transition system (FTS) is defined below:

Definition 1 (Control-driven FTS): The control-driven
FTS is a tuple T = (Π, −→c, Π0, AP, L, Wc), where
Π = {the robot is in region πi, i = 1, 2 · · · , N};
−→c⊆ Π × Π is the transition relation; Π0 ⊆ Π is the set
of initial states; AP is the set of APs; L : Π → 2AP is a
labeling function, giving the subset of AP which are true at
state πi; Wc :−→c→ R+ reflects the implementation cost
(time or energy) of each transition.

We assume that T does not have a terminal state [3].
An infinite path of T is an infinite sequence of states
τ = π0π1π2 . . . such that (πi, πi−1) ∈−→c for all i > 0. Its
trace is the sequence of APs that are true at the states along
the path, i.e., trace(τ) = L(π0)L(π1)L(π2) · · · . Given ϕ
is an LTL formula over the same AP the satisfaction relation
τ |= ϕ if and only if trace(τ) ∈ Words(ϕ). The infinite
path τ that satisfies ϕ is called a motion plan for the task ϕ.

C. Motion Plan Synthesis

A valid motion plan τ can be found by checking the
emptiness of the product Büchi automaton, see [9] and
Algorithm 11 in [3]. The product Büchi automaton is defined
as Ap = T ⊗Aϕ = (Qp, δp, Qp,0, Fp), where Qp = Π×Q;
Qp,0 = Π0 × Q0 are the initial states; Fp = Π × F are
the accepting states; δp ⊆ Q × Q is the transition relation.
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Fig. 1. Left: the distance of a labeling function L(π) to a set of input
alphabets χ (the solid line). Right: the set of the input alphabets is revised
by adding some labeling functions to the set.

(〈πi, qm〉, 〈πj , qn〉) ∈ δp if and only if (πi, πj) ∈−→c and
(qm, L(πi), qn) ∈ δ. There exists an motion plan satisfying
ϕ if and only if Ap has at least one accepting run [3].

Lemma 1 (Feasibility and Projection): An LTL specifica-
tion ϕ is feasible over the FTS T if and only if Ap = T ⊗Aϕ
has an accepting run. Furthermore, for any accepting run
R = 〈π0, q0〉〈π1, q1〉 . . . of Ap, its projection onto T the
sequence τ = π0π1 . . . satisfies ϕ [33].

The lower-level hybrid controller [6] that implements the
motion plan is synthesized by executing the controllers
associated with the transitions along the motion plan.

III. RECONFIGURATION OF SINGLE-AGENT SYSTEMS

An intriguing question to ask about the framework intro-
duced in Section II is what if the given task specification
is not feasible. How should the specification be relaxed and
more importantly how to synthesize the motion plan that
satisfies the relaxed specification, while at the same time
violating the original specification the least possible?

An approximate algorithm is provided in [17] that partially
answers the above question. It generates a relaxed specifica-
tion automaton A′ϕ which is close to Aϕ (see Section III-
C [17]). Then a motion plan can be synthesized by following
the procedure as described in Section II-C. However there are
often more than one accepting run within T ⊗A′ϕ and they
may fulfill the original ϕ to different extents. We instead
aim to find the motion plan that fulfills ϕ the most with
respect to certain criterion, based on which then the relaxed
specification is constructed.

A. Relaxed Product Automaton

Since ϕ is infeasible and Ap does not have an accepting
run by Definition 1, we need to relax the constraints imposed
by Aϕ to allow more transitions within Ap.

Definition 2 (Relaxed Product Automaton): The
relaxed product Büchi automaton Ar = T ×Aϕ =
(Q′, 2AP , δ′, Q′0, F ′, Wr) is defined as follows:
• Q′ = Π×Q and q′ = 〈π, q〉, ∀π ∈ Π and ∀q ∈ Q.
• 2AP is an alphabet: AP = {a1, a2, · · · , aK}.
• δ′ ⊆ Q′ × Q′. (〈πi, qm〉, 〈πj , qn〉) ∈ δ′ iff

(πi, πj) ∈−→c and ∃ l ∈ 2AP such that (qm, l, qn) ∈ δ.
• Q′0 = Π0 ×Q0 is the set of initial states.
• F ′ = Π×F is the set of accepting states.
• Wr : δ′ → R+is the weight function to be defined.
Two differences between Ar and Ap defined in Section II-

