
2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

1

Hybrid Control of Multi-agent Systems with
Contingent Temporal Tasks and Prescribed

Formation Constraints
Meng Guo, Charalampos P. Bechlioulis, Kostas J. Kyriakopoulos and Dimos V. Dimarogonas

Abstract—In this paper, we present a distributed hybrid control
strategy for multi-agent systems with contingent temporal tasks
and prescribed formation constraints. Each agent is assigned a
local task given as a Linear Temporal Logic (LTL) formula.
Additionally, two commonly-seen kinds of cooperative robotic
tasks, namely service and formation, are requested and ex-
changed among the agents in real-time. The service request is a
short-term task provided by one agent to another. On the other
hand, the formation request is a relative deployment requirement
with predefined transient response imposed by an associated
performance function. The proposed hybrid control strategy
consists of four major components: (a) the contingent requests
handling module, (b) the real-time events monitoring module,
(c) the local discrete plan synthesis module, (d) the continuous
control switching module, and it is shown that all local tasks
and contingent service/formation requests are fulfilled. Finally, a
simulated paradigm demonstrates the proposed control strategy.

I. INTRODUCTION

In general, cooperative control of multi-agent systems fo-
cuses on designing local control protocols to achieve a sin-
gle predefined global control objective, such as reference-
tracking [1], consensus [2], or formation [3]. This work is mo-
tivated by the necessity to specify and achieve more structured
and complex team behaviors than the aforementioned. Partic-
ularly, we adopt LTL formulas as appropriate descriptions of
desired high-level goals. LTL allows the designer to rigorously
specify various temporal tasks, such as periodic surveillance,
sequencing, request-response and their combinations. After-
wards, formal verification-inspired methods may be used to
synthesize a discrete plan over an abstraction of the state
space, that guarantees the satisfaction of the specifications.
Such a generic hierarchical approach has been formulated and
widely employed during the last decades in single-agent as
well as multi-agent settings. For instance, [4] proposes an au-
tomated framework to translate task specifications, expressed
as LTL formulas, directly into a hybrid controller that drives
a dynamical system towards achieving a task goal. Regarding

M. Guo is with the Department of Mechanical Engineering and
Materials Science, Duke University, Durham, NC 27708, USA.
{meng.guo@duke.edu}. D. V. Dimarogonas is with the ACCESS
Linnaeus Center, School of Electrical Engineering, KTH Royal Institute
of Technology, SE-100 44, Stockholm, Sweden and with the KTH Centre
for Autonomous Systems. {dimos@kth.se}. C. P. Bechlioulis and
K. J. Kyriakopoulos are with the Control Systems Laboratory, School of
Mechanical Engineering, National Technical University of Athens, Athens
15780, Greece. {chmpechl, kkyria@mail.ntua.gr}. This
work was supported by the Swedish Research Council (VR), the ERC
BUCOPHSYS and the EU STREP RECONFIG: FP7-ICT-600825.

multi-agent systems, LTL formulas have been used to specify
complex high-level global tasks [5]–[9] and local tasks [10],
[11]. In the first case, a global task that captures requirements
on the overall team behavior is predefined. Then the motion
of all agents is synthesized and coordinated in a centralized
fashion. This top-down approach is exploited in [5], [9], where
the global task is decomposed into smaller local tasks to be
executed by the agents in a synchronized [5] or partially
synchronized manner [9]. In the latter case, each agent is
assigned a local task that favors a bottom-up approach. We
adopt the second formulation here that agent has a locally-
assigned task. However, in contrast to [10], these tasks are
dependent due to contingent service and formation requests.

Service requests are of particular interest as they encap-
sulate the scenario where one agent needs another agent’s
assistance on a short-term task. The service requests can
only be sent and confirmed among the agents online and are
given as temporal formulas, which need to be satisfied by the
confirmed recipient. This means that each agent has to react to
the received service requests in a contingent way. Similar work
on real-time reactivity for dynamical systems under temporal
tasks can be found in [12], where sensory inputs are included
in the General Reactivity GR(1) formulas to take into account
possibly dynamical environments, as well as in [13], where
similar techniques are applied for various single-robot and
multi-robot applications. The local plans of each agent are
synthesized off-line to handle all modeled changes in the
environment, which is however not feasible in our formulation
as the service and formation requests are exchanged in real-
time under a non-predefined manner (i.e., the agents should
adapt their local plans on-line and according to the actually
confirmed service or formation requests).

Another commonly-seen multi-robot scenario appears when
an agent requests from another one to form a relative co-
ordination to accomplish a collaborative task. We denote
such a requirement as a formation request, i.e., the con-
firmed pair of agents should converge to a desired relative
configuration until the corresponding formation task is ac-
complished. Similar ideas of imposing formation constraints
for multi-agent systems appeared in [7], where however a
global formation task for the whole team was embodied.
Although the formation control has been extensively studied
for multi-agent systems, e.g., [3], [14], in this work, we
enforce prescribed performance constraints on the transient
response of the formation process. The prescribed performance
control problem was originally studied for high-order MIMO

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

2

nonlinear single-agent systems [15] and was recently extended
to multi-agent systems in our earlier work [16]. However,
we enhance this control technique here by: (i) considering
transient performance specifications on the overall formation
error, in contrast to the relative coordinates approach [16],
thus simplifying the control design; and (ii) combining it
with the high-level discrete planning such that various control
modes are activated according to the real-time execution of
the discrete plan.

This work is clearly motivated by applications where multi-
robot systems are requested to exhibit complex collaborative
behavior in cluttered environments. For instance, consider
three robots denoted by R1, R2, R3. Robot R1 has limited
motion and sensing capabilities. Hence, each time it meets
R2 it requests R2 to perform a short-term coverage service
task, e.g., visit two regions of interest in sequence. Moreover,
whenever R1 meets R3, it requests R3 to converge sufficiently
fast to a relative formation to accomplish a cooperative task
together, e.g., move a heavy object. Therefore, both service and
formation requests are advantageous for specifying collabora-
tive tasks in multi-agent systems. Towards this direction, we
propose a hybrid control scheme that guarantees the fulfilment
of high-level temporal tasks involving contingent service and
formation requests. It consists of four major components: (i)
the communication module that sends, receives and replies ser-
vice and formation requests; (ii) the events monitoring module
that detects real-time events; (iii) the discrete plan synthesis
and adaptation module that incorporates contingent requests
into local tasks, and (iv) the continuous controller switching
module. The main contribution is twofold: (i) we present a
novel way to incorporate contingent service and formation
tasks in the local task specification, with predefined transient
responses; (ii) the proposed plan adaptation algorithms that
handle online updates of the task specifications and ensure
both the current and past requests are satisfied in finite time.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. The problem is formulated in
Section III. Section IV presents the solution. Section V demon-
strates the simulation study. We conclude in Section VI.

II. PRELIMINARIES

A. Linear Temporal Logic

The basic ingredients of an LTL formula are several boolean
and temporal operators, and a set of Atomic Propositions
(AP). In particular, LTL formulas are formed according to
the following syntax [18]: ϕ := > | a | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 Uϕ2

where a ∈ AP , > , True and ⊥ , False; ¬ is the
“negation” operator; ∨ is the “or” operator; U is the “until”
operator. Those basic operators can be used to derive other
commonly used operators, such as ∧ (and), ♦ (eventually), �
(always). Notice that contrary to the standard definition [18],
the “next” operator is not allowed here.

