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Abstract— In this paper, we propose a distributed hybrid
control strategy for multi-agent systems where each agent
has a local task specified as a Linear Temporal Logic (LTL)
formula and at the same time is subject to relative-distance
constraints with its neighboring agents. The local tasks capture
the temporal requirements on individual agents’ behaviors,
while the relative-distance constraints impose requirements on
the collective motion of the whole team. The proposed solution
relies only on relative-state measurements among the neighbor-
ing agents without the need for explicit information exchange.
It is guaranteed that the local tasks given as syntactically co-
safe or general LTL formulas are fulfilled and the relative-
distance constraints are satisfied at all time. The approach is
demonstrated with computer simulations.

I. INTRODUCTION

Cooperative control of multi-agent systems generally fo-
cuses on designing local control laws to achieve a global
control objective, such as reference-tracking [8], consen-
sus [18], or formation [9]. In addition to these objectives,
various relative-motion constraints are often imposed to
ensure stability, safety and integrity of the overall system,
such as collision avoidance [2], network connectivity [9],
[23], or relative velocity constraints [8]. In order to specify
and achieve more structured and complex team behaviors
than the listed ones, we consider Linear Temporal Logic
(LTL) formulas as suitable descriptions of desired high-level
goals, including periodic surveillance, sequencing, request-
response, and their combinations. Furthermore, a generic
hierarchical approach that allows for the correct-by-design
control has been formulated and largely employed during
the last decade or so in single-agent as well as multi-agent
settings. In particular, task specifications are expressed as
LTL formulas for a single dynamical system in [3] and
an automated framework is proposed to translate the task
directly into a hybrid controller, which drives the system to
fulfill this task. For multi-agent systems, LTL formulas have
been used to specify complex high-level global tasks [11],
[13]–[15], [17], [20], [22], local tasks [5], [21].

In temporal logic-based multi-agent control, two different
points of view can be taken: a top-down and a bottom-up.
In the former one, a global specification captures require-
ments on the overall team behavior. Typically, the focus of
synthesizing a control strategy is on decomposing the global
specification into smaller local tasks to be executed by the
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individual agents in a synchronized or partially synchronized
manner [11], [22]. A central monitoring unit is often crucial
to ensure that the composition of the local plans yields the
satisfaction of the global goal. In contrast, in the bottom-
up approach, each agent is assigned a local task. These tasks
can be fully independent [5] or partially dependent, involving
requests for collaboration with the others [20], [21].

In this work, we tackle the multi-agent control problem
under local LTL tasks from the bottom-up perspective. The
local tasks are mutually independent but the agents are sub-
ject to relative-distance constraints with their neighbors. Thus
integration of the continuous motion control with the high-
level discrete network structure control is essential. Relative-
distance constraints are closely related to the connectivity of
the multi-agent network in robotic tasks [9]. As pointed out
in [8], [23], maintaining this connectivity is of great impor-
tance for the stability, safety and integrity of the overall team.
We addressed a version of this problem in [6], where we
proposed a dynamic leader-follower coordination and control
scheme. In this work, however, we aim for a decentralized
and communication-free solution that is applicable to low-
cost robotic systems equipped with range and angle sensors,
but without communication capabilities.

Main contributions of the proposed hybrid control strat-
egy lie in two aspects: (i) the proposed distributed motion
controller guarantees almost global convergence and the
satisfaction of relative-distance constraints at all time, for
an arbitrary number of leaders with different local goals in
the team. Most related literature in the area of distributed
control of multi-agent systems only allows for a single
leader [6], [18] or multiple leaders with the same global
goal as the team [16]; (ii) two different local coordination
and control-law switching policies are proposed depending
on the types of local tasks assigned, which can be applied
to communication-less agents in a distributed way.

The rest of the paper is organized as follows. Section II
introduces necessary preliminaries. In Section III, we for-
malizes the considered problem. Section IV presents our
solution in details. Section V demonstrates the feasibility
of the results by numerical simulations. We conclude and
discuss about future directions in Section VI. The extended
version of this paper can be found in [7].

II. PRELIMINARIES

A. Linear Temporal Logic (LTL)

A Linear Temporal Logic (LTL) formula over a set of
atomic propositions Σ that can be evaluated as true or false
is defined inductively according to the following rules [1]:



an atomic proposition σ ∈ Σ is an LTL formula; if φ and ψ
are LTL formulas, then also ¬φ, φ∧ψ, ⃝φ, φUψ, 3φ, and
□φ are LTL formulas, where ¬ (negation), ∧ (conjunction)
are standard Boolean connectives and ⃝ (next), U (until), 3
(eventually), and □ (globally) are temporal operators. The
semantics of LTL is omitted here due to limited space. For
full details, see e.g., [1]. Syntactically co-safe LTL (sc-LTL)
is a subclass of LTL built without the operators 2 and ¬ can
be applied to atomic propositions only [12]. Each word over
2Σ satisfying an sc-LTL formula φ consists of a satisfying
prefix that can be followed by an arbitrary suffix.

