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Abstract— We propose a framework for the decentralized
control of a team of agents that are assigned local tasks
expressed as Linear Temporal Logic (LTL) formulas. Each
local LTL task specification captures both the requirements
on the respective agent’s behavior and the requests for the
other agents’ collaborations needed to accomplish the task.
Furthermore, the agents are subject to communication con-
straints. The presented solution follows the automata-theoretic
approach to LTL model checking, however, it avoids the com-
putationally demanding construction of synchronized product
system between the agents. A decentralized coordination scheme
through a dynamic leader selection is proposed, to guarantee
the low-level connectivity maintenance and a progress towards
the satisfaction of each agent’s task.

I. INTRODUCTION

Cooperative control for multi-agent systems have been
extensively studied for various purposes like consensus [19],
formation [4], [5], and reference-tracking [12], where each
agent either serves to accomplish a global objective or fulfil
simple local goals such as reachability. In contrast, we
focus on planning under complex tasks, such as periodic
surveillance (repeatedly perform A), sequencing (perform A,
then B, then C), or request-response (whenever A occurs,
perform B). In particular, we consider a team of agents
modeled as a dynamical system that are assigned a local
task specification as Linear Temporal Logic (LTL) formulas.
The agents might not be able to accomplish the tasks by
themselves and hence requirements on the other agents’
behaviors are also part of the LTL formulas.

The goal of this work is to find motion controllers and
action plans for the agents that guarantee the satisfaction of
all individual LTL tasks. We aim for a decentralized solution
while taking into account the constraints that the agents can
exchange messages only if they are close enough. Following
the hierarchical approach to LTL planning, we first generate
for each agent a sequence of actions as a high-level plan that,
if followed, guarantees the accomplishment of the respective
agent’s LTL task. Second, we merge and implement the
syntesized plans in real-time upon the run of the system.
Namely, we introduce a distributed continuous controller for
the leader-follower scheme, where the current leader guides
itself and the followers towards the satisfaction of the leader’s
task. At the same time, the connectivity of the multi-agent
system is maintained. By a systematic leader re-election, we
ensure that each agent’s task will be met in long term.
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Multi-agent planning under temporal logic tasks has been
studied in several recent papers [2], [10], [14], [16]–[18],
[20]–[22]. Many of them build on top-down approach to
planning, when a single LTL task is given to the whole team.
For instance, in [2], [21], the authors propose decomposition
of the specification into a conjunction of independent local
LTL formulas. On the other hand, we focus on bottom-
up planning from individual specification. Related work
includes a decentralized control of a robotic team from local
LTL specification with communication constraints proposed
in [7]. However, the specifications there are local [11] and the
agents do not impose any requirements on the other agents’
behavior. In [10], the same bottom-up planning problem is
considered and a partially decentralized solution is designed
that takes into account only clusters of dependent agents
instead of the whole group. This approach is later extended
in [20], where a receding horizon approach to the problem
is suggested. Both mentioned studies however assume that
the agents are fully synchronized and the proposed solutions
rely on the construction of the synchronized product system
between the agents, or at least of its part. In contrast, in this
work, we avoid the product construction completely.

The contribution of the paper can be summarized as the
proposal of a decentralized motion and action control scheme
for multi-agent systems which handles both connectivity
constraints and collaborative tasks that are assigned locally.
The features of the suggested solution are as follows: (1) the
continuous controller is distributed and integrated with the
leader election scheme; (2) the distributed leader election
algorithm only requires local communications and guarantees
sequential progresses towards individual desired tasks; and
(3) the proposed coordination scheme operates in real-time,
upon the run of the system as opposed to offline solutions
that require fully synchronized motions of all agents.

The rest of the paper is organized as follows. In Section II
we state the preliminaries. Section III formally introduces the
considered problem. In Section IV we describe the proposed
solution in details. Section V demonstrates the results in a
simulated case study. Finally, we conclude in Section VI.

An extended version of this paper including detailed
proofs can be found in [6].

II. PRELIMINARIES

Given a set S, let 2S and Sω denote the set of all subsets
of S and the set of all infinite sequences of elements of S.