The semantics of LTL is defined over discrete-time Boolean
signals over the same AP , which is also called a word
over AP . Particularly, given a discrete-time Boolean signal
w : Z → 2AP , w(k) ⊆ AP is the set of propositions that
signal w satisfies at discrete time k, ∀k ∈ Z. Then, consider

an LTL formula ϕ and a discrete-time Boolean signal w over
AP ; the satisfiability relation (w, k) |= ϕ, i.e., whether w
satisfies ϕ at discrete time k ∈ Z, is determined according to
the following recursive definition: (w, k) |= a ↔ a ∈ w(k) ;
(w, k) |= ¬ϕ ↔ (w, k) 2 ϕ; (w, k) |= ϕ1 ∨ ϕ2 ↔
(w, k) |= ϕ1 or (w, k) |= ϕ2; (w, k) |= ϕ1 Uϕ2 ↔
∃k1 ≥ k, (w, k1) |= ϕ2 and ∀k2 ∈ [k, k1), (w, k2) |= ϕ1.
Intuitively, ϕ1 Uϕ2 requires that ϕ1 must be true over w until
ϕ2 becomes true. We say that a formula ϕ is satisfied by w
if (w, 0) |= ϕ or w |= ϕ for brevity.

Given an LTL formula ϕ over AP , the set of words that
satisfies ϕ can alternatively be captured through a Büchi
automaton Aϕ = (Q, 2AP , δ, Q0, F), where Q is a finite set of
states; 2AP is the allowed input alphabet; δ : Q× 2AP → 2Q

is a transition function; Q0 ⊆ Q is a set of initial states; and
F ⊆ Q is a set of accepting states. An infinite run over an
input word w = w(0)w(1) . . . is an infinite sequence of states
r = q0q1 . . . such that q0 ∈ Q0 and qk+1 ∈ δ(qk, w(k)),
∀k ≥ 1. A run is accepting if it intersects with the accepting
set F infinitely many times, and an input word w is accepted
if there exists an accepting run over it. The Büchi automaton
Aϕ can be obtained by the translation algorithm [20], such
that Aϕ accepts exactly the words satisfying ϕ.

Moreover, one particular class of LTL is the syntactically
co-safe LTL (sc-LTL) [21], which contains only the U and ♦
temporal operators and is written in positive normal form [23].
In contrast to general LTL, the satisfaction of an sc-LTL
formula can be achieved in a finite time, i.e., each word
satisfying an sc-LTL formula ϕ consists of a satisfying prefix
that can be followed by an arbitrary suffix.

B. Real-time Temporal Logic

To analyze properties of real-time signals, we also consider
a real-time extension of LTL, i.e., the real-time temporal logic
(RTL), originally introduced in [22]. Its syntax is similar
to LTL as introduced in Section II-A, but its semantics is
defined over continuous-time Boolean signals. Consider such
a signal x : R≥0 → 2AP over the atomic propositions AP ,
where x(t) ⊆ AP is the set of propositions that x satisfies at
time t ≥ 0. Given an RTL formula ϕ over AP , the satisfiability
relation (x, t) |= ϕ, i.e., whether signal x satisfies ϕ at time
t ≥ 0, is determined via the following recursive definition:
(x, t) |= a↔ a ∈ x(t) ; (x, t) |= ¬ϕ↔ (x, t) 2 ϕ; (x, t) |=
ϕ1 ∨ ϕ2 ↔ (x, t) |= ϕ1 or (x, t) |= ϕ2; (x, t) |= ϕ1 Uϕ2 ↔
∃t′ ≥ t, (x, t′) |= ϕ2 and ∀t′′ ∈ (t, t′), (x, t′′) |= ϕ1. We say
that an RTL formula ϕ is satisfied by x if (x, 0) |= ϕ or simply
x |= ϕ. Moreover, similarly to sc-LTL, there exists a particular
class of RTL, called sc-RTL that can be satisfied by a real-
time Boolean signal in finite time. It only contains the U and ♦
temporal operators and is written in positive normal form [23].
Note that the RLT semantics does not include the “next”
operator as it is not defined in continuous time [23]. Finally,
since we consider RTL and LTL with the same syntax but
interpreted with different semantics, we define the following
correspondence between an RTL formula and an LTL formula:

Definition 1. Given an RTL formula ϕ, the associated LTL
formula is denoted by [ϕ], which has the same expression as ϕ

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

3

but is evaluated under the LTL semantics. �

For example, consider the RTL formula ϕl2 = �♦(R2 ∧
♦R5) ∧ �¬R0 that will be demonstrated in the simulation
section. Its associated LTL formula [ϕl2] has the same ex-
pression but is evaluated under different semantics, i.e., ϕl2
is specified over continuous-time Boolean signals, while [ϕl2]
over discrete-time Boolean signals.

III. PROBLEM FORMULATION

A. System Description

We consider a team of N autonomous agents obeying the
following single-integrator dynamics in a 2D workspace:

ṗi(t) = ui(t), (1)

where pi(t), ui(t) ∈ R2 denote the i-th agent’s position and
control input at time t ≥ 0, ∀i ∈ N , {1, 2, · · · , N}. The
agents are modeled as point masses without volume, hence
inter-agent collisions are not considered. Moreover, all agents
have a common sensing radius r > 0, i.e., agent i can only
exchange information with another agent j if their relative
distance satisfies ‖pi(t) − pj(t)‖ ≤ r. We also denote by
pi(t) the trajectory of agent i during the time interval [0, t).
Similarly, pi([t1, t2]) stands for the trajectory segment during
time [t1, t2]. Finally, each agent i has a predefined nonempty
neighboring set Ni ⊆ N , i ∈ N and j ∈ Ni implies
i ∈ Nj , ∀j ∈ Ni. Nevertheless, agent i can communicate
with agent j ∈ Ni only if ‖pi(t) − pj(t)‖ ≤ r, i.e., their
relative distance is less than the communication radius.

Additionally, there exists a set Π , {π1, π2, · · · , πM}
of M ≥ 1 regions of interest within the 2D workspace.
These regions may be in various shapes, such as points [24],
triangles [19], polygons [25]. We consider here the circular
area around the points of interest:

π` , B(c`, r`) = {p ∈ R2|‖p− c`‖ ≤ r`}, (2)

for ` = 1, 2, · · · ,M , where c` ∈ R2 is the center and r` ≥
rmin is the radius, with rmin denoting the minimal radius.
We assume that Π is included within a large circular region
denoted by πB = B(cB , rB), which stands for the allowed
workspace. However, there is a set of local atomic proposi-
tions R = {R`, ` = 1, 2, · · · ,M} representing the property
fulfilled at each region. Hence, given the agent state pi(t)
at time t ≥ 0, it holds that R`(t) = > if pi(t) ∈ π` and
R`(t) = ⊥ otherwise, for ` = 1, 2, · · · ,M . Finally, it should
be noted that the workspace, i.e., the location and property of
the regions above, is fully-known and static to all agents.

B. Contingent Request

As mentioned earlier, the agents may exchange information
directly with their neighbors when their relative distance is
less than r. Particularly, we allow each agent to send to its
neighbors two types of contingent requests:

(I) Service: agent i requests its neighbor j ∈ Ni at time t =
ts0 to accomplish its own short-term service described by an
sc-RTL formula ϕsij,t over R, which is assumed to be feasible
for agent j. Notice that ϕsij,t is predefined for each neighbor j

and may be different at various request times. This request is
communicated by sending the formula ϕsij,t directly to agent j.