B. Weighted Graph

An undirected weighted graph is a tuple G = (N , E, h),
where N = {1, . . . , N} is a set of nodes; E ⊆ N ×N is a
set of edges; and h : E → R+ is the weight function, which
can be omitted if the weight is uniform over all edges. Each
node i has a set of neighbors Ni = {j ∈ N | (i, j) ∈ E}. A
path from node i to j is a sequence of nodes starting with i
and ending with j such that the consecutive nodes are neigh-
bors. G is connected if there is a path between any two nodes
and G is complete if E = N ×N . The Laplacian matrix H
of G is an N × N positive semidefinite matrix: H(i, i) =∑

j∈Ni
h(i, j),∀i ∈ N ; H(i, j) = −h(i, j), ∀(i, j) ∈ E, and

H(i, j) = 0, otherwise. For a connected graph G, H has
nonnegative eigenvalues [18] and a single zero eigenvalue
with eigenvector 1N , where 1N = [1, . . . , 1]T .

In this paper, each vector norm over Rn is the Euclidean
norm. |S| denotes the cardinality of a set S and v[i] denotes
the i-th element of a vector or a sequence v.

III. PROBLEM FORMULATION

A. Agent Dynamics and Network Structure

We consider a team of N autonomous agents with unique
identities (IDs) i ∈ N = {1, . . . , N}. They all satisfy the
single-integrator dynamics below:

ẋi(t) ≜ ui(t), i ∈ N (1)

where xi(t), ui(t) ∈ R2 are the respective state and the
control input of agent i at time t > 0. Let xi(0) be the given
initial state. The agents are modeled as point masses without
volume, i.e., inter-agent collisions are not considered. Each
agent has a sensing radius r > 0, which is assumed to
be identical for all agents. Namely, each agent can only
observe another agent’s state if their relative distance is
less than r. Thus, given {xi(0), i ∈ N}, we define the
undirected graph G0(t) ≜ (N , E0(t)), where (i, j) ∈ E0(t)
if ∥xi(t)− xj(t)∥ < r. We assume that G0(0) is connected.

B. Task Specifications

Within the 2D workspace, each agent i ∈ N has a
set of Mi ≥ 1 regions of interest, denoted by Πi ≜
{πi1, . . . , πiMi}. These regions can be of different shapes,
such as spheres, triangles, or polygons. For simplicity of
presentation, πiℓ ∈ Πi is here represented by a circular area
around a point of interest: πiℓ = B(ciℓ, riℓ) = {y ∈ R2 |
∥y − ciℓ∥ ≤ riℓ}, where ciℓ ∈ R2 is the center; riℓ ≥ rmin

is the radius and rmin > 0 is a given minimal radius for all
regions. We assume that their centers do not overlap and that
the workspace is bounded:

Assumption 1: (I) ∥ciℓi − cjℓj∥ > 2 rmin, ∀i, j ∈ N ,
∀πiℓi ∈ Πi and ∀πjℓj ∈ Πj . (II) ∥ciℓ∥ < cmax, ∀i ∈ N
and ∀πiℓ ∈ Πi, where cmax > 0 is a given constant. ■

Moreover, there is a set of atomic propositions known to
agent i, denoted by Σi. Each region of interest is associated
with a subset of Σi through the labeling function Li : Πi →
2Σi . We assume that Σi ∩Σj = ∅, for all i, j ∈ N such that
i ̸= j. Li(πiℓ) is a set of services that agent i can provide
when being present in region πiℓ ∈ Πi. Hence, upon the
visit to πiℓ, the agent i chooses among Li(πiℓ) the subset of
services it provides among the available ones.