C are: (i) the constraint “(qm, L(πi), qn) ∈ δ” when defining



δp is relaxed to “∃ l ∈ 2AP such that (qm, l, qn) ∈ δ” when
defining δ′ here; (ii) the weight function Wr is only intro-
duced for Ar. Firstly we introduce the evaluation function
Eval : 2AP → {0, 1}K :

Eval(l) = ν ⇐⇒ [ νi ] =

{
1 if ai ∈ l,
0 if ai /∈ l,

(2)

where i = 1, 2 · · · ,K, l ∈ 2AP and ν ∈ {0, 1}K . Then a
metric (2AP , ρ) is defined as

ρ(l, l′) = ‖ν − ν′‖1 =

K∑
i=1

| νi − ν′i |, (3)

where ν = Eval(l), ν′ = Eval(l′) and l, l′ ∈ 2AP . ‖·‖1 is
the `1 norm [7]. Then we could define the distance between
an element l ∈ 2AP to a set χ ⊆ 2AP (χ 6= ∅) [7]:

Dist(l, χ) =

{
0 if l ∈ χ,
minl′∈χ ρ(l, l′) otherwise.

(4)

Note that Dist(l, χ) is not defined for χ = ∅. An example
of computing the Dist function is given in Figure 1. Now
we give the formal definition of Wr of Ar:

Wr((〈πi, qm〉, 〈πj , qn〉))
= Wc(πi, πj) + α · Dist(L(πi), χ(qm, qn)),

(5)

where (〈πi, qm〉, 〈πj , qn〉) ∈ δ′; α ≥ 0 is a design pa-
rameter; χ(qm, qn) = {l ∈ 2AP | (qm, l, qn) ∈ δ} consists
of all input alphabets that enable the transition from qm
to qn in Aϕ. Since by Definition 2 there exists l ∈ 2AP

that (qm, l, qn) ∈ δ, χ(qm, qn) 6= ∅ is ensured. Wc(πi, πj)
is the implementation cost of the transition from πi to πj
in T . Dist(L(πi), χ(qm, qn)) measures how much the
transition from πi to πj violates the constraints imposed by
the transition from qm to qn. Being 0 means that Aϕ is
not violated, while the larger the distance is the more Aϕ is
violated. The design parameter α is used to reflect the relative
penalty on violating the original specification, and also the
user’s preference on a motion plan that has less implement
cost or that fulfills the task specification more. The penalty
on violating Aϕ is increased when α is larger.

B. Problem Statement

Note that Ar is more connected than the conventional
product automaton Ap in Section II-C. Since Ap does not
have an accepting run, we instead search for an accepting run
within Ar. However the existence of an accepting run alone
is not enough because: (i) they have different implementation
costs; (ii) we would like to measure how much they violate
the original specification. Thus we consider the accepting
runs with the following prefix-suffix structure:

R = q′0 q
′
1 · · · [ q′k q′k+1 · · · · · · q′n ]ω

= 〈π0, q0〉 〈π1, q1〉 · · · [ 〈πk, qk〉 · · · · · · 〈πn, qn〉 ]ω ,
(6)

where q′0 = 〈π0, q0〉 ∈ Q′0 and q′k = 〈πk, qk〉 ∈ F ′.
Note that there are no correspondences among the subscripts.
Clearly R consists of two parts: the prefix part (q′0 q

′
1 · · · q′k)

P_FFP_IF

Fig. 2. For every accepting state q′f ∈ F ′ (in red), PIF contains the paths
from every initial state q′0 ∈ Q′

0 (in blue) to pf with the minimal costs;
PFF contains the path from q′f back to itself with the minimal cost.

from an initial state q′0 to one accepting state q′k that is
executed only once and the suffix part (q′k q

′
k+1 · · · · · · q′n)

from q′k back to itself that is repeated infinitely. An accepting
run with the prefix-suffix structure has a finite representation
as (6), and more importantly it allows us to define the total
cost of an accepting run (similar to Definition 4.5 in [33]):

Cost(R) =

k−1∑
i=0

Wr(q
′
i, q
′
i+1) + γ

n−1∑
i=k

Wr(q
′
i, q
′
i+1)

= costτ + α · distϕ ,

(7)

where costτ = (
∑k−1
i=0 + γ

∑n−1
i=k )Wc(πi, πi+1) is

the accumulated implementation cost of the motion
plan τ , i.e., the projection of R onto T ; distϕ =

(
∑k−1
i=0 + γ

∑n−1
i=k )Dist(L(πi), χ(qi, qi+1)) is the accu-

mulated distance of τ to Aϕ. The first summation in (7)
represents the accumulated weights of transitions along the
prefix and the second is the summation along the suffix. Note
that γ ≥ 0 represents the relative weighting on the cost
of transient response (the prefix) and steady response (the
suffix) to the task specification [33].