(II) Formation: agent i requests its neighbor j ∈ Ni at time
t = tf0 to converge to a desired relative formation described
by cij ∈ R2 with a predefined transient response imposed by
the corresponding performance function ρij(t) : R+ → R+.
This formation has to be kept until agent i accomplishes a
short-term formation task described by an sc-RTL formula
ϕfij,t over R and a release message is sent to agent j
afterwards. The formation task ϕfij,t is also predefined for
agent i and may be different at various request times. More
specifically, the relative formation error is given by:

eij(t) , pi(t)− pj(t)− cij . (3)

Let us also define µij , eTij eij as a scalar measure of the
formation error and

µ̂ij(t) ,
µij(t)

ρij(t)
(4)

as the normalized error over the associated performance func-
tion ρij(t), which is a smooth, bounded and strictly decreasing
function of time. Here we adopt exponential functions

ρij(t) , (ρij,tf0 − ρij,∞) e−lij(t−tf0) + ρij,∞, (5)

where lij > 0 specifies the decreasing rate of ρij(t), ρij,tf0 >
0 is the initial value of ρij(t) at time tf0, chosen such that
ρij,tf0 > µij(t

f
0) and ρij,∞ > 0 reflects the maximum allowed

steady state error. This formation request is communicated by
sending cij and the parameters of ρij(t) to agent j.

To monitor the formation performance, we also define a set
of controllable atomic propositions Hi , {hij , j ∈ Ni}:

hij(t) ,

{
> if µ̂ij(t) ∈ Dij ≡ [0, 1),

⊥ otherwise.
(6)

Notice that agent j needs to satisfy the prescribed formation
performance, i.e., hij(t) = > until it receives a release
message from agent i.

Upon receiving either a service or formation request from
agent i, we assume that agent j replies immediately to either
confirm or deny it. Thus, we introduce a set of observational
atomic propositions for each agent i: Oi , {osij , ofji, j ∈
Ni}, where osij(t) = > if agent i confirms agent j’s service
request at time t; and osij(t) = ⊥ otherwise (ofij(t) is defined
similarly for formation requests). Additionally, we introduce
a set of releasing atomic propositions: Zi , {zij , j ∈ Ni},
where zij(t) = > if agent i sends a release message to its
neighbor j ∈ Ni at time t; and zij(t) = ⊥ otherwise.

C. Local Task Specification

Let us denote by AP i = R ∪ Oi ∪ Hi ∪ Zi the complete
set of atomic propositions of each agent i ∈ N . Each agent i
is assigned a local task defined as an RTL formula ϕi over
AP i, which has the following structure:

ϕi , ϕ
l
i ∧ ϕsi ∧ ϕfi . (7)

Notice that ϕli describes a static task specification as a general
RTL formula over R as the local task of agent i. Similarly, ϕsi

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

4

is a contingent task specification regarding the service requests
that agent i may receive from agent j with i ∈ Nj :

ϕsi ,
∧
j∈Ni

� (osij → ϕsji,t). (8)

Hence, whenever agent i confirms a service request ϕsji,t from
agent j, then it should fulfill this service task afterwards.
Finally ϕfi is the contingent task regarding the formation
requests that agent i may send to its neighbor j ∈ Ni:

ϕfi ,
∧
j∈Ni

�
(
ofji →

(
ϕfij,t ∧ (hij U zij)

))
. (9)

Thus, whenever a formation request from agent i is confirmed
by agent j, the corresponding short-term formation task ϕfij,t
should be fulfilled right afterwards and the formation con-
trollable proposition hij should be always kept true, until a
release message is sent to agent j. In other words, once agent j
confirms a formation request from agent i, it should achieve
the desired relative position with prescribed performance as
imposed by the corresponding performance function ρij(t),
until agent i has accomplished its formation task ϕfij,t.

Remark 1. While the local task ϕli has been commonly-
seen [25], [26] as a static task specification, the main novelty
of this work lies in the contingent service task ϕsi by (8)
and the formation task ϕfi introduced by (9) that have not
been tackled for multi-agent systems in this context. Moreover,
notice that all service and formation requests are exchanged
online and hence cannot be known before the system starts.
The validity of the observational and controllable propositions
can only be determined in real-time. Thus, only the local
task ϕli and not the complete specification ϕi is determined
and assigned to agent i before the system initializes. �

In the sequel we formulate the problem confronted here:

Problem 1. Consider a team of agents obeying the dy-
namics (1), with each member assigned a set of local task
specifications defined in (7)-(9). The objective is to synthe-
size a distributed hybrid control protocol such that all RTL
formulas ϕi are satisfied, ∀i ∈ N . �

IV. MAIN RESULTS

The proposed hybrid control strategy consists of four major
components as shown in Figure 1 (i.e., the communication,
the event monitoring, the discrete planning and the hybrid
control modules). In this section, we first present two con-
tinuous motion control schemes regarding the navigation and
the formation tasks respectively. Subsequently we describe
the real-time event monitoring module that handles critical
events during the system operation as well as the established
communication protocol among the agents regarding the con-
tingent requests. Afterwards, we present the discrete plan
synthesis and adaptation algorithms that handle the contingent
service and formation requests. Finally, the overall hybrid
control strategy is synthesized based on the aforementioned
components and its correctness is formally proven.

Communication Monitoring

Hybrid ControlPlanner

cji, ρji(t)

ϕservji

zji

ϕservij cij , ρij(t)zij

rfji, r
s
ji

zij

zji

Rgofijcji, ρji(t)ϕservji ϕformij

πig

Rg pi

Figure 1. The overall structure of the hybrid control scheme. The arrows
indicate the information flow and the communicated variables. A detailed
description is given in Subsection IV-E.

A. Continuous Controller Design

In this subsection, we describe the continuous control design
for two different control objectives, i.e., to navigate an agent
from any initial position to its goal region, without crossing
any undesirable regions; and to establish a desired formation
with prescribed transient response.

1) Navigation Control: Recall that the set of circular
regions of interest within the workspace boundary πB is
given by Π = {π1, π2, · · · , πM}. Since there are no explicit
representations of “obstacles” and no fixed initial or goal
regions, we denote by πg = B(cg, rg) ∈ Π the goal region and
πs = B(cs, rs) ∈ Π the initial region. In this work, we rely
on the navigation function approach proposed by Rimon and
Koditschek in [24] to navigate agent i from πs to πg , without
crossing other undesirable regions πj ∈ Π with j 6= {s, g}.
In particular, the navigation function Φi is constructed as:

Φi(pi) ,
γg

(γkg + βgs)
1
k

, (10)

where k > 1 is a design parameter, pi ∈ R2, Φi ∈ [0, 1],
γg , ‖pi − cg‖2 represents the attractive potential field to
the desired position cg ∈ R2 and βgs , βB

∏M
j=1,j 6=s,g βj is

the repulsive potential field by the workspace boundary and
the undesirable regions that should be avoided, with βB ,
r2
B − ‖pi − cB‖2 and βj , ‖pi − cj‖2 − r2

j . For brevity, we
denote by Πavoid , ∪Mj=1,j 6=s,gπj the set of circular regions
that should be avoided and by πB\Πavoid the free space. It
is assumed that πB and the sphere regions in Π satisfy the
condition of a valid workspace in [24], i.e., πm ⊂ πB and
πm ∩ πn = ∅, ∀m,n ∈ {1, 2, · · · ,M} with m 6= n.