We denote by xi(T ) the trajectory of agent i during the
time interval [0, T ), where T > 0 and T can be infinity. The
trajectory xi(T ) is associated with a unique finite or infinite
sequence, called a path, pi(T ) ≜ πi1πi2 . . . of regions in Πi

that agent i crosses, and with a finite or infinite sequence of
time instants t′i0ti1t

′
i1ti2t

′
i2 . . . when i enters or leaves the

respective regions. Formally, for all k ≥ 1: 0 = t′i0 ≤ tik ≤
t′ik < tik+1 < T , xi(t) ∈ πik, for πik ∈ Πi, ∀t ∈ [tik, t

′
ik],

and xi(t) /∈ πiℓ, ∀πiℓ ∈ Πi and ∀t ∈ (t′ik−1, tik). Agent i
may choose to provide services only at some regions along
the path pi. Denote by pi(T ) = πiℓ1πiℓ2 . . . the effective
path as a subsequence of pi such that ℓk < ℓk+1, ∀k ≥ 1
and πiℓk ∈ pi(T ), ∀πiℓk ∈ pi(T ). The word produced by
agent i is given by the provided services along the sequence
of regions in pi. In particular, at region for πiℓk ∈ pi(T ), the
agent i chooses to provide a set of services wℓk , where wℓk ̸=
∅ and wℓk ⊆ Li(πiℓk) is a subset of services available at the
region πiℓk . In other words, the produced word wordi(T ) =
wℓ1wℓ2 . . . complies with pi(T ) by satisfying the property
that ∅ ⊂ wℓk ⊆ Li(πiℓk), ∀πiℓk ∈ pi(T ).

The specification of the local task for each agent i ∈ N
is given as a general LTL or an sc-LTL formula φi over
Σi and captures requirements on the services to be provided
by agent i. Thus agent i’s trajectory xi(T ) satisfies φi if
there exists an effective path pi(T ) and a compliant word
wordi(T ) such that wordi(T ) |= φi. At last, the problem we
consider in this work is stated below:

Problem 1: Given a team of N agents and their tasks as
in Section III-B, design a distributed control law ui such that
for T = ∞: (1) xi(T ) satisfies φi; and (2) ∥xi(t)−xj(t)∥ <
r, ∀(i, j) ∈ E0(0), ∀t ∈ [0, T ). ■

IV. SOLUTION

The proposed solution consists of three layers: (i) an
offline synthesis algorithm for the discrete plan of each agent;
(ii) a continuous control scheme that guarantees one of the
agents reaches its progressive goal region in finite time while
the relative-distance constraints are fulfilled; (iii) a hybrid
control layer that coordinates the discrete plan execution and
the continuous control law switching in running time.

A. Discrete Plan Synthesis
We aim to find an effective path for agent i ∈ N that there

exists a compliant word satisfying φi. The discrete plan can



be generated using standard techniques leveraging ideas from
automata-based formal verification [1]. Loosely speaking, an
LTL or an sc-LTL formula φi is first translated into a Büchi
or a finite automaton, respectively. The automaton is viewed
as a graph and analyzed using graph search algorithms. As a
result, a word that satisfies φi is obtained and mapped onto
the sequence of regions to be visited. Current temporal logic-
based discrete plan synthesis algorithms can accommodate
various environmental constraints and advanced plan opti-
mality criteria [5], [11], [22]. Recall that the labeling function
Li defines the available services at each region of Πi. Then
the accepting run of Ai can be naturally translated into
the discrete plan of agent i in the prefix-suffix form: τi =
τi,pre(τi,suf)

ω , where τi,pre = (πi1, wi1) . . . (πiki , wiki) is the
plan prefix, and τi,suf = (πiki+1, wiki+1) . . . (πiKi , wiKi)
is the periodical plan suffix; πik ∈ Πi and ∅ ⊂ wik ⊆
Li(πik), ∀k = 1, . . . ,Ki. Thus the word corresponding to
τi is given by its projection onto Σi, namely wordi(T ) =
τi|Σi = wi1 . . . wiki(wiki+1 . . . wiKi)

ω; then the effective
path pi is given as the projection of τi onto Πi, namely
pi(T ) = τi|Πi = πi1 . . . πiki(πiki+1 . . . πiKi)

ω. We denote
by pi,pre(T ) = πi1 . . . πiki the prefix of the effective path
and by pi,suf(T ) = πiki+1 . . . πiKi the suffix.

B. Continuous Controller Design

Let us first introduce the notion of connectivity graph,
which allows us to handle the relative-distance constraints.
Let δ ∈ (0, r) be a given constant.

Definition 1: Denote by G(t) ≜ (N , E(t)) the undirected
time-varying connectivity graph at time t ≥ 0, where E(t) ⊆
N ×N is the set of edges. (I) G(0) = G0(0); (II) At time
t > 0, (i, j) ∈ E(t) iff one of conditions below hold: (i)
∥xi(t)− xj(t)∥ ≤ r− δ; or (ii) r− δ < ∥xi(t)− xj(t)∥ ≤ r
and (i, j) ∈ E(t−), where t− < t and |t− t−| → 0 . ■