Definition 1: An LTL formula φ over the set of atomic
propositions Σ is defined inductively by:

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ,



where σ ∈ Σ, ¬ (negation) and ∨ (disjunction) are standard
Boolean connectives, and X (next), U (until), F (eventually),
and G (always) are temporal operators. �

The semantics of LTL is defined over infinite words
over 2Σ. Intuitively, an atomic proposition σ ∈ Σ is satisfied
on a word w = w(1)w(2) . . . if it holds at w(1), i.e. if
σ ∈ w(1). Formula Xφ holds true if φ is satisfied on the
word suffix that begins in the next position w(2), whereas
φ1 Uφ2 states that φ1 has to be true until φ2 becomes true.
Fφ and Gφ are true if φ holds on w eventually and always,
respectively. For the formal definition see, e.g. [1].

Given an LTL formula ϕ over Σ, a word over 2Σ that
satisfies ϕ can be generated as follows [1]. First, the LTL for-
mula is algorithmically translated into a corresponding Büchi
automaton, e.g., by an off-the-shelf tool such as LTL2BA [9].
Second, by finding a finite path (prefix) followed by a cycle
(suffix) containing an accepting state, we find a word that is
accepted by the Büchi automaton B and hence satisfies ϕ.

In this particular work, we are interested only in subsets
of 2Σ that are singletons. Thus, we interpret LTL over words
over Σ, i.e. over sequences of Σ instead of subsets of Σ.

III. PROBLEM FORMULATION

A. Agent Dynamics and Network Structure

Let us consider a team of N agents, modeled by the single-
integrator dynamics:

ẋi(t) = ui(t), i ∈ N = {1, · · · , N}, (1)

where xi(t), ui(t) ∈ R2 are the state and control inputs of
agent i at time t > 0, xi(0) is the given initial state, and
xi(t) is the trajectory of agent i from time 0 to t ≥ 0. We
assume that all agents start at time t = 0.

Each agent has a limited communication radius of r > 0.
At time t, agent i can communicate, i.e. exchange messages
with agent j if ‖xi(t) − xj(t)‖ ≤ r. This constraint
imposes certain challenges on the distributed coordination
of multi-agent systems as the inter-agent communication or
information exchange depends on their relative positions.

Agents i and j are connected at time t if and only if
either ‖xi(t) − xj(t)‖ ≤ r, or if there exists i′, such
that ‖xi(t) − xi′(t)‖ ≤ r, where i′ and j are connected.
Hence, two connected agents can communicate indirectly.
We assume that initially, all agents are connected. The
particular message passing protocol is beyond the scope of
this paper. For simplicity, we assume that message delivery
is reliable, meaning that a message sent by agent i will be
received by all connected agents j.

B. Task Specifications

Each agent i ∈ N is given of a set of Mi different services
Σi = {σih, h ∈ {1, · · · ,Mi}} that it is responsible for, and
a set of Ki regions, where subsets of these services can be
provided, denoted by Ri = {Rig, g ∈ {1, · · · ,Ki}}. For
simplicity, Rig is determined by a circular area:

Rig = {y ∈ R2|‖y − cig‖ ≤ rig} (2)

where cig ∈ R2 and rig are the center and radius of the
region, respectively, such that rig ≥ rmin > 0, for a fixed
minimal radius rmin . Furthermore, we assume that each
region in Rih is reachable for each agent. Labeling function
Li : Ri → 2Σi assigns to each region Rig the set of services
Li(Rig) ⊆ Σi that can be provided in there.

Some of the services in Σi can be provided solely by the
agent i, while others require cooperation with other agents.
Formally, agent i is associated with a set of actions Πi that
it is capable of executing. The actions are of two types:
• action πih of providing the service σih ∈ Σi;
• action $ii′h′ of cooperating with the agent i′ in pro-

viding its service σi′h′ ∈ Σi′ .
A service σih then takes the following form:

σih = πih ∧ (
∧

i′∈Cih

$i′ih), (3)

for the set of cooperating agents Cih, where ∅ ⊆ Cih ⊆
N \ {i}. Informally, a service σi is provided if the agent’s
relevant service-providing action and the corresponding co-
operating agents’ actions are executed at the same time.
Furthermore, it is required that at the moment of service
providing, the agent and the cooperating agents from Cih
occupy the same region Rig , where σih ∈ Li(Rig).