The prefix-suffix structure is more of a way to formulate
the total cost of an accepting run, rather than a conservative
assumption. If an accepting run exists, by its definition
at least one accepting state should appear in it infinitely
often. Among all the finite number of cycles starting for
this accepting state and back to itself there is one with the
minimal cost. Thus an accepting run of the form (6) can be
built using this minimal cycle as the periodic suffix. Now we
would like to state the problem for single-agent systems:

Problem 1: Given the an infeasible specification ϕ over
the FTS T , find the accepting run of Ar that minimizes the
cost by (7) and the corresponding motion plan τ .

Given Ar and a value of α, we call the solution to
Problem 1 as the optimal accepting run Roptunder that α.
Algorithm 1 takes as input arguments the weighted state
graph [3] G(Ar) = (Q′, δ′, Wr), the set of initial vertices
I = Q′0 and the set of accepting vertices F = F ′. It utilizes
Dijkstra’s algorithm [25] for computing the shortest path
between pairs of vertices within a graph. In particular, denote
the number of elements in I and F by |I| = L and |F | = M .
Function MinPath takes (G, I, F ) as inputs and outputs a
L ×M matrix DIF , with the (ith, jth) element containing
the value of the minimal cost from Ii to Fj ; and a L ×M
cell PIF , with the (ith, jth) cell containing the sequence of
vertices appearing in the path with minimal cost from Ii to
Fj . Function MinCycl is a variant of function MinPath,



Algorithm 1: Function optRun ( G, I , F )
Input: a weighted graph G, I , F .
Output: the optimal accepting run Ropt.
1. Compute the path with minimal cost from every
initial vertex in I to every accepting vertex in F .

(DIF , PIF ) = MinPath(G, I, F ).

2. Compute the path with minimal cost from every
accepting vertex in F and back to itself:

(DFF , PFF ) = MinCycl(G, F ).

3. For each column of DIF , find the element with the
minimal value and the corresponding cell in PIF (with
the same index). Save them sequentially in 1×M
matrix DiF and 1×M cell PiF .
4. Find the element with the minimal value in
DiF + γ DFF and its index fmin.
5. Optimal accepting run Ropt, prefix: the fmin-th
element of PiF ; suffix: the fmin-th element PFF .

which outputs a 1 ×M matrix DFF , with the jth element
containing the value of the minimal cost from Fj back to
Fj ; and a 1 ×M cell PFF with the jth cell containing the
sequence of vertices appearing in the path with minimal cost
from Fj back to Fj (as in Figure 2). Note that if a vertex is
not reachable from another vertex, then the cost is +∞.

C. Motion Plan and Feedback

Algorithm 1 provides an optimal accepting run Ropt once
α is chosen inAr. Then Algorithm 2 takes as inputs Ropt, the
FTS T and the original specification automaton Aϕ. While
iterating through the transitions along Ropt in sequence, it
projects Ropt into T to obtain the corresponding motion
plan τ ; it constructs the revised specification automaton A′ϕ
by adding new transitions to Aϕ (as shown in Figure 1); it
computes the implementation cost costτ and the accumu-
lated distance to Aϕ distϕ defined in (7). It can be verified
that the obtained A′ϕ is a valid relaxation of Aϕ [16]. Note
each accepting run Ropt corresponds to a unique motion plan
τ and a revised specification automaton A′ϕ.

Remark 1: Although Ar may allow more transitions com-
pared with Ap, any run of Ar can be projected onto T ,
resulting in a valid path of T . Namely, the transition relation
of T is never relaxed when constructing Ar. Thus the motion
plan derived from Algorithm 2 is always implementable.

Lemma 2: Assume τ and distϕ are the derived from
Algorithm 2. Then distϕ = 0 implies that τ satisfies ϕ.

Proof: Since Dist() ≥ 0, the accumulated distance
distϕ = 0 implies (qm, L(π), qn) ∈ δ for all transitions
(〈π, qm〉, 〈π′, qn〉) along the optimal accepting run Ropt.
Thus Ropt is an accepting run for the un-relaxed product
automaton Ap. Its projection τ satisfies ϕ by Lemma 1.