Note that the condition (II) above guarantees that a new
edge will only be added when the distance between two
previously-unconnected agents decreases below r − δ. In
other words, there is a hysteresis effect when adding new
edges to the connectivity graph. Consequently, each agent
i ∈ N has a time-varying set of neighbors Ni(t) = {j ∈
N | (i, j) ∈ E(t)}. Let the progressive goal region of
agent i ∈ N at time t be given by πig = B(cig, rig) ∈ Πi.
We propose the following two different control modes:

Cact : ui(t) ≜ −di pi −
∑

j∈Ni(t)

hij xij , (2)

Cpas : ui(t) ≜ −
∑

j∈Ni(t)

hij xij , (3)

where Cact is the active control mode; Cpas is the passive
control mode; xij ≜ xi − xj ; pi ≜ xi − cig; and

di ≜
ε3

(∥pi∥2 + ε)2
+

ε2

2 (∥pi∥2 + ε)
;hij ≜

r2

(r2 − ∥xij∥2)2
,

where ε > 0 is a key design parameter to be appropriately
tuned, as shown in the sequel. Note that both controllers
above are nonlinear and rely on only locally-available states.

Assume that G(Ts) is connected at time Ts > 0. More-
over, assume that there are Na ≥ 1 agents within N that are
in the active mode obeying (2) with its goal region as πig =
B(cig, rig) ∈ Πi; and the rest Np = N − Na agents that
are in the passive mode obeying (3). For simplicity, denote
by the group of active and passive agents Na, Np ⊆ N
respectively. We show now that for any allowed combination
of Na ≥ 1 and Np ≤ N − 1, by following the control
laws (2) and (3), one active agent can reach its goal region
within finite time Tf ∈ (Ts, +∞), while the relative distance
∥xi(t)− xj(t)∥ < r, ∀(i, j) ∈ E(Ts) and ∀t ∈ [Ts, Tf ].

1) Relative-Distance Maintenance: We consider the fol-
lowing potential-field function:

V (t) ≜ 1

2

∑
i∈N

∑
j∈Ni(t)

ϕc(xij) + bi
∑
i∈N

ϕg(xi) (4)

where ϕc(·) stands for an attractive potential to agent i’s
neighbors and is defined by:

ϕc(xij) ≜
1

2

∥xij∥2

r2 − ∥xij∥2
, ∥xij∥ ∈ [0, r − δ); (5)

while ϕg(·) is an attractive force to agent i’s goal:

ϕg(xi) ≜
ε2

2

∥pi∥2

∥pi∥2 + ε
+
ε2

4
ln(∥pi∥2 + ε), (6)

where function ln(·) is the natural logarithm; bi ∈ B
indicates the agent i’s control mode. Namely, bi = 1,
∀i ∈ Na and bi = 0, ∀i ∈ Np. It can be verified that
the gradient of V (t) from (4) with respect to xi is given
by ∇xiV = ∂V

∂xi
= ∇xiϕg(xi) +

∑
j∈Ni

∇xiϕc(xij) =
bi di pi +

∑
j∈Ni(t)

hij xij = −ui, ∀i ∈ N .
Theorem 1: G(t) remains connected and no existing

edges within E(Ts) will be lost, ∀t ≥ Ts.
Proof: (Sketch) If the network G(t) remains invariant

during the time period [t1, t2) ⊆ [Ts, ∞), we can show
that V̇ (t) ≤ 0 given the closed-loop dynamics. Moreover,
if a set of new edges Ê ⊂ N × N is added to G(t) at
t = t2. Let V (t−2 ) and V (t+2 ) be the value of V (t) before
and after adding the new edges. We get V (t+2 ) = V (t−2 ) +∑

(p, q)∈Ê ϕc(xpq(t2)) ≤ V (t−2 ) + |Ê| (r−δ)2

δ(2r−δ) < +∞. As a
result, V (t) < +∞ for t ∈ [Ts, ∞). By contradiction, new
edges might be added into E(t) but no existing edges within
E(t) will be lost, namely E(Ts) ⊆ E(t), ∀t ≥ Ts. Detailed
proof can be found in the proof of Theorem 1 of [7].