It has been proved in [24] that Φi(pi) has only one global
minimum at cg and M−2 saddle points within the allowed free
space with zero set-measure for a sufficiently large constant
k. Hence, a feasible path within the free workspace that leads
an agent from its initial position in πs to its goal region πg
can be generated by following the negated gradient of Φi(pi)
or equivalently by adopting the subsequent control law:

ui = −∇pi Φi(pi). (11)

Based on [27], it is proven that γg → 0 as t → ∞ and
βgs > 0 holds, ∀t ≥ 0. Moreover, a collision free path is

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

5

ensured for almost any initial position in the free space (except
a set of measure zero) to any goal region in the free space.
Furthermore, the asymptotic stability of the aforementioned
controller guarantees the convergence to the neighborhood of
pg (i.e., the goal region πg) in finite time [27].

Lemma 1. The navigation control law (11) remains always
bounded, i.e., ‖ui‖ < umax, where umax > 0 is finite.

Proof. By computing the gradient of Φi(pi) directly and
owing to the fact that pi remains within the allowed free space
without crossing Πavoid, all terms of ∇piΦi remain bounded
and hence ‖ui‖ = ‖∇piΦi‖ ≤ umax with an upper bound
umax > 0 depending on the configuration of Π. �

2) Formation Control with Prescribed Performance: As
described in Section III-B, a contingent request may also in-
volve a formation task that should be executed with prescribed
performance (i.e., agent i requests agent j ∈ Ni to converge
to a desired formation described by the relative position cij
and the predefined transient response by the associated perfor-
mance function ρij(t) defined in (5)). Moreover, this formation
should be maintained until the associated short-term formation
task ϕfij,t is satisfied by agent i. Since agent i may send
a formation request to more than one neighbors, we denote
the set of neighbors that have confirmed its formation request
by N f

i ⊆ Ni. In the sequel, we propose the motion control
scheme for both agent i and all agents j ∈ N f

i .
Notice that at the request time t = tf0 in case agent i lies

inside a region πs ∈ Π then the associated navigation function
can be constructed similarly to (10), i.e., Φf

i (pi) ,
γg

(γk
g +βgs)

1
k

;

otherwise, the repulsive potential βgs should be slightly mod-
ified since all regions in Π except πg should be treated as
undesirable regions to be avoided, i.e., Φf

i (pi) ,
γg

(γk
g +βg)

1
k

,

where βg , βB
∏M
j=1,j 6=g βj . The controller of agent i is:

ui = −∇pi Φf
i (pi). (12)

On the other hand, for each agent j ∈ N f
i that has confirmed

the formation request of agent i, we design a motion con-
trol law that ensures the convergence to the desired relative
formation with prescribed performance as follows:

uj =
Kij

2

εij
ρij(t)

eij , (13)

where Kij > 0 is a control gain; eij is the relative formation
error from (3); ρij(t) is the performance function; and

εij , ln
(1

1− µ̂ij
)
, (14)

with µ̂ij denoting the normalized formation error from (4).

Lemma 2. Under the motion control laws (12) and (13),
initialized at time t = tf0, agent i will arrive to its goal
region πg within finite time Tg > tf0, while all agents
j ∈ N f

i that confirmed its formation request will satisfy the
controllable proposition hij(t) = >, ∀t ∈ [tf0, Tg].

Proof. Following similar analysis with Section IV-A1, we can
show that agent i arrives its goal region πg within finite

time Tg > tf0, while avoiding the undesirable regions included
in Πavoid. Regarding the agents j ∈ N f

i , the dynamics of the
normalized formation error is calculated as follows:

˙̂µij =
2 eTij uij ρij(t)− eTij eij ρ̇ij(t)

ρ2
ij(t)

where uij(t) = ui(t) − uj(t). Substituting the control in-
put (13) and eTij(t) eij(t) ≡ ρij(t) µ̂ij(t), we obtain:

˙̂µij = − µ̂ij
ρij(t)

[
Kij εij + ρ̇ij(t)

]
+

2 eTij ui(t)

ρij(t)

= − µ̂ij
ρij(t)

[
Kij ln

(1

1− µ̂ij
)

+ ρ̇ij(t)
]

+
2 eTij ui(t)

ρij(t)
.

(15)

Since the right-hand side of (15) is continuous on t and locally
Lipschitz on µ̂ij over Dij , as defined in (6), we may apply
Theorem 54 of [17] (page 476) to deduce a maximal solution
of (15) on a time interval [tf0, τmax) such that µ̂ij(t) ∈ Dij ,
∀t ∈ [tf0, τmax). Then consider the Lyapunov-like function:

Vij(t) ,
1

2
ε2
ij (16)

which owing to (14) is well-defined for all t ∈ [tf0, τmax).
Differentiating Vij(t) with respect to time, we get:

V̇ij = εij ˙̂µij =
εij

1− µ̂ij
˙̂µij . (17)

Moreover, invoking (15), we arrive at:

V̇ij = −mij

[
µ̂ij
(
Kij εij + ρ̇ij(t)

)
− 2 eTij ui(t)

]
, (18)

where mij(t) =
εij

(1−µ̂ij) ρij(t) > 0. Hence, since εij > 0,
ρij(t) > 0 and |eTij ui(t)| ≤ ‖eij‖‖ui(t)‖, we conclude that:

V̇ij ≤ −mij

[
Kij µ̂ij εij + µ̂ij ρ̇ij(t)− 2 ‖eij‖‖ui(t)‖

]
≤ −mij

[
Kij µ̂ij εij − |ρ̇ij(t)| − 2

√
ρij(t) ‖ui(t)‖

]
,

where we employed the fact that 0 ≤ µ̂ij < 1 and ‖eij‖ =√
µij =

√
µ̂ij ρij(t) ≤

√
ρij(t). Thus, invoking the inverse

of (14) (i.e., µ̂ij = 1−e−εij), we conclude that V̇ij < 0 when

εij
(
1− e−εij

)
>

supt∈[T0, Tg){|ρ̇ij(t)|+ 2
√
ρij(t) ‖ui(t)‖}

Kij
, bij .

(19)

Notice that bij is finite as Kij > 0, ρ̇ij(t), ρij(t) are bounded
by construction and ‖ui(t)‖ < umax as proven in Lemma 1.

Consider now the smooth function g(x) = x(1 − e−x),
which is monotonically increasing for x > 0 with g(0) =
0. Let ε?ij be a constant that satisfies ε?ij(1 − e−ε

?
ij) = bij ,

which exists and is unique owing to the monotonicity of g(x).
Hence, V̇ij < 0 when εij > ε?ij , from which we conclude that
εij(t) < max{ε?ij , εij(tf0)} , εij , ∀t ∈ [tf0, τmax) and

µ̂ij(t) < 1− e−εij , µ̂ij < 1, ∀t ∈ [tf0, τmax).