Definition 2 (Trace): A valid trace of agent i is a tuple
tracei = (xi(t),TAi ,Ai,TSi ,Si), where (1) xi(t) is a tra-
jectory of agent i; (2) TAi = t1, t2, t3, · · · is the sequence
of time instances when agent i executes actions from Πi;
(3) Ai : TAi → Πi represents the sequence of executed
actions, both the service-providing and the cooperating ones;
(4) TSi = τ1, τ2, τ3, · · · is a sequence of time instances when
services from Σi are provided. Note that TSi is a subsequence
of TAi and it is equal to the time instances when service-
providing actions are executed; (5) Si : TSi → Σi represents
the sequence of provided services satisfying that for all l ≥ 1,
there exists g ∈ {1, · · · ,Ki} such that
(i) xi(τl) ∈ Rig , Si(τl) ∈ Li(Rig), and Si(τl) = σih ⇒

Ai(τl) = πih;
(ii) for all i′ ∈ Cih, xi′(τl) ∈ Rig and Ai′(τl) = $i′ih. �
In other words, the agent i can provide a service σih only
if (i) it is present in a region Rig , where this service can
be provided, and it executes the relevant service-providing
action πih itself, and (ii) all its cooperating agents from Cih
are present in the same region Rig as agent i and execute
the respective cooperative actions needed. �

Definition 3 (LTL Satisfaction): A valid trace tracei =
(xi(t),TAi ,Ai,TSi = τ1, τ2, τ3, · · · ,Si : TSi → Σi), satisfies
an LTL formula over ϕi, denoted by tracei |= ϕi if and only
if Si(τ1)Si(τ2)Si(τ3) · · · |= ϕi. �

Remark 1: Traditionally, LTL is defined over the set of
atomic propositions (APs) instead of services [1], where
APs represent inherent properties of system states. The LTL
formulas are then interpreted over trajectories of systems.In
this work, we define LTL formulas over offered services
rather than undetachable inherent properties of the system
states. The agent is in our case given the option to decide



whether a service σih ∈ L(Rig) is in state xi(t) ∈ Rig
satisfied or not. However, σi ∈ Σi is never satisfied in state
xi(t) ∈ Rig , such that σi 6∈ L(Rig). The LTL f are thus
interpreted over the sequences of provided services along
the trajectories as opposed to the trajectories themselves. �

C. Problem statement

Problem 1: Given a team of the agents N subject to dy-
namics in Eq. 1, synthesize for each agent i ∈ N : (1) a con-
trol input ui; (2) a time sequence TAi ; (3) an action sequence
Ai, such that the trace tracei = (xi(t),TAi ,TSi ,Ai,Si) is
valid and satisfies the given local LTL task specification ϕi
over the set of services Σi. �

IV. PROBLEM SOLUTION

Our approach to the problem involves two steps. In the
offline step, we synthesize a high-level plan, i.e. a sequence
of services for each of the agents. In the online step, we dy-
namically switch between the high-level plans through leader
re-election. The team follows the leader towards providing
its next scheduled service, during which the connectivity is
maintained by the proposed continuous controller.

A. Connectivity Graph

Before proposing the continuous control scheme, let us
introduce the notion of connectivity graph that will allow us
to handle the communication constraints between the agents.

Recall that each agent has a limited communication radius
r > 0 as defined in Section III-A. Moreover, let ε ∈ (0, r)
be a given constant, which plays an important role for the
edge definition below. In particular, it introduces a hysteresis
in the definition for edges in the connectivity graph.