2) Convergence Analysis: We have shown that the po-
tential function V (t) is lower-bounded and non-increasing
if G(t) remains static. By LaSalle’s invariance principle [10]
we only need to find out the largest invariant set within
{xi, ∀i ∈ N | V̇ (t) = 0}. By enforcing V̇ (t) = 0, it implies:

bi di pi +
∑

j∈Ni(t)

hij xij = 0, ∀i ∈ N . (7)

Then we can construct one N × N diagonal matrix D that
D(i, i) = bi di, ∀i ∈ N and D(i, j) = 0, i ̸= j and i, j ∈ N .
and another N × N matrix H that H(i, i) =

∑
j∈Ni

hij ,
∀i ∈ N and H(i, j) = −hij , i ̸= j and ∀(i, j) ∈ E(t) while



H(i, j) = 0, ∀(i, j) /∈ E(t). Note that hij > 0 as ∥xij∥ ∈
[0, r), ∀(i, j) ∈ E(t). As a result, H is the Laplacian matrix
of the graph G(t) = (N , E(t), h), where h(i, j) = hij ,
∀(i, j) ∈ E(t). Then (7) can be re-written as: H ⊗ I2 · x+
D⊗ I2 · (x−c) = 0, where ⊗ is the Kronecker product; x is
the stack vector for xi, i ∈ N and x[i] = xi; I2 is the 2× 2
identity matrix; c is the stack vector for cig and c[i] = cig
if i ∈ Na and c[i] = 02 if i ∈ Np, where 02 is a 2 × 1
zero vector. Let C be the set of critical points of V (t), i.e.,
C ≜ {x ∈ R2N |H ⊗ I2 · x+ D ⊗ I2 · (x− c) = 0}.

Lemma 2: For all critical points xc ∈ C, (I) ∥xij∥ can be
made arbitrarily small by reducing ε, ∀(i, j) ∈ E(t); (II)
there exists ε0 > 0 such that if ε < ε0, then the connectivity
graph G(t) is complete.

Proof: (Sketch) (I) Consider the following equation for
a critical point xc ∈ C, it holds that

∑
(i,j)∈E(t) hij∥xij∥2 =

xT
c ·(H⊗I2) ·xc. Since it can be verified that di ∥pi∥ < ε

√
ε

for ∥pi∥ ≥ 0 and ∥ciℓ∥ < cmax is given in Assumption 1, we
get

∑
(i,j)∈E(t) hij∥xij∥2 < Na cmax ε

√
ε ≤ N cmax ε

√
ε,

where we use the fact that bi = 0, for i ∈ Np and Na ≤ N .
Thus ∀(i, j) ∈ E(t), it holds that ∥xij∥2 ≤ ε

√
ε ξ, where

ξ ≜ r2N cmax. Thus ∥xij∥ can be made arbitrarily small by
reducing ε. (II) Moreover, let ε0 satisfy the condition

(N − 1)
√
ε0
√
ε0 ξ < r − δ. (8)

If ε < ε0, then for any pair (p, q) ∈ N ×N , ∥xpq∥ satisfies
∥xpq∥ = |xp−x1+x1−x2+ · · ·−xq| ≤ (N−1)

√
ε
√
ε ξ <

r − δ. As there exists a path in G(t) of maximal length N
from any node p ∈ N to another node q as G(t) remains
connected for t > Ts by Theorem 1. By Definition 1, this
implies (p, q) ∈ E(t). Thus G(t) is a complete graph.
Detailed proof can be found in Lemma 2 of [7].

We first define the following sets for all i ∈ Na:

Si ≜ {x ∈ R2N | ∥x− 1N ⊗ cig∥ ≤ rS(ε)}, (9)

where rS(ε) ≜
√
3N ε +

√
(N − 1)ε

√
ε ξ and ξ is defined

above.Si represents the neighbourhood around the goal re-
gion center of an active agent i ∈ Na. Furthermore, let
S ≜ ∪i∈NaSi and S¬ ≜ R2N \ S . The second partial
derivatives of V (t) with respect to xi are given by

∂2V

∂xi∂xi
= bi di ⊗ I2 + bi d

′
i pi · pTi

+
∑

j∈Ni(t)

(
hij ⊗ I2 + h′ij xij · xTij

) (10)

∂2V

∂xi∂xj
= −hij ⊗ I2 − h′ij xij · xTij , ∀j ̸= i, (11)

where d′i =
−4 ε3

(∥pi∥2+ε)3 +
− ε2

(∥pi∥2+ε)2 , and h′ij =
4 r2

(r2−∥xij∥2)3 .

Lemma 3: There exists ε1 > 0 such that if ε < ε1, all
critical points of V in S¬ are non-degenerate saddle points.

Proof: (Sketch) To show that V is Morse we use
Lemma 3.8 from [19], which states that the non-singularity
of a linear operator follows from the fact that its associated
quadratic form is sign definite on complementary subspaces.
First of all we show that for any vector v ∈ Q, where

Q = {v ∈ R2N | v = 1N ⊗ z, z ∈ R2}, it holds that
vT∇2V v < 0. It means that for any critical point xc ∈ C,
if xc ∈ S¬ then xc is not a local minimum. Then we show
that ∇2V is positive definite in P , where P is defined by
that if z ∈ P , then z ≜ eN ⊗ z ≜ [zT1 , z

T
2 , . . . , z

T
n ]

T , where
z ∈ R2, eN ∈ RN , eTN ⊥ 1N , zi ∈ R2, ∀i ∈ N , if ε satisfies

ε < min{ε0,
N

0.1r2
} ≜ ε1. (12)

By Lemma 3.8 from [19], we conclude that ∇2V is non-
singular at the saddle points xc ∈ S¬. Thus all critical points
within S¬ are non-degenerate saddle points if ε < ε1. More
details can be found in Lemmas 3 and 4 of [7].