Algorithms 1 and 2 solve Problem 1 under a given α. How-
ever it may not be trivial to determine the appropriate value
of α. As an extension, Algorithm 1 could be called under

Algorithm 2: Function MP-SA-single (Ropt, T , Aϕ)
Input: an optimal accepting run Ropt, T , Aϕ.
Output: the corresponding motion plan τ , the revised

A′ϕ, costτ and distϕ.
1. Initialization: A′ϕ = Aϕ. costτ = distϕ = 0.
2. Follow the transitions along Ropt by (6), namely
(q′i, q

′
i+1), i = 1, · · · , n− 1, perform Steps 3-5:

3. Let q′i = 〈π, qm〉 and q′i+1 = 〈π′, qn〉.
4. Save (π, π′) in τ . costτ = costτ +Wc(π, π

′).
5. Check if (qm, L(π), qn) ∈ δ holds. If so, A′ϕ
remains unchanged. Otherwise, add (qm, L(π), qn) to δ
of A′ϕ. distϕ = distϕ + Dist(L(π), χ(qm, qn)).
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π3
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Aφ 

q05 5

Fig. 3. The FTS T has four states, labeled by the labeling functions. Edges
are labeled by the costs. The task specification is ϕ = �♦a1∧�¬(a2∧a3),
the corresponding Aϕ is shown by the diagram on the right.

different α to generate various optimal accepting runs, among
which the unique ones are saved as the optimal accepting
run candidates. Then for each optimal run, Algorithm 2 is
called to compute the corresponding motion plan τ and the
associated costτ , distϕ as the feedback.

Remark 2: The proposed method can be applied directly
when ϕ is feasible over T without any modification. This
is due to that when α is large enough, i.e., the penalty on
violating Aϕ is severe, Algorithm 1 will automatically select
the accepting run that satisfies ϕ.

An example system is shown in Figure 3. The agent has
to go from region π0 to π3 and stay there, at the same
time avoid all regions satisfying properties a2 and a3. Three
alternative motion plans are obtained by varying α, as shown
in Figure 4: (i) when the penalty on violating ϕ is low, Aϕ
is revised by adding (q0, ∅, q1) and (q1, ∅, q1) to δ and
the corresponding motion plan is [π0]ω (black hexagram,
costτ 30, distϕ 6); (ii) when the penalty is increased,
Aϕ is revised by adding (q0, {a2, a3}, q1) to δ, where
the motion plan is π0 π1 [π3]ω (blue square, costτ 65,
distϕ 2); (iii) when the penalty is severe, Aϕ is revised
by adding (q0, {a2}, q1) to δ, where the motion plan is
π0 π2 [π3]ω (cyan triangle, costτ 85, distϕ 1). Note that
in plan (iii) the agent passes through π2 which satisfies only
a2, instead of π1 which satisfies both a2 and a3.

IV. RECONFIGURATION FOR MULTI-AGENT SYSTEMS

As mentioned in the introduction, the reconfiguration of
multi-agent systems under local infeasible LTL specifications
is more difficult than the single-agent case, due to the
following reasons: (i) the joined execution of multiple agents’
tasks may not be mutually feasible even though the individual
one is; (ii) the priority of each agent plays an important
role when deciding whose tasks should be changed. The first
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Fig. 4. Left: the total cost of the optimal accepting run when γ = 5
under different α (note the same accepting run under different α). Right:
the unique optimal runs, located by their costτ and distϕ.

aspect is because these tasks are assigned independently and
some cooperative tasks have not been fully agreed before
the deployment. The second aspect is because some agents’
tasks are safety or security critical and have to be fulfilled
all the time, meaning that other agents have to comply when
there are conflicts.

Assume the system we consider consists of N agents,
denoted by agent i = 1, 2 · · · , N . Moreover, we denote the
finite transition system of agent i by

Ti = (Πi, −→i, Πi,0, APi, Li, Wi); (8)

its LTL specification by ϕi; the specification automaton by

Aϕi
= (Qi, 2APϕi , δi, Qi,0, Fi), (9)

where χi(qj , q
′
j) = {l ∈ 2APϕi | (qj , l, q′j) ∈ δi}. For

brevity, we omit the formal definition of all notations above
but they follow the same structure as T and Aϕ introduced
in Section II. Ti abstracts agent i’s behavior within its
workspace Πi. APi reflects the properties concerning agent
i in Ti. Note that APϕi

is the set of APs appearing in ϕi.

A. Dependency and Mutual Feasibility

Suppose that one agent receives a cooperative task that
involves other agents’ participation. In other words, one
agent’s task specification contains APs of another agent.