Definition 4: Let G(t) = (N , E(t)) denote the undirected
time-varying connectivity graph formed by the agents, where
E(t) ⊆ N × N is the set of edges for t ≥ 0. At time
t = 0, we set E(0) = {(i, j)|‖xi(0) − xj(0)‖ < r}. At
time t > 0, (i, j) ∈ E(t) if and only if one of the following
conditions hold: (1) ‖xi(t)− xj(t)‖ ≤ r− ε; or (2) r− ε <
‖xi(t) − xj(t)‖ ≤ r and (i, j) ∈ E(t−), where t− < t and
|t− t−| → 0. �

Note that the condition (ii) in the above definition guaran-
tees that a new edge will only be added when the distance
between two unconnected agents decreases below r−ε. This
property is crucial in proving the connectivity maintenance
by Lemma 1 and the convergence by Lemma 2.

Consequently, by Def. 4 each agent i ∈ N has a time-
varying set of neighbouring agents, denoted by Ni(t) =
{i′ ∈ N | (i, i′) ∈ E(t)}. Note that if j is reachable
from i in G(t) then agents i and j are connected, i.e.
they can communicate directly or indirectly. From the initial
connectivity requirement, we have that G(0) is connected.
Hence, maintaining G(t) connected for all t ≥ 0 ensures
that the agents are always connected, too.

B. Continuous Controller Design

In this section, let us firstly focus on the following
problem: given a leader ` ∈ N at time t and a goal region
R`g ∈ R`, propose a decentralized continuous controller
that: (1) guarantees that all agents i ∈ N reach R`g at
a finite time t < ∞; (2) G(t′) remains connected for all
t′ ∈ [t, t]. Both objectives are critical for the leader selection
scheme introduced in Section IV-C, which ensures sequential
satisfaction of ϕi for each i ∈ N .

Denote by xij(t) = xi(t) − xj(t) the pairwise relative
position between neighbouring agents, ∀(i, j) ∈ E(t). Thus
‖xij(t)‖2 =

(
xi(t)−xj(t)

)T (
xi(t)−xj(t)

)
denotes the cor-

responding distance. We propose the continuous controller
with the following structure:

ui(t) = −bi
(
xi − cig

)
−

∑
j∈Ni(t)

∇xiφ
(
‖xij‖

)
, (4)

where ∇xi
φ(·) is the gradient of the potential function

φ
(
‖xij‖

)
with respect to xi, which is to be defined below;

bi ∈ {0, 1} indicates if agent i is the leader, i.e., bi = 1 if
agent i is the leader; cig ∈ R2 is the center of the next goal
region for agent i; bi and cig are derived from the leader
selection scheme in Section IV-C later.

The potential function φ(‖xij‖) is defined as follows

φ
(
‖xij‖

)
=

‖xij‖2

r2 − ‖xij‖2
, ‖xij‖ ∈ [0, r), (5)

and has the following properties: (1) its partial derivative of
φ(·) over ‖xij‖ is given by

∂ φ
(
‖xij‖

)
∂ ‖xij‖

=
2r2 ‖xij‖

(r2 − ‖xij‖2)2
≥ 0, (6)

for ‖xij(t)‖ ∈ [0, r) and the equality holds when ‖xij‖ = 0;
(2) φ

(
‖xij‖

)
→ 0 when ‖xij‖ → 0; (3) φ

(
‖xij‖

)
→ +∞

when ‖xij‖ → r. As a result, controller (4) becomes

ui(t) = −bi
(
xi − cig

)
−

∑
j∈Ni(t)

2r2

(r2 − ‖xij‖2)2
xij , (7)

which only depends on xi and xj , ∀j ∈ Ni(t).
Lemma 1: Assume that G(t) is connected at t = T1

and agent ` ∈ N is the fixed leader for all t ≥ T1. By
applying the controller in Eq. (7), G(t) remains connected
and E(T1) ⊆ E(t) for t ≥ T1.

Proof: Assume that G(t) remains invariant during
[t1, t2) ⊆ [T1, ∞), i.e. no new edges are added to G(t).
Consider the following function:

V (t) =
1

2

∑
(i, j)∈E(t)

φ(‖xij‖)+
1

2

N∑
i=1

bi(xi−cig)T (xi−cig),

(8)



which is positive semi-definite. The time derivative of (8)
along system (1) is given by

V̇ (t) =

N∑
i=1, i 6=`

(( ∑
j∈Ni(t)

∇xiφ(‖xij‖)
)
ui

)

+

( ∑
j∈N`(t)

∇x`
φ(‖x`j‖) + (x` − c`g)

)
u`.