Lemma 4: There exists εmin > 0 such that if ε < εmin,
all critical points of V within S are local minima.

Proof: (Sketch) The proof is based on the fact that if

ε < min{ε1, ε2, ε6, ε7} ≜ εmin, (13)

where ε1 is given by (12) and ε2 is determined by
√
3N ε2+√

(N − 1)ε2
√
ε2 ξ ≜ rmin, and ε6 ≜ min{ε3, ε4, ε5}, where

ε3 ≜ 0.07 r2min, ε4 ≜ 4.1/ξ2, ε5 ≜ 0.8 r2min/(N − 1)2; and

ε7 ≜

√
( N
0.08 r2 )

2 + 4
r2|ĝ| −

N
0.08 r2

2
, (14)

where ĝ ≜ −2/r2min, then ∇2V is positive definite at all
critical points xc ∈ S. In other words, all local minima
within S are stable if ε < εmin. We refer the readers to
the proofs of Lemmas 5, 6 and 7 of [7] for details.

Theorem 5: Assume that G(Ts) is connected and ε <
εmin by (13). Then starting from anywhere in the workspace
except a set of measure zero, there exists a finite time Tf ∈
[Ts,∞) and one agent i⋆ ∈ Na, such that xj(Tf ) ∈ πi⋆g,
∀j ∈ N , while at the same time ∥xi(t) − xj(t)∥ < r,
∀(i, j) ∈ E(Ts) and ∀t ∈ [Ts, Tf ].

Proof: (Sketch) By LaSalle’s invariance principle [10]
we only need to find out the largest invariant set within
V̇ (t) = 0. Lemma 4 ensures that V (t) has only local minima
inside S and saddle points outside S. These saddle points
have attractors of measure zero by Lemma 3. Thus starting
from anywhere in the workspace except a set of measure
zero, the system converges to the set of local minima, i.e.,
within Si⋆ for one active agent i⋆ ∈ Na. Consequently, by
continuity there exists a finite time Tf < ∞ that xj(Tf ) ∈
πi⋆g, ∀j ∈ N , for exactly one active agent i⋆ ∈ Na.

C. Hybrid Control Structure

In this part, we propose two different switching protocols
for each agent to decide on its own activity or passivity under
different cases, such that all agents can fulfill their local tasks
and at the same time satisfy the relative-distance constraints.

1) Switching Protocol for sc-LTL: Let us first focus on
a case when each local task φi, i ∈ N is an sc-LTL
formula. The discrete plan τi for agent i can be represented
by a finite satisfying prefix of progressive goal regions
and the set of services to provide at each region: τi,pre =
(πi1, wi1) . . . (πiki

, wiki
), where πi1, πi2, . . . , πiki

∈ Πi and



wi1, wi2, . . . , wiki ∈ 2Σi . We propose the following activity
switching protocol for each agent i ∈ N , denoted by Psc:

(I) At time t = 0, agent i sets κi := 1 and itself as active
and sets πig := πiκi , namely the first goal region by τi,pre.
The active controller (2) is applied to agent i, where the
progressive goal region is πig, i.e., cig = ciℓ1 ; (II) Whenever
agent i reaches its current progressive goal region πig = πiκi

and κi < ki, it provides the prescribed set of services wiκi

by τi,pre and it sets κi := κi + 1 and πig := πiκi . Then the
controller (2) for agent i is updated accordingly by setting
cig = ciℓk+1

; (III) Whenever agent i reaches its last goal
region πig = πiki , it provides the set of services wiki by
which it finishes the execution of its finite discrete plan τi,pre.
Afterwards agent i remains passive by controller (3).

Theorem 6: By following the protocol Psc, it is guaran-
teed that ∀i ∈ N , φi is satisfied by xi(T ), and ∥xi(t) −
xj(t)∥ < r, ∀(i, j) ∈ E0(0) and ∀t ≥ 0, where T = ∞.