Thus, we deduce that µ̂ij(t) ∈ [0, µ̂ij] , D
′
ij , ∀t ∈ [tf0, τmax),

where D′ij is a nonempty and compact subset of Dij .
Finally, what remains to be shown is that τmax can be any

time greater than tf0. Therefore, assume that τmax <∞. Since

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

6

D′ij ⊂ Dij and µ̂ij(t) is a maximal solution of (15) over
[tf0, τmax), Proposition C3.6 in [17] (page 481) dictates the
existence of a time instant t′ ∈ [tf0, τmax) such that µ̂ij(t) /∈
D′ij , which contradicts with the fact that µ̂ij(t) ∈ D′ij , ∀t ∈
[tf0, τmax). Thus τmax can be extended to any time greater
than tf0 (i.e., τmax can be selected to be equal to Tg) and
µ̂ij(t) ∈ [0, µ̂ij] ⊂ Dij , which ensures that eTij(t)eij(t) <
ρij(t) and consequently hij(t) = >, ∀t ∈ [T0, Tg]. �

B. Real-time Event Monitoring Scheme

It is apparent that monitoring several real-time events plays
a crucial role in the satisfaction of all tasks. For each agent
i ∈ N , four types of events need to be monitored online:

(a) Region cross event. It occurs when an agent enters or
leaves a region in Π. More precisely, agent i enters the region
π` ∈ Π at time t0 > 0 if pi(t0 − δd) /∈ π` and pi(t0) ∈ π`,
where δd > 0 is a design parameter as the dwell time [28].
Agent i leaves the region π` ∈ Π at time t0 > 0 if pi(t0−δd) ∈
π` and pi(t0) /∈ π`. This event is directly related to the validity
of proposition R` ∈ R. δd can be enforced by setting the
crossing event true only if agent i has been inside region π`
for at least time period of length δd.

(b) Request and reply event. It occurs when agent i sends a
service or formation request to its neighbor j ∈ Ni at time t0
and agent j replies this request at the same time. Depending
on the replies, we consider two cases: if agent j confirms
this service request, the observational proposition osji ∈ Oi
satisfies osji(t) = >, ∀t ∈ [t0, t0 + δd) and osji(t) = ⊥, ∀t ∈
[t0 + δd, t1], where t1 > t0 + δd is the next time instant
when agent j receives a request from agent i; otherwise, if
agent j denies this request, osji(t) = ⊥, ∀t ∈ [t0, t1]. The
same rules apply to propositions related to formation requests
{ofji, ∀j ∈ Ni}. In addition, if agent i sends a release message
to its neighbor j ∈ Ni at t0, then zij(t) = >, ∀t ∈ [t0, t0+δd)
and zij(t) = ⊥, ∀t ∈ [t0 + δd, t1], where t1 is the next time
instant when agent i sends a release message to agent j.

(c) Service finish event. It occurs when agent i has finished
a service request that it has confirmed. For instance, suppose
that osij(t0) = > and agent i confirms the service request
ϕsji,t0 by agent j at time t0. Then ϕsji,t0 is satisfied by agent i
at time tf ≥ t0, if its trajectory pi([t0, tf]) satisfies ϕsji,t0 on
the basis of the semantics presented in Section II-B. Since all
service tasks are feasible and can be finished in finite time,
the finishing time tf > t0 is finite for each service request.

(d) Formation finish event. It occurs when agent i has
finished a formation task that has been confirmed. For instance,
suppose that ofji(t0) = > and agent j confirms the formation
request by agent i at time t0 > 0. The corresponding formation
task for agent i is given by ϕfij,t0 . Then ϕfij,t0 is satisfied at
time tf ≥ t0 if the trajectory pi([t0, tf]) satisfies ϕfij,t0 on
the basis of the semantics presented in Section II-B. Since all
formation tasks are also assumed to be feasible in finite time,
the time tf is also finite for each formation request.

Summarizing, the events (a) and (b) can be easily monitored
online. However it is not trivial to monitor the events (c)
and (d) efficiently, especially when multiple service or for-
mation requests occur. In this sense, since events (c) and (d)

are closely related to the discrete plan synthesis and adaptation
module in Section IV-D, more details will be given there.

C. Communication Protocol for Contingent Requests

Each agent i ∈ N will receive, send and confirm various
contingent requests from its neighbors during the system oper-
ation. Recall that agent i can communicate with agent j ∈ Ni
at time t only if ‖pi(t) − pj(t)‖ ≤ r. Hence, let us denote
by rsji(t) : R+ → B the continuous-time Boolean variable
indicating whether agent i is serving a service request from
agent j ∈ Ni at time t > 0. In addition, let rfji(t) : R+ → B be
the variable indicating whether agent i is serving a formation
request from agent j ∈ Ni at time t > 0. Initially, rsji(0) = ⊥
and rfji(0) = ⊥, ∀j ∈ Ni. Moreover, rfii(t) : R+ → B indi-
cates whether agent i is currently performing its own formation
task, which is also initialized as false, i.e., rfii(0) = ⊥.

Agent i may send the predefined service formula ϕsij,t to
its neighbor j ∈ Ni at time t > 0 only if rsij(t) = ⊥ (i.e.,
agent j is not still serving the previous service request from
agent i). Similarly, agent i may send the formation request
described by cij and ρij(t) at time t > 0, only if rfgi = ⊥,
∀g ∈ Ni (i.e., agent i itself is not currently serving any of its
neighbor’s formation request) and rfij(t) = ⊥ (i.e., agent j is
not still serving the previous formation request from agent i).
After sending a request, agent i needs to wait for a reply
from agent j. Once its request is confirmed by agent j, the
observational proposition osij(t) or ofij(t) is updated according
to Section IV-B. In the same vein, other approaches like direct
user triggering could also be incorporated.

On the other hand, whenever agent i receives a request
from its neighbor j ∈ Ni at time t > 0, it checks first
whether rfii(t) = > (i.e., agent i is currently executing its
own formation task) or rfji(t) = >, for any j ∈ Ni (i.e., it is
already in formation with one of its neighbors). If so, agent i
denies this request; otherwise, agent i confirms its request
and starts serving it. In other words, when agent i receives
multiple formation requests from its neighbors, it will reply to
them according to the time they are received, i.e., in a first-
come-first-serve manner. Moreover, if multiple service and
formation requests are received simultaneously, then formation
requests are prioritized over service requests and furthermore
the service or formation requests from different neighbors are
replied in the order of their identity numbers. Namely, the
neighbor with larger identity number is replied to earlier.

D. Discrete Plan Synthesis and Adaptation

In this subsection, we show how to synthesize the initial
discrete plan for each agent, based on its own local task, and
how to adapt it online upon receiving contingent service and
formation requests from neighboring agents.

1) Initial Discrete Plan Synthesis: At time t = 0, we
assume that no requests have been sent yet, i.e., osij(0) =
ofij(0) = ⊥, ∀j ∈ Ni and ∀i ∈ N . As a result, only the
static task ϕli of the RTL formula ϕi defined in (7) is initially
pursued. Hence, the initial plan synthesis aims at finding a
discrete plan that satisfies ϕli . Our approach relies on the
automaton-based model-checking algorithm [18]. Thus, we

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

7

first define a Finite Transition System (FTS) as an abstraction
of the agent’s motion among the regions of interest.