(9)

By (7), the control input for each follower i 6= ` is given
by ui = −

∑
j∈Ni(t)

∇xiφ(‖xij‖), since bi = 0 for all
followers. The control input for the single leader ` is given
by u` = −(x`−c`g)−

∑
j∈N`(t)∇x`

φ(‖x`j‖), since b` = 1.
This implies that

V̇ (t) = −
N∑

i=1, i 6=`

‖
∑

j∈Ni(t)

∇xiφ(‖xij‖)‖2

− ‖(x` − c`g) +
∑

j∈N`(t)

∇x`
φ(‖x`j‖) ‖2 ≤ 0.

(10)

Thus V (t) ≤ V (0) < +∞ for t ∈ [t1, t2), if no edges are
added or removed during that period.

On the other hand, assume a new edge (p, q) is added to
G(t) at t = t2, where p, q ∈ N . By Def. 4, a new edge
can only be added if ‖xpq(t2)‖ ≤ r− ε and φ(‖xpq(t2)‖) =
(r−ε)2
ε(2r−ε) < +∞ since 0 < ε < r. If more than one edges
are added. Denote the set of newly-added edges at t = t2
by Ê ⊂ N × N . Let V (t+2 ) and V (t−2 ) be the value of
function (8) before and after adding the set of new edges to
G(t) at t = t2. We get

V (t+2 ) = V (t−2 ) +
∑

(p, q)∈Ê

φ(‖xpq(t2)‖)

≤ V (t−2 ) + |Ê| (r − ε)2

ε(2r − ε)
< +∞.

(11)

Thus V (t) < ∞ also holds when new edges are added to
G(t). As a result, V (t) < +∞ for t ∈ [T1, ∞). By Def. 4,
one existing edge (i, j) ∈ E(t) will be lost only if xij(t) =
r. It implies that φ(‖xij‖)→ +∞, i.e., V (t)→ +∞ by (8).
By contradiction, we can conclude that new edges might be
added but no existing edges will be lost, namely E(T1) ⊆
E(t), ∀t ≥ T1. Thus given a connected G(t) at t = T1 and
a fixed leader ` ∈ N for t ≥ T1, it is guaranteed that G(t)
remains connected, ∀t ≥ T1.

Lemma 2: Given that G(t) is connected at t = T1 and the
fixed leader ` ∈ N for t ≥ T1, it is guaranteed that under
controller (7) there exist t < +∞ that xi(t) ∈ R`g,∀i ∈ N .

Proof: It is shown in Lemma 1 that G(t) remains
connected for t ≥ T1 if G(T1) is connected. Moreover
E(T1) ⊆ E(t), ∀t ≥ T1, i.e. no existing edges will be lost.
Then we show that all agents converge to the goal region
of the leader in finite time. By (10), V̇ (t) ≤ 0 for t ≥ T1

and V̇ (t) = 0 when the following conditions hold: (1) for
i 6= ` and i ∈ N , it holds that

∑
j∈Ni(t)

hij(xi − xj) = 0;
and (2) for the leader ` ∈ N , it holds that (x` − c`g) +

∑
j∈N`(t) hij(x` − xj) = 0; where hij is defined as

hij =
2r2

(r2 − ‖xij‖2)2
, ∀(i, j) ∈ E(t). (12)

Clearly, hij ∈ [0, 2/r2) since xij ∈ [0, r − ε), ∀(i, j) ∈
E(t). We can construct a N × N matrix H satisfying
H(i, i) =

∑
j∈Ni

hij and H(i, j) = −hij , where i 6= j ∈
N . As shown in [19], H is positive semidefinite with a
single eigenvalue at the origin, of which the corresponding
eigenvector is the unit column vector of length N , denoted
by 1N . By combining the above two conditions, we get