Definition 3 (Dependency): Agents i and j are called de-
pendent when one of the following conditions holds:

(1) agent i depends on agent j if APϕi
∧APj 6= ∅,

(2) agent j depends on agent i if APϕj
∧APi 6= ∅.

The above conditions can be checked by comparing the
elements within APϕi and APj (also APϕj and APi) [12].
Based on the dependency relation, we may define the depen-
dency graph of the multi-agent system associated with task
specifications ϕi, i = 1, 2, · · · , N .

Definition 4 (Dependency Graph): The dependency
graph Gd = (V, E) consists of: the set of vertices
V = 1, 2 · · · , N representing the agents; the set of edges
E ⊆ V × V where (i, j) ∈ E and (j, i) ∈ E if agent i and
j are dependent by Definition 3, ∀i 6= j and i, j ∈ V .

Definition 5 (Dependency Cluster): Θ ⊆ V forms a de-
pendency cluster if and only if ∀i, j ∈ Θ there is a path
from i to j in the dependency graph Gd.

A closure contains at least one agent, which happens when
this single agent is not dependent on any of the other agents.

Θ3

Θ2

Θ1

Θ4
L(π1 )

X1

Dist(L(π1 ), x1)

X2

Dist(L(π1 ), x2)

L(π2 )
L(π3 )

Fig. 5. Left: the dependency graph of a system with 9 agents and 4 clusters.
Right: different relative distances between L(π) and χ1, χ2.

Loosely speaking, two agents belong to the same cluster
when they are directly dependent or transitively dependent by
a dependency chain. An example of a dependency graph and
dependency clusters are shown in Figure 5. Without loss of
generality, we first solve the reconfiguration problem within
one cluster Θ = {1, 2, · · · ,M}. Each agent’s transition
system and specification automaton are given in (8) and (9).

Given the individual FTS Ti, ∀i ∈ Θ, the composed FTS
for this cluster Θ is constructed by

TΘ = (ΠΘ, −→Θ, ΠΘ,0, APΘ, LΘ, WΘ), (10)

where ΠΘ = Π1 × Π2 · · · × ΠM ; 〈π1, π2 · · · , πM 〉 −→Θ

〈π′1, π′2 · · · , π′M 〉 if and only if πi −→i π
′
i, i = 1, 2, · · · ,M ;

ΠΘ,0 = Π1,0 × Π2,0 · · · × ΠM,0; APΘ = AP1 ∪ AP2 · · · ∪
APM ; LΘ(〈π1, π2 · · · , πM 〉) = L1(π1) ∪ L2(π2) · · · ∪
LM (πM ); WΘ(〈π1, π2 · · · , πM 〉, 〈π′1, π′2 · · · , π′M 〉) =
W1(π1, π

′
1) +W2(π2, π

′
2) · · ·+WM (πM , π

′
M ).

We denote the mutual specification by ϕΘ = ϕ1∧ϕ2 · · ·∧
ϕM , i.e., the conjunction of all individual task specifications.
AϕΘ

is the NBA associated with ϕΘ. Then {ϕi,∀i ∈ Θ}
are called mutually infeasible if ϕΘ is infeasible over TΘ

by Definition 1. Thus the question of how to synthesize the
cooperative motion plans that fulfill the mutual specification
the most arises.

B. Problem Statement

Denote by APϕΘ
= APϕ1

∪APϕ2
· · · ∪APϕM

the set of
all APs appearing in the mutual specification ϕΘ. Note that
APϕΘ

⊆ APΘ. Since ϕΘ is infeasible over TΘ, we need
to relax the requirement that every ϕi has to be fulfilled
simultaneously. Thus we define the relaxed intersection of
the individual specification automaton Aϕi .

Definition 6 (Relaxed Automata Intersection): Given M
Büchi automata Aϕ1

, Aϕ2
· · · , AϕM

by (9), their relaxed
intersection is given by ÃϕΘ = (Q, 2APϕΘ , δ, Q0, F),
where Q = Q1 × · · · ×QM × {1, 2 · · · ,M}; Q0 = Q1,0 ×
Q2,0 · · · × QM,0 × {1}; F = F1 × Q2 · · · × QM × {1};
δ ⊆ Q×Q. (〈q1, · · · , qM , t〉, 〈q′1, · · · , q′M , t′〉) ∈ δ when
• 〈q1, q2 · · · , qM , t〉, 〈q′1, q′2 · · · , q′M , t′〉 ∈ Q.
• ∃ li ∈ 2APϕΘ such that (qi, li, q

′
i) ∈ δi, ∀i ∈ Θ.