Proof: (Sketch) Initially all agents are active by (2). By
Theorem 5, all agents converge to one agent’s goal region at
a finite time t1 > 0. Denote by i ∈ N this agent. Then either
agent i updates its active control law by setting πig = πi2, or
it has completed its plan τi,pre and becomes passive. Since all
agents’ plans are finite and Theorem 5 holds for any number
of active agents, there exists a finite time instant Tfj , such
that all agents complete their plans. The second part of the
theorem follows directly from Theorem 5.

2) Switching Protocol for General LTL: If the task speci-
fication φi is given as a general LTL formula, then the plan τi
is given as an infinite sequence of goal regions and services:

τi = τi,pre(τi,suf)
ω = (πi1, wi1)(πi2, wi2) . . . ,

where τi,pre = (πi, wi1) . . . (πiki , wiki), ki > 0 and τi,suf =
(πiki+1, wiki+1) . . . (πiKi , wiKi). The main challenge here
is to ensure that each agent executes its plan suffix infinitely
often. Thereto, we introduce the reaching-event detector [4]
for agent i ∈ N to detect when it reaches its own goal region
πig and when its neighbour j ∈ Ni reaches πjg.

Let Ωi(j, t) ∈ B be a Boolean variable indicating that
agent i detects its neighboring agent j ∈ Ni(t) reaching
the goal region πjg at time t > 0. Simply speaking, the
detector checks if within a short time period [t − ∆t, t],
there exists j ∈ Ni(t), such that uj(t) has changed from a
relatively small value (below a given ∆u) by a difference
larger than certain ∆d. If so, it means that the agent j has
reached its goal region πjg. This design is motivated by the
fact that when the system is at a local minimum whenever
an active agent is in its goal region. Thus, when the agent j
reaches πjg at time t, all control inputs ui(t) are close
to zero for all i ∈ N by (7). Afterwards, the switching
protocol below guarantees that only agent j switches its
control law either to (2) to navigate to the next goal region
or to (3) to become passive. This change is lower-bounded
by constant ∆d derived using control law (2) and as ∆d ≜
|f(rmin) − f(

√
0.4ε)|, where f(∥pj∥) = dj(∥pj∥)∥pj∥ is

a scalar function. In contrast, for the other agents i ̸= j,
i ∈ N , the control input ui(t) remains unchanged and close
to zero. Then we define a round as the time period during

which each agent has reached at least one of its goal regions.
Definition 2: For all m ≥ 1, the m-th round is defined as

the time interval [T⟲m−1
, T⟲m

), where T⟲0
= 0, T⟲m−1

<
T⟲m

and for all m ≥ 1, T⟲m
is the smallest time satisfying

that for all i ∈ N : wordi(T⟲m) = wi1wi2 . . . wiℓ for some
ℓ ≥ 1 and wordi(T⟲m) ̸= wordi(T⟲m−1). ■

To recognize a round completion, we introduce: χi ≥ 0
that indicates the starting time of the current round, and
Υi ∈ ZN that records how many goal regions each agent has
reached within one round since χi. We propose the following
activity switching protocol, referred by Pge:

(I) At time t = 0, Υi := 0N , χi := 0, κi := 1. The
agent i is active and follows (2), where πig := πiκi ; (II)
Whenever the agent i reaches πig = πiκi , it provides the
services wiκi by τi and updates the goal region accordingly:
If κi < Ki then κi := κi + 1, and if κi = Ki then κi :=
ki+1. Furthermore, πig := πiκi , and finally Υi[i] := Υi[i]+
1. Agent i stays active or becomes passive based on the
probability function: Pr(bi = 1) = fprob(·) if fcond(·) =
True; and Pr(bi = 1) = 0, otherwise, where fprob(·) ∈
[0, 1] and fcond(·) ∈ {True, False} are functions of time
t such that Υi and χi satisfy: given that it is the m-th round,
there exists a time T ∈ (T⟲m−1 , T⟲m), such that fcond(·) =
False for all t ∈ [T, T⟲m). Whenever bi = 1, agent i
keeps following (2). Otherwise, it becomes passive by (3);
(III) Whenever agent i detects that Ωi(j, t) = True, for
some j ̸= i ∈ N , it sets Υi[j] = Υi[j] + 1; (IV) Whenever
it holds that Υi[j] ≥ 1, ∀j ∈ N , then agent i sets Υi := 0N ,
χi := t and follows (2) to its goal πig.

Lemma 7: The round [T⟲m−1 , T⟲m) is finite, ∀m ≥ 1.
Proof: Let t = T⟲m−1 = 0, and thus Υi[j] = 0, for all

i, j ∈ N by step (I). By Theorem 5, one active agent reaches
its goal region in finite time at t1 ≥ T⟲j−1 . Due to the
properties of fcond, there exists a finite time Tfj ≥ 0, when
either the step (IV) applies or when one of the agents j ∈ Na

necessarily becomes passive by Pr(·) and remains passive till
the end of the round. In the former case, T⟲m = Tfj . In the
latter case, the same argument applies to the N − 1 active
agents such that one of them will become passive in finite
time. Inductively, we derive that the every round is finite.