H ⊗ I2 · x +B ⊗ I2 · (x− c) = 0 (13)

where ⊗ denotes the Kronecker product [13]; x is the stack
vector for xi, i ∈ N ; I2 is the 2× 2 identity matrix; B is a
N×N diagonal matrix, with zero on the diagonal except the
(l, l) element being one; c = 1N ⊗ clg. Since H ⊗ I2 · c =
(H⊗I2)·(1N⊗clg) = (H ·1N )⊗(I2 ·clg) and H ·1N = 0N ,
it implies that H ⊗ I2 · c = 02N . By (13), it implies that
(H+B)⊗ I2 · (x−c) = 0. Since H is positive semidefinite
with one eigenvalue at the origin and B is diagonal with
non-negative elements, H + B is positive definite and (13)
holds only when x = c, i.e., xi = c`g , ∀i ∈ N .

By LaSalle’s Invariance principle [15], the closed-loop
system under controller (7) will converge to the largest
invariant set inside S = {x ∈ R2N |xi = c`g,∀i ∈ N},
as t → +∞. It means that all agents converge to the same
point c`g . Since clearly c`g ∈ R`g , by continuity all agents
would enter R`g which has a minimal radius rmin by (2).
Thus there exists t < +∞ that xi(t) ∈ R`g , ∀i ∈ N .

C. Progressive Goal and Leader Election

We now discuss the election of the leader and the choice
of an associated goal region to ensure the overall progress.
As the first offline and decentralized step, we generate for
each agent i a high-level plan. Secondly, in a repetitive online
procedure, each agent i is assigned a value that, intuitivelly,
represents the agent’s urge to provide the next service in
its high-level plan. Using ideas from bully leader election
algorithm [8], an agent with the strongest urge is always
elected as a leader within the network. By changing the urge
dynamically, we ensure that each of the agents is elected as a
leader and hence progresses towards its goal infinitely often.

1) Offline high-level plan computation: Given an agent
i ∈ N , a set of services Σi, and an LTL formula ϕi over Σi,
a high-level plan for i in the form of a service sequence Ωi =
σi1 · · ·σipi(σipi+1 · · ·σisi)ω can be computed via standard
formal verification-based methods (see Sec. II).

2) Urge function: Let i be a fixed agent, t the current time
and σi1 · · ·σik a prefix of services of the high-level plan Ωi
that have been provided till t. Moreover, let τiλ denote the
time, when the latest service, i.e., σiλ = σik was provided,
or τiλ = 0 in case no service prefix of Ωi has been provided.
Using τiλ, we could define agent i’s urge at time t as a tuple

Υi(t) = (t− τiλ, i). (14)



Algorithm 1 Complete Algorithm for each agent
Input: Agents’ own ID i, the set of all agent IDs N , formula ϕi
Output: tracei

1: compute plan Ωi := σi1 · · ·σipi(σipi+1 · · ·σisi)ω
2: τiλ := 0; σiν := σi1
3: send ready(i) and wait to receive ready(j) for all j ∈ N \{i}
4: send init elect(i, tcur ) if i = N
5: loop
6: wait to receive a message m
7: switch m
8: case m = init elect(i′, t) for some i′ ∈ N and time t
9: send me(Υi(t)) and receive me(Υj(t))

10: elect the leader ` ∈ N maximizing Υ`(t)
11: send finish elect(i) and wait to receive finish elect(j)
12: if ` = i then
13: bi := 1
14: pick R`g = Rig , such that σiν ∈ Li(Rig)
15: apply controller ui from (7) until xj(t) ∈ R`g for

all j ∈ {i} ∪ Ciν
16: send execute request($jiν) for all j ∈ Ciν
17: execute πiν
18: τiλ := tcur ; σiν := σiν+1

19: update prefixes of TAi ,Ai,TSi , and Si
20: send init elect(i, tcur )
21: else
22: bi := 0
23: apply controller ui from (7) until a message m is

received; goto line 7
24: end if
25: case m = execute request($ii′h′)
26: execute $ii′h′

27: update prefixes of TAi , and Ai; goto line 7
28: end switch
29: end loop

To compare the agents’ urges at time t, we use lexicograph-
ical ordering: Υi(t) > Υj(t) iff (1) t − τiλ > t − τjλ; or
(2) t− τiλ = t− τjλ, and i > j. Note that i 6= j implies that
Υi(t) 6= Υj(t), ∀t ≥ 0. Thus there exists exactly one agent
with the maximal urge at any time t.