• qt /∈ Ft and t′ = t, or qt ∈ Ft and t′ = mod (t, M)+1,
where mod is the modulo operation.

The conventional definition of Büchi automaton inter-
section [9] is obtained by replacing the second constraint
“∃ li ∈ 2APϕΘ such that (qi, li, q

′
i) ∈ δi, ∀i ∈ Θ” by

“∃ l ∈ 2APϕΘ such that (qi, l, q
′
i) ∈ δi, ∀i ∈ Θ”. Namely,



we relax the requirement that there should exist a common
input alphabet that enable the transitions from qi to q′i in
Aϕi , ∀i ∈ Θ. The last component t ∈ {1, 2, · · · ,M} in the
state ensures that at least one accepting state of every Aϕi

is visited infinitely often.
Definition 7 (Relaxed Product Automaton): The relaxed

product automaton Ar = TΘ×ÃϕΘ = (Q′, δ′, Q′0, F ′, Wr)
is defined as follows:
• Q′ = ΠΘ ×Q. q′ = 〈πΘ, q〉, ∀πΘ ∈ ΠΘ and ∀q ∈ Q.
• δ′ ⊆ Q′ × Q′. (〈πΘ, qa〉, 〈π′Θ, qb〉) ∈ δ′ iff

(πΘ, π
′
Θ) ∈−→Θ and (qa, qb) ∈ δ.

• Q′0 = ΠΘ,0 ×Q0 is the set of initial states.
• F ′ = ΠΘ ×F is the set of accepting states.
• Wr : δ′ → R+ is the weight function, defined as

Wr(〈πΘ, q1, · · · , qM , t〉, 〈π′Θ, q′1, · · · , q′M , t′〉)

= WΘ(πΘ, π
′
Θ) + α

M∑
i=1

βi Dist(LΘ(πΘ), χi(qi, q
′
i))

where α, β1, β2 · · · , βM ≥ 0 are design pa-
rameters; the function Dist is defined in (4);
(〈πΘ, q1, · · · , qM , t〉, 〈π′Θ, q′1, · · · , q′M , t′〉) ∈ δ′;
χi(qi, q

′
i) = {l ∈ 2APΘ | (qi, l, q′i) ∈ δi} consists of

all input alphabets that enable the transition from qi to
q′i in Aϕi

, ∀i ∈ Θ.
Denote by β = {βi, i ∈ Θ}. As “∃li ∈ 2APϕΘ such that

(qi, li, q
′
i) ∈ δi, ∀i ∈ Θ” by Definition 6, χi(qi, q′i) 6= ∅.

Figure 5 illustrates the relative distances between LΘ(πΘ)
and two sets of input alphabets χ1, χ2. The definition of Wr

can be interpreted similarly as the one in (5). However, β
plays the role as the ‘priority’ index for each agent, i.e., the
larger βi is, the higher the priority agent i has. For example,
if agent i has the highest priority with important tasks, βi
can be set very large such that the penalty of violating Aϕi

is
severe. On the other hand, if it plays the role as an assisting
robot, βi can be chosen close to zero. Now we would like
to state the problem for multi-agent systems:

Problem 2: Given that the mutual specification ϕΘ is
infeasible over the composed FTS TΘ, find the accepting run
of Ar that minimizes the cost by (7) and the corresponding
individual motion plan for each agent i.

Given the value of α and β, Ar results in a weighted
graph, with the sets of initial and accepting states. Algo-
rithm 1 can be directly applied to find the optimal accepting
run, with the prefix-suffix structure (6) and the total cost (7).

Remark 3: It is possible to split WΘ(πΘ, π
′
Θ) in Wr into

M parts, i.e., the implementation cost of each agent. Relative
weighting among these costs can also be added in case of
different energy capacities among the agents.

C. Individual Motion Plan and Feedback

Agents within one cluster should agree on the value of α
according to the intended relative weighting between the
implementation cost and the distance to the mutual tasks, and
also the value of β based on their priorities within the cluster.
Thus in the absence of a central authority, α and β can
either be determined by the designer prior to the deployment

Algorithm 3: Function MP-SA-multi (Ropt, Ti, Aϕi )
Input: an optimal accepting run Ropt of Ar; Ti and the

original specification automata Aϕi
.