Definition 2. The motion of agent i is abstracted by an FTS:

Ti , (Πi, −→, R, L, Πi,0, W). (20)

where Πi , {π0} ∪ Π is the set of states with π0 ,
B(pi(0), 0); −→, (Π×Π)∪({π0}×Π) denotes the transition
relation; L : Πi → 2R with L(π`) , R`, ∀` ∈ {1, 2, · · · ,M}
is the labeling function; Πi,0 , {π0} is the initial state; and
W : “ −→ ”→ R+ computes the cost of each transition with
W (πm, πn) , ‖cm − cn‖, ∀(πm, πn) ∈−→. �

Notice that only the local propositions of R are allowed
in Ti and that the initial state π0 is solely determined by
the initial position of agent i. A path of Ti is given by
τ = π0

i π
1
i π

2
i · · · , where (πki , π

k+1
i) ∈−→, ∀k ≥ 0 and its

associated trace, which corresponds to a discrete-time Boolean
signal over R, is defined as the sequence of propositions that
are true along the path, i.e., trace(τ) = L(π0

i)L(π1
i) · · · .

On the other hand, ϕli is a general RTL formula over R
with a corresponding LTL formula denoted by [ϕli] based
on Definition 1. Thus, following the notations defined in
Section II-A, we may construct the NBA associated with [ϕli]
and denote it by Bi,s = (Qs, 2R, δs, Qs,0, Fs). Subsequently,
we may construct the weighted product automaton as follows:

Definition 3. The weighted product Büchi automaton Pi =
Ti×Bi,s = (Q′p, δ

′
p, Q

′
p,0, F

′
p, Wp) is defined by Q′p =

Πi × Qs with q′p = 〈π, q〉 ∈ Q′p, ∀π ∈ Πi and ∀q ∈ Qs;
δ′p : Q′p → 2Q

′
p with 〈πd, qn〉 ∈ δ′s(〈πc, qm〉) if and only if

(πc, πd) ∈−→ and qn ∈ δs(qm, L(πc)); Q′p,0 = Πi,0 × Qs,0
is the set of initial states; F ′p = Πi×Fs is the set of accepting
states; Wp : δ′p → R+ with Wp(〈πc, qm〉, 〈πd, qn〉) =
W (πc, πd), ∀(〈πc, qm〉, 〈πd, qn〉) ∈ δ′p. �

After Pi is constructed, we search for one of its accept-
ing runs denoted by Ri that has a prefix-suffix structure
(i.e., Ri = Ri,pre (Ri,suf)

ω) and minimizes the total cost defined
by cost(Ri, Pi) = cost(Ri,pre) + cost(Ri,suf), where
cost(Ri,pre) and cost(Ri,suf) are simply the accumulated
weight of the transitions along the finite sequence of product
states in Ri,pre and Ri,suf. In this respect, since Pi may be
viewed as a directed graph with initial and accepting states, a
variation of the Dijkstra’s shortest path algorithm can be used
to find such an optimal accepting run. The worst-case com-
putational complexity is |Q′p| · log(|δ′p|), where |Q′p|, |δ′p| are
the number of states and transitions. For algorithmic details,
we refer the readers to Algorithms 1 and 2 in [26]. Hence
denoting by Ri,0 this optimal accepting run and projecting it
back onto Πi yields the initial plan of agent i as τi,0 = Ri,0|Πi .
Notice that τi,0 has the prefix-suffix structure and that the
trace of τi,0 satisfies [ϕli] automatically [18]. In this way, the
plan τi,0 obtains the following sequence:

τi,0 = πi0πi1 · · ·
(
πiki πi(ki+1) · · ·πiKi

)ω
, (21)

with its trace given by trace(τi,0) = L(πi0)L(πi1) · · · ,
where πi` ∈ Πi, ∀` = 1, 2, · · · ,Ki; πi0πi1 · · ·πiki is the plan
prefix defined as a finite sequence of goal regions to reach;

and πikiπi(ki+1) · · ·πiKi
is the plan suffix, which is also finite

but should be repeated infinitely often in order to satisfy [ϕli].
If no contingent requests are sent or confirmed by agent i

for all t > 0, its initial discrete plan τi,0 should remain
unchanged and be executed as follows. Initializing at pi(0),
agent i moves to and enters region πi1 employing the motion
controller described in Section IV-A1. Then, an event that
agent i entered region πi1 should be detected. Afterwards, it
leaves region πi1 and moves towards region πi2 under the same
control scheme. Such procedure is repeated until it reaches
πiKi

, after which the next goal region is set to πiki and
continues to πiKi

and back to πiki again. In this way, the plan
suffix is repeated infinitely often as t→∞. Thus, there exists
an infinite sequence of time instants 0 t11 t

2
1 t

1
2 t

2
2 · · · t1k t2k · · · ,

with t2k+1 > t1k+1 > t2k > t1k > 0, ∀k ≥ 1, such that

pi(t) ∈ πik, ∀t ∈ [t1k, t
2
k), ∀k ≥ 1, (22)

where πik , πik′ with k′ , mod(k− ki, Ki− ki) + ki, ∀k >
Ki (mod is the modulo operation). Thus the trajectory pi(t)
intersects with the sequence of goal regions by τi,0.

Theorem 1. If no contingent requests are sent nor confirmed
by agent i, i.e., osji(t) = ofij(t) = ⊥, ∀j ∈ Ni and ∀t ≥ 0,
then the resulting trajectory pi(t) of τi,0 satisfies the ϕi.

Proof. If osji(t) = ofij(t) = ⊥, ∀j ∈ Ni and ∀t ≥ 0, the
service task ϕsi and formation task ϕfi defined in (8) and (9)
may be ignored owing to the semantics of the implication
operator. Thus, ϕi is equivalent to ϕli and [ϕi] is equivalent
to [ϕli]. Notice also that ϕli is specified over R and therefore
depends solely on the agent’s trajectory. Moreover, we have
shown that the trace of τi,0 satisfies the LTL formula [ϕli] as
well as that the trajectory pi(t) satisfies (22). Hence, what we
need further to show is that pi(t) satisfies the RTL formula
ϕli . Let us define w = trace(τi,0), which is a discrete-time
Boolean signal over R that (w, 0) |= [ϕli].
• If (w, 0) |= [R`] for R` ∈ R, i.e., agent i starts from

region π`, then (22) guarantees that there exists a time interval
[0, t1) with t1 > 0 such that pi(t) ∈ π`, ∀t ∈ [0, t1). Thus,
invoking the RTL semantics we conclude that (pi, 0) |= R`.
Similar arguments may also apply for [¬R`] with R` ∈ R.
• If (w, 0) |= [R`1 ∨ R`2] for R`1 , R`2 ∈ R, i.e., agent

i starts either from region π`1 or π`2 , then (22) guarantees
that there exists a time interval [0, t1) with t1 > 0 such that
pi(t) ∈ π`1 or pi(t) ∈ π`2 , ∀t ∈ [0, t1). Thus, invoking the
RTL semantics we also conclude that (pi, 0) |= R`1 ∨R`2 .
• If (w, 0) |= [R`1UR`2] for R`1 , R`2 ∈ R, i.e., agent i

stays at region π`1 before it moves to region π`2 , then (22)
guarantees that there exists a time interval [0, t1) with t1 > 0
such that pi(t) ∈ π`1 ∀t ∈ [0, t1) and a subsequent one [t1, t2)
with t2 > t1 such that pi(t) ∈ π`2 , ∀t ∈ [t1, t2). Thus,
invoking the RTL semantics we also conclude that (pi, 0) |=
R`1UR`2 . Similar arguments also apply inductively to other
operators like ♦, → and �. Thus, since (trace(τi,0), 0) |=
[ϕi], we conclude that (pi(t), 0) |= ϕi. �

The above results are valid only if no contingent requests
are exchanged, which however is not the case here. Thus, in

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

8

the sequel we study how service or formation requests should
be handled by adapting the local discrete plans.