Theorem 8: By following the protocol Pge above, it is
guaranteed that ∀i ∈ N , φi is satisfied by xi(T ) and ∥xi(t)−
xj(t)∥ < r, ∀(i, j) ∈ E0(0) and ∀t > 0, where T = ∞.

Proof: (Sketch) The satisfaction of φi follows from the
correctness of its discrete plan and the fact that each round is
finite by Lemma 7. At last, the relative distance constraints
are always maintained as shown in Theorem 6.

V. SIMULATION

In the case study, we simulate a team of four autonomous
robots N = {R1, . . . ,R4} subject to the dynamics (1) in a
bounded, obstacle-free workspace of 40m×40m. Each robot
Ri is given a local task specified as LTL formulas φi.

As shown in Figure 1, several sphere regions of interest
for each agent are placed in top-left, top-right, bottom-right,
and bottom-left corners of the workspace and they all satisfy



Fig. 1: Agents’ trajectories and pair-wise distances for simulation
time 20s. The switching protocol Pge from Section IV-C.2 is used.

Assumption 1 with cmax = 40 and rmin = 2. Partic-
ularly, they are given by: Π1 = {π1tl, π1tr, π1br, π1bl}
shown in red; Π2 = {π2tl, π2tr, π2bl} shown in
green; Π3 = {π3tr, π3br, π3bl} shown in blue; Π4 =
{π4tl, π4tr, π4br, π4bl} shown in cyan. The respective sets
of atomic propositions (services) are Σ1 = {σ11, σ12};
Σ2 = {σ21, σ22, σ23}; Σ3 = {σ31, σ32, σ33}; and Σ4 =
{σ41, σ42}. The regions are labeled as follows: L1(π1tl) =
L1(π1br) = {σ11}, L1(π1tr) = L1(π1bl) = {σ12};
L2(π2tl) = {σ21}, L2(σ2tr) = {σ22}, L2(π2bl) = {σ23};
L3(π3tr) = {σ31}, L3(π3br) = {σ32}, L3(π3bl) = {σ33};
and finally L4(π4tl) = L4(π4tr) = {σ41}, L4(π4bl) =
L4(π4br) = {σ42}. The agents start from 2-D coordinates
(25, 15), (20, 15), (15, 20), and (20, 25), respectively. We
set r = 8m and δ = 0.5m. The edge set of G(0) is hence
E0(0) = {(R1,R2), (R2,R3), (R3,R4)}. The upper bound
by (13) is ε < εmin ≈ 0.031 and we choose ε = 0.03.

We consider the case of agent task specifications given
as general LTL formulas here only, due to limited space.
The task of agent R1 to periodically provide both ser-
vices σ11 and σ12, specified as the general LTL formula
ϕ1 = □3σ11 ∧ □3σ12. The task of agent R2 is to
periodically provide one of the services σ21 or σ22 or
σ23, formalized as ϕ2 = □3(σ21 ∨ σ22 ∨ σ23). The
tasks of agents R3 and R4 are defined in a similar way
that ϕ3 = □3(σ31 ∨ σ32 ∨ σ33), and ϕ4 = □3σ41 ∧
□3σ42, respectively. The synthesized discrete plans are:
τ1 =

(
(π1bl, {σ12})

(
(π1tl, {σ11})

)ω
; τ2 = (π2tl, {σ21})ω;

τ3 = (π3bl, {σ33})ω; τ4 =
(
(π4br, {σ41})(π4tr, {σ42})

)ω
.

The simulation results of 20s are illustrated in Figure 1.
The functions fprob and fcond were chosen as follows:
Pr(bi = 1) = e−αiΥi[i](t−χi), if Υi[i] · (t − χi) < χ̄i; and
Pr(bi = 1) = 0, if Υi[i] · (t− χi) ≥ χ̄i, where χ̄i = 5, and
αi = 1. Figure 1 shows the complete agent trajectories for
simulation time 20s. It can be seen that the relative distance
constraints are satisfied for all time and each agent is making
progress in its plan execution by following the protocol Pge.

VI. CONCLUSION AND FUTURE WORK

We proposed a distributed communication-free hybrid
control scheme for multi-agent systems to fulfil locally-
assigned tasks as general or sc-LTL formulas, while at the
same time subject to relative-distance constraints. Future

work plans include handling uncertainties in the relative state
measurements and more complex agent dynamics.
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