Output: agent i’s τi, costτi , distϕi
and A′ϕi

.
1. Initialization: A′ϕi

= Aϕi
, costτi = distϕi

= 0.
2. For all transitions along the accepting path Ropt (in
sequence), namely (q′j , q

′
j+1), j = 1, 2, · · · , n− 1,

perform Steps 3-5 as follows:
3. Let q′j = 〈πΘ, q1, · · · , qM , t〉 and
q′j+1 = 〈π′Θ, q′1, · · · , q′M , t′〉.
4. Project (πΘ, π′Θ) onto Ti and save the projection
(πi,Θ, π′i,Θ) in τi. costτi = costτi +Wi(πi,Θ, π

′
i,Θ);

5. Check if (qi, LΘ(πΘ), q′i) ∈ δi. If so, A′ϕi
remains

unchanged. Otherwise, add (qi, LΘ(πΘ), q′i) to δi of
A′ϕi

. distϕi
= distϕi

+ Dist(LΘ(πΘ), χi(qi, q
′
i)).

or a consensus algorithm on the value of α and β within
the cluster might be needed. Then Algorithm 1 is called to
generate the optimal accepting run Ropt. The cooperative
motion plan τΘ is the projection of Ropt onto TΘ. Then
Algorithm 3 is used to interpret Ropt of Ar for each agent i:
(i) its individual motion plan τi; (ii) the associated revised
specification automaton A′ϕi

; (iii) the implementation cost of
τi costτi ; (iv) the accumulated distance of τΘ to its original
task specification ϕi distϕi

. Note that τi is the projection
of τΘ onto Ti. A′ϕi

is obtained by adding new transitions to
Aϕi . costτi and distϕi are defined similarly as in (7). As
an extension, Algorithm 1 could be applied under different
α and β to derive several optimal accepting run candidates,
of which the unique ones are saved. Then Algorithm 3 gives
feedback about their implementation cost and their distances
to individual specifications.

Lemma 3: Assume τΘ and distϕi are the derived from
Algorithm 3. Then distϕi = 0 implies that τΘ satisfies ϕi.

Proof: The proof is omitted as it is similar to that of
Lemma 2.

An example of a two-agent system is shown in Figures 6
and 7. Agent 1 needs to visit π1 and π2 infinitely often,
but never be at π1 with agent 2 at the same time. Agent 2
needs to visit π1 and stay there. Six different motion plans
are obtained by Algorithm 3 under different α and β,
as in Figure 8. The same color indicates that the same
optimal accepting run is found. Here we list two motion
plan candidates: (i) agent 1: π0π1[π2]ω , agent 2: π0π0[π1]ω

(which has distϕ1
2, distϕ2

0, costτ1 12, costτ2 8);
(ii) agent 1: π0π1[π2π1π2]ω , agent 2: π0π0[π1π0π1]ω (which
has distϕ1 0, distϕ2 1, costτ1 20, costτ2 16).

The above approach can be applied to any other clusters
within the multi-agent system. In particular, the following
procedures are carried out: (i) all agents need to confirm
their dependency relation, i.e., which cluster they belong to;
(ii) within each cluster an agreement on the value of α and
β should be achieved; (iii) every agent calls Algorithm 1 to
derive the optimal accepting run. If there are more than one
with the equal total cost by (7), another consensus needs
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to be reached regarding which optimal accepting run to
choose; (iv) each agent computes the individual motion plan
by Algorithm 3; (v) all agents within one cluster implements
their motion plans in a synchronized way [10].

Remark 4: This multi-agent framework can be modified
and applied to the single-agent case where the specification
has the “conjunction” form ϕ = ϕ1 ∧ ϕ2 · · · ∧ ϕN . Then
the sub-specification ϕi can be modeled as the individual
specification of an “imaginary” agent which has identical
movements as the “real” agent. β could represent different
priorities among these sub-tasks.

V. CORRECTNESS AND COMPLEXITY

The correctness of the proposed solutions in Section III-
C and IV-C follows from the problem formulation and the
correctness of the Dijkstra’s shortest path algorithm. Let |Ti|
and |Aϕi

| denote the size of agent i’s FTS and the NBA.
The size of Ar by Definition 7 for one cluster with M
members is |Ar| = M ·

∏M
i=1 |Ti| · |Aϕi

|. Algorithm 1 runs
in O(|Ar| log |Ar| · |Q′0| · |F ′|). Algorithms 2 and 3 have the
complexity linear to the length of Ropt.