2) Event-based Discrete Plan Adaptation: Initially, we
show how to handle contingent service requests. Based on the
previous analysis, an agent may confirm and serve multiple
service requests simultaneously. In such case, agent i needs to
satisfy three types of tasks: (i) the static local task; (ii) all the
service requests received so far that have not been satisfied;
and (iii) the newly-received service request. These tasks need
to be treated differently since the first type should be satisfied
by the whole trajectory from t = 0; the second type by
the trajectory starting from the time the service requests are
confirmed; the third type by the future trajectory. Thus, it is
important to keep track of how much the local task as well
as the past and current service requests have been satisfied. In
that respect, we consider three different cases:

Case I: Suppose the first service request ϕsji,tj received by
agent i at time tj > 0 was sent by agent j. Agent i needs to in-
corporate ϕsji,tj into its static task specification ϕli and update
its current plan τi,0 to satisfy this request. As mentioned ear-
lier, the service task specification defined in (7) requires ϕsji,tj
to be satisfied within a finite time. The associated LTL formula
is denoted by [ϕsji,tj] and B[ϕs

ji,tj
] = (Qj , 2R, δj , Qj,0, Fj) is

the corresponding NBA, with similar notation to Section II-A.
Recall that B[ϕl

i] = (Qs, 2R, δs, Qs,0, Fs) is the NBA as-
sociated with [ϕli] and assume that at time tj the product
state of agent i in P ′i is q′p,tj ∈ Q

′
p and the associated Büchi

state in B[ϕl
i] is qs,tj = q′p,tj |Qs

. Thus, we define the request-
prioritized and layered intersection of [ϕsji,tj] and [ϕli] below:

Definition 4. The intersection of B[ϕs
ji,tj

] and B[ϕl
i] is an NBA:

A[ϕi] = (Q, 2R, δ, Q0, F), (23)

where Q = Qj × Qs × {1, 2}; Q0 = Qj,0 × {qs,tj} ×
{1}; F = Fj × Fs × {2}; δ : Q × 2R → 2Q, with
〈q̌j , q̌s, č〉 ∈ δ(〈qj , qs, c〉, l) when the following conditions
hold: (i) 〈qj , qs, c〉, 〈q̌j , q̌s, č〉 ∈ Q; (ii) q̌j ∈ δj(qj , l) and
q̌s ∈ δs(qs, l); (iii) qj /∈ Fj and č = c = 1; or qj ∈ Fj , c = 1
and č = 2; or č = c = 2. �

The aforementioned definition is different from the conven-
tional way of computing intersections of Büchi automata [18]
owing to the fact that [ϕli] is a general LTL formula that should
be satisfied at t = 0 and [ϕsji,tj] is an sc-LTL formula that
should be satisfied after it is received. In particular, A[ϕi] has
two layers and it transits from the first layer to the second only
if it reaches Fj (i.e., [ϕsji,tj] is satisfied); afterwards, it stays
at the second layer in order to satisfy [ϕli]. In the following
lemma, we prove the correctness of Definition 4 by showing
that A[ϕi] accepts all words that satisfy both [ϕli] and [ϕsji,tj].

Lemma 3. If there exists an ω-word w ∈ Rω such that
w |= [ϕsji,tj] and w |= [ϕli], then ϕsji,tj and ϕli are mutually
feasible, and A[ϕi] has at least one accepting run.

Proof. Owing to the fact that w |= [ϕsji,tj], at least one of the
resulting runs of w in B[ϕs

ji,tj
] is an accepting run, denoted

by rj = qj,0qj,1 · · · qj,Kj
(qj,Kj

)ω , where qj,0qj,1 · · · qj,Kj
is a

finite sequence from an initial state qj,0 ∈ Qj,0 to an accepting

state qj,Kj
∈ Fj and (qj,Kj

)ω is a repetitive suffix over qj,Kj
.

Such argument holds true since all accepting states of
B[ϕs

ji,tj
] have a self-cycle that accepts any input alphabet (see

Remark 4.31 of [18]). On the other hand, given that w |= [ϕli],
then w results in at least one accepting run of B[ϕl

i], denoted
by rs = qs,0qs,1 · · · (qs,Kf

qs,Kf+1qs,Kf+2 · · · qs,Kf+Ks)ω

that starts from an initial state qs,0 ∈ Qs,0 to an
accepting state qs,Kf

∈ Fs. We assume Kf > Kj . If
not so, the suffix of rs can be extended by repeating
itself until Kf > Kj . In this sense, we can easily
verify that a resulting run of w in A[ϕi] can be
constructed as r = (qj,0, qs,0, 1) · · · (q1,Kj , qs,Kj , 1)(q1,Kj ,
qs,Kj+1, 2)(q1,Kj , qs,Kj+2, 2)(q1,Kj , qs,Kj+3, 2) · · · ((q1,Kj ,
qs,Kf

, 2)(q1,Kj
, qs,Kf+1, , 2) · · · (q1,Kj

, qs,Kf+Ks
, , 2))

ω .
Since (q1,0, qs,0, 1) ∈ Q0 and the state within the repetitive
suffix (q1,Kj

, qs,Kf
, 2) ∈ F , then by definition r is an

accepting run of A[ϕi] and hence A[ϕi] accepts w. �

From the proof aforementioned, it can be seen that r reaches
the accepting states in Fj that satisfy [ϕsji,tj] before it repeats
the suffix that satisfies [ϕli]. Thus, the service request has a
higher priority than the static specification and will be satisfied
earlier. Moreover, the layered structure of A[ϕi] allows us to
track the satisfaction of [ϕli] and [ϕsji,tj] separately.

Case II: Suppose that agent i has confirmed m service
requests [ϕsgi,tg] at time tg from agent g, ∀g ∈ N s

i ⊆ Ni.
Without loss of generality, we can re-order the neighbors in
N s
i by {1, 2, · · · ,m} , N s

i , according to the time their
service request was received, e.g., [ϕs1i,t1] denotes the earliest
and [ϕsmi,tm] denotes the latest received request. Furthermore,
let B[ϕs

gi,tg
] = (Qg, 2R, δg, Qg,0, Fg) be the NBA associated

with [ϕsgi,tg], ∀g ∈ N s
i , with similar notations to Section II-A.

Additionally, assume that at time tm the corresponding product
state of agent i is q′p,tg ∈ Q

′
p. In that respect, its associated

Büchi state in B[ϕl
i] is qs,tm = q′p,tm |Qs and the associated

Büchi state in each B[ϕs
gi,tg

] is qg,tm = q′p,tm |Qg , ∀g ∈ N s
i .