3) Overall algorithm: The solution for an agent i ∈ N is
summarized in Alg. 1 and is run on each agent separately.
The algorithm is initialized with the offline synthesis of high-
level plans (line 1). Then, the agent broadcasts a message to
acknowledge the others that it is ready to proceed and waits
to receive analogous messages from the remaining agents
(line 3). The first leader election is triggered by a message
sent by the agent N (line 4) with the time stamp tcur .

Several types of messages can be received. Message
init elect(i′, t) notifies that leader re-election is triggered
(line 8). In such a case, the agent sends out the message
me(Υi(t)) with its urge value Υi(t) and waits to receive
analogous messages from the others (line 9). The agent with
the maximal urge is elected as the leader (line 10) and the
algorithm proceeds when each of the agents has set the new
leader (line 11). The rest of the algorithm differs depending
on whether the agent i is the leader (lines 12-21) or not
(lines 21-24). Different controller scheme from (7) is applied
to reach the leader’s goal region. Then it provides service
σiν to finish its own service or help others (lines 16-17).
Finally, the leader triggers a leader re-election (line 20).

The algorithm naturally determines the trace tracei =
(xi(t),TAi ,Ai,TSi ,Si) by lines 19 and 27.

Lemma 3: Given an agent i ∈ N at time t, there exists
T ≥ t, such that Υi(T ) > Υj(T ), for all j ∈ N , and t ≥ 0.

Proof: By contradiction. Assume that for all t′ ≥ t there
exists some j ∈ N , such that Υi(t

′) < Υj(t
′). Consider

that ` ∈ N is set as the leader at time t, and an agent
i′ ∈ N maximizes Υi′(t) among all agents in N . From the
construction of Alg. 1 and Lemmas 1 and 2, there exists
τ`ν ≥ t when the next leader’s desired service σ`ν has been
provided and a leader re-election is triggered with the time
stamp τ`ν . Note that from (14), Υi′(τ`ν) is still maximal
among the agents in N , and hence i′ becomes the next
leader. Furthermore, there exists time τi′ν ≥ τ`ν when the
next desired service σi′ν of agent i′ has been provided, and
hence Υi′(τi′ν) < Υj(τi′ν), for all j ∈ N , including the
agent i. Since we assume that i does not become a leader
for any t′ ≥ t, it holds that Υi′(t

′′) < Υi(t
′′), ∀t′′ ≥ τi′ν .

We can reason similarly about the remaining agents. As the
number of agents is finite, after large enough T ≥ t, we
obtain that Υj(t

′) < Υi(t
′) for all j and for all t′ ≥ T . This

contradicts the assumption and the proof is complete.
From Alg. 1, each agent has its high-level plan Ωi and

waits for the first leader `1 ∈ N to be elected. By Lemma 2
there exists a finite time t1 > 0, such that x`1(t1) ∈ R`1ν ,
while at the same time by Lemma 1 the communication
network G(t) remains connected, ∀t ∈ [0, t1]. By induction,
given a leader `t and a goal region R`ν at time t > 0, there
exists t̄ ≥ t, such that x`(t̄) ∈ R`ν . Together with Lemma 3,
we conclude that φi is satisfied, ∀i ∈ N .

Corollary 1: Algorithm 1 solves Problem 1. �

V. EXAMPLE

In the following case study, we present an example of a
team of four autonomous robots with heterogeneous func-
tionalities. All simulations are carried out in MATLAB on a
desktop computer (3.06 GHz Duo CPU and 8GB of RAM).