VI. SIMULATION — ASSEMBLY ROBOTS

Consider a team of four unicycle robots that satisfy: ẋi =
vi cos θi, ẏi = vi sin θi, θ̇i = ωi, where pi = (xi, yi)

T ∈ R2

is the center of mass for agent i; θi ∈ [0, 2π] is the
orientation; and vi, ωi ∈ R are the transition and rotation
velocities, i = 1, 2, 3, 4. The whole workspace is shown
in Figure 9, which consists of 26 polygonal regions. The
continuous controller that drives the robots from an region
to any geometrically adjacent region is based on [27] by
constructing vector fields over each cell for each face. The
controller design is not stated here for brevity. All simula-
tions are carried out in MATLAB on a desktop computer
(3.06 GHz Duo CPU and 8GB of RAM).

A. Local Specifications

Robots 2, 3 and 4 are confined in rooms 2, 3 and 4 as
shown in Figure 9. Each room has six regions, some of
which are obstacle-occupied (in grey). They repetitively carry
different goods from the storage region to the unloading
region within each room, while avoiding obstacles. After
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Fig. 8. Left: the optimal accepting runs generated under different α and β
(γ = 5). Right: the alternative motion plans located by their distance to ϕ1

and distance to ϕ2 (y-axis), and labeled by the total implementation cost.

picking up goods at the storage region, they have to drop
the goods at unloading region before they return to the
storage region. The storage, unloading and obstacle-occupied
regions are labeled by ai,s, ai,u and ai,o respectively for
agent i = 2, 3, 4. Robot 1 has to collect these goods at
the regions labeled by a1,c1, a1,c2 and a1,c3 repetitively. In
addition, robot 4 needs to meet robot 1 at region labeled by
a4,u′ . The obstacle-occupied regions for agent 1 are labeled
by a1,o. These tasks are specified as LTL formulas by
• robot 1: ϕ1 = �♦(a1,c1) ∧ �♦(a1,c2) ∧ �♦(a1,c3 ∧
a4,u′) ∧ �(¬a1,o)

• robot i: ϕi = �♦ai,s ∧ �♦ai,u ∧ �(ai,s ⇒©(¬ai,s∪
ai,u)) ∧ �(¬ai,o), i = 2, 3, 4.

Dependency and Potential Infeasibility: by Definition 3,
robots 1 and 4 are dependent while robots 2 and 3 run
independently. There is a misunderstanding between robots 1
and 4 about the location of robot 4’s unloading region,
namely, a4,u′ and a4,u indicate two different regions, as
shown in Room 4 of Figure 9. But this does not necessarily
mean that ϕ1 and ϕ4 are mutually infeasible. Moreover, ϕ3

is infeasible for agent 3 because of the obstacles in room 3.
We omit here the detailed diagrams of each robot’s FTS

and its associated specification automaton, due to limited
space. Each robot can transit between any two geometrically
adjacent regions within their confined workspace, of which
the costs are uniformly 5. They could also stay at any region
with the cost 1. T1 has 13 states while Ti has 6 states; Aϕ1

has 4 states and Aϕi
has 5 states by [28], i = 2, 3, 4.

B. Simulation Results

Algorithm 3 is applied to the cluster formed by robots 1
and 4. The composed FTS Tg has 78 states. The relaxed
product automaton Ar consists of 3120 states and 1364
edges, which has three weighting parameters α, β1 and β2.
By choosing α = 0, 20, 100; β1 = 1; β2 = 0, 0.5, 1, 10, six
unique motion plan candidates are found. Here we choose
three of them: (P1) α = 100, β1, β2 = 1. Robot 4 travels
more distance from its unloading region to meet robot 1 at
the collecting region (distϕ1

0, distϕ4
0, costτ1 140,

costτ4 48); (P2) α = 100, β1 = 1, β2 = 0. Robots 1 and 4
meet at robot 1’s collecting region (distϕ1

0, distϕ4
8,

costτ1 140, costτ4 21); (P3) α = 30, β1, β2 = 1.
Robots 1 and 4 do not meet (distϕ1 2, distϕ4 0,
costτ1 126, costτ4 20). On the other hand, Algorithm 2
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but not ϕ1 (corresponds to P3).

is applied for robot 3 to find the motion plan that violates
ϕ3 the least. We choose the motion plan under α = 2, of
which the implementation cost is 30 and the distance to ϕ3

is 3. In particular, Figures 9 and 10 present the final motion
of the composed system when the above motion plans are
implemented by the lower-level hybrid controllers.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose a reconfiguration method for
the motion planning of multi-agent systems under infeasible
local LTL specifications. Algorithms are provided to derive
optimal motion plan candidates that are sorted by their
implementation costs and their distances to individual task
specifications. Future work could include the consideration
of limited communications.
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