A. System Description

We consider agents R1, R2, R3 and R4 with dynamics
as in Eq. (1). They all have the communication radius 1.5m,
while ε is 0.1m. The workspace of size 4m×4m is given in
Fig. 1, within which the regions of interest for R1 are R11,
R12 (in red), for R2 are R21, R22 (in green), for R3 are
R31, R32 (in blue) and for R4 are R41, R42 (in cyan). Each
agent can provide various services as follows: agent R1 can
load (lH , lA), carry and unload (uH , uA) a heavy object H
or a light object A. Besides, it can help R4 to assemble (hC)
object C ; agent R2 is capable of helping the agent R1 to
load the heavy object H (hH ), and to execute two tasks (t1,
t2) without help; agent R3 is capable of taking snapshots (s)
when being present in its own or others’ goal regions; agent
R4 can assemble (aC) object C under the help of agent R1.

B. Task Description

Each agent has been assigned a local complex task that
requires collaboration: agent R1 has to periodically load the



Fig. 1: Left: the agents’ trajectory during time [0, 34.8s]; Right: the
evolution of pair-wise distances ‖x12‖, ‖x23‖, ‖x34‖, which all stay
below the radius 1.5m as required by the connectivity constraints.

heavy object H at region R11, unload it at region R12, load
the light object A at region R12, unload it at region R11. In
LTL formula, it is specified as φ1 = GF

(
(lH ∧ hH ∧ r11)∧

X(uH ∧ r12)
)
∧ GF

(
(lA ∧ r12) ∧ (uA ∧ r11)

)
; Agent R2

has to service the simple task t1 at region R21 and task t2
at region R22 in sequence, but it requires R2 to witness the
execution of task t2, by taking a snapshot at the moment of
the execution. It is specified as φ2 = F

(
(t1 ∧ r21) ∧ F(t2 ∧

s ∧ r22)
)
; Agent R3 has to surveil over both of its goal

regions (R31, R32) and take snapshots there, which is φ3 =
GF(s∧ r31)∧GF(s∧ r32); Agent R4 has to assemble object
C at its goal regions (R41, R42) infinitely often, which is
φ4 = GF(aC ∧r41)∧GF(aC ∧r42). Note that φ1, φ3 and φ4

require collaboration tasks be performed infinitely often.

C. Simulation Results

Initially, the agents start evenly from the x-axis, from
(0, 0), (1.3, 0), (2.6, 0), (3.9, 0), respectively. By Def. 4,
the initial edge set is E(0) = {(1, 2), (2, 3), (3, 4)},
yielding a connected G(0). The system executing Alg. 1 is
simulated for 35s, of which the video demonstration can be
viewed here [3]. Initially, agent R1 is chosen as the leader.
Controller (4) is applied for R1 as the leader and the rest
as followers, while the next goal region of R1 is R11. All
agents belong to R11 after t = 3.8s. After that agent R2

helps agent R1 to load object H. Then agent R2 is elected
as the leader after the heavy object is loaded, where R21

is chosen as the next goal region. At t = 6.1s, all agents
converge to R21. Afterwards, the leader and goal region is
switched in the following order: R3 as leader to region R31

at t = 6.1s; R4 as leader to R41 at t = 8.1s; R4 as leader to
R42 at t = 10.6s; R2 as leader to R22 at t = 14.2s; R3 as
leader to R32 at t = 16.3s; R1 as leader to R12 at t = 18.2s;
R1 as leader to R11 at t = 20.1s; R3 as leader to R31 at
t = 24.2s; R3 as leader to R32 at t = 25.7s; R4 as leader
to R41 at t = 28.1s. R4 as leader to R42 at t = 31.4s.

Figure 1 shows the trajectory of R1, R2, R3, R4 during
time [0, 34.7s], in red, green, blue, cyan respectively. Fur-
thermore, the pairwise distance for neighbours within E(0) is
shown in Figure 1. It can be verified that they stay below the
constrained radius 1.5m thus the agents remain connected.

VI. CONCLUSIONS AND FUTURE WORK

We present a distributed motion and task control frame-
work for multi-agent systems under complex local LTL tasks
and connectivity constraints. It is guaranteed that all individ-
ual tasks are fulfilled, while at the same time connectivity
constraints are satisfied. Further work includes inherently-
coupled dynamics and time-varying network topology.
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