Thus, we may define the request-prioritized intersection of
[ϕsgi,tg], ∀g ∈ N s

i and [ϕli] as follows:

Definition 5. The intersection of B[ϕs
gi,tg

], ∀g ∈ N s
i and B[ϕl

i]

is an NBA defined by:

A[ϕi] = (Q, 2R, δ, Q0, F), (24)

where Q = Q1×Q2 · · ·×Qm×Qs×{1, 2, · · · ,m+1}; Q0 =
{q1,tm} × {q2,tm} · · · × {qm−1,tm} ×Qm,0 × {qs,tm} × {1};
F = F1×F2 · · ·×Fm×Fs,0×{m+1}; δ : Q×2R → 2Q, with
〈q̌1, q̌2, · · · , q̌m, q̌s, č〉 ∈ δ(〈q1, q2, · · · , qm, qs, c〉, l) when
the following conditions hold: (i) 〈q1, q2, · · · , qm, qs, c〉,
〈q̌1, q̌2, · · · , q̌m, q̌s, č〉 ∈ Q; (ii) q̌j ∈ δj(qj , l), ∀j ∈ N s

i ;
and q̌s ∈ δs(qs, l); (iii) qc /∈ Fc and č = c; or qc ∈ Fc and
č = c+ 1; or č = c = m+ 1. �

Notice that A[ϕi] has m+1 layers and transits to the (c+1)-
th layer only if the set of accepting states Fc is reached for
c = 1, 2, · · · ,m (i.e., [ϕsci,tc] is satisfied), and then stays at
the (m+1)-th layer in order to satisfy B[ϕl

i]. The definition of
Q0 ensures that the past progress of serving [ϕli] and [ϕsgi,tg]
for g ∈ N s

i is preserved, while the definition of δ allows

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

9

us to keep track of such progress separately. Clearly, A[ϕi]

has |Q1|·|Q2| · · · |Qm|·|Qs|·(m+1) states and maximally |δ1|·
|δ2| · · · |δm|·|δs|·(m+1) transitions. Finally, the correctness of
the aforementioned definition relies on the following lemma.

Lemma 4. If there exists an ω-word w ∈ Rω such that w |=
[ϕsgi,tg], ∀g ∈ N s

i and w |= [ϕli], then the received service
tasks ϕsgi,tg , ∀g ∈ N s

i and ϕli are mutually feasible, and A[ϕi]

has at least one accepting run.

Proof. Following the same line of proof with Lemma 3, we
may construct an accepting run of A[ϕi] by employing the
resulting runs of w over [ϕli] and [ϕsgi,tg], ∀g ∈ N s

i . Similarly
to the one constructed in Lemma 3, such accepting run reaches
an accepting state of B[ϕs

2i,t2
] first, transits to the second layer,

reaches an accepting state of B[ϕs
2i,t2

], transits to the third layer
and so on. This process is repeated until it reaches the (m+
1)th layer and stays there. Afterwards its suffix is repeated
infinitely often to satisfy [ϕli]. Thus, A[ϕi] accepts the common
words of [ϕli] and all the service requests [ϕsgi,tg], ∀g ∈ N s

i .
Finally notice that A[ϕi] is updated recursively by Definition 5,
whenever agent i confirms new service requests. �

Case III: Assume that agent i has confirmed a service
request ϕs

li,t1l
from its neighbor l ∈ Ni at time t1l > 0 and

accomplished it at t2l > t1l . Afterwards, at time t3l > t2l , agent i
confirms a new service request ϕs

li,t3l
from the same neighbor l.

In the sequel, we discuss how we should adjust A[ϕi] in
order to remove the old request ϕs

li,t1l
and incorporate the new

request ϕs
li,t3l

. Let us denote byN s
i the set of neighbors, whose

service requests agent i has to satisfy as well as by A[ϕi] the
associated intersection NBA. Since the service request from
agent l has changed from ϕs

li,t1l
to ϕs

li,t3l
, A[ϕi] needs to be

updated as follows. First, the service requests need to be re-
organized according to the time they were received. Hence,
the service request of agent l should be assigned the index
m = |N s

i | as it was the latest received one. Subsequently,
given the product state q′

p,t3l
of agent i at time t3l , the Büchi

state associated with each [ϕsgi,tg] is derived by q′
p,t3l
|Q′

g
,

∀g ∈ N s
i and g 6= l. Thus, A[ϕi] can be recomputed by

Definition 5, with the service request of agent l being moved
to the m-th layer. The rest of the details are similar to Case II.

Given the updated intersection automaton A[ϕi] from
Cases I-III, the corresponding product automaton Pi should
be updated following Definition 3. Thus, we search for an
accepting run of the updated Pi that minimizes the cost func-
tion mentioned in Section IV-D1, of which the computational
complexity is derived analogously with the updated Pi. This
accepting run always exists due to the assumption that the
local task and the received service tasks are mutually feasible
for each agent i ∈ N . Subsequently, this accepting run can be
projected onto Π, thus yielding the updated discrete plan of
agent i. Finally, notice that the local plan should be adapted
whenever A[ϕi] is updated in any of the cases above.

In the sequel, we prove the correctness of the proposed
discrete plan adaptation approach. In this respect, assume that
agent i receives a service request ϕsgi,tg from its neighbor
g ∈ N s

i at time tg > 0. After that, at time t > tg > 0, agent i

has crossed the sequence of goal regions πi,1πi,2 · · ·πi,K
during [tg, t], which is uniquely determined by its discrete
plan τi([tg, t]), where πi,k ∈ Π, ∀i = 1, 2, · · · ,K. In this
way the corresponding trace is defined by tracei([tg, t]) =
Li(πi,0)Li(πi,1) · · ·Li(πi,K). Furthermore, let q′i,t ∈ Q′ be
the corresponding product state in Pi at time t.

Theorem 2. Given that ϕsgi,tg , ∀g ∈ N s
i and ϕli are mutually

feasible, there exists a finite time t > tg such that pi([tg, t])
satisfies the RTL formula ϕsgi,tg , for each agent g ∈ N s

i .

Proof. Lemma 4 ensures that the intersection automaton A[ϕi]

accepts the satisfying words of [ϕsgi,tg]. Irrespectively of the
layer that [ϕsgi,tg] is in A[ϕi], since all service requests are co-
safe, there exists a finite time t > tg when q′i,t|Q reaches the
accepting state Fg . Furthermore, from the definition of A[ϕi],
we know that if qg ∈ Fg for any g ∈ N s

i , then the past trace
during [tg, t] (i.e., tracei([tg, t])) results in an accepting
run of B[ϕs

gi,tg
] from the initial state to the accepting state qg .

Thus, tracei([tg, t]) satisfies [ϕsgi,tg]. Finally, it can be easily
deduced, following the proof of Theorem 1, that the resulting
trajectory pi([tg, t]) satisfies the RTL formula ϕsgi,tg . �

The proof above provides an efficient way for agent i to
monitor the satisfaction of each request ϕsgi,tg , ∀g ∈ N s

i .
Notice that given the projection qi,t = q′i,t|Q, if qi,t|Qg

∈ Fg
for any g ∈ N s

i , then [ϕsgi,tg] is satisfied by tracei([tg, t]).
This plays an important role for the event monitoring scheme
and the communication protocol in Sections IV-B and IV-C.

Finally, while serving its service requests, agent i may
send formation requests to its neighbors in Ni that may be
confirmed. In this case, assume that agent j ∈ Ni confirms a
formation request at time tj . The formation between agents i
and j should be kept until the associated formation task ϕfij,tj
is fulfilled by agent i. Namely, agent i first needs to incor-
porate ϕfij,tj into ϕi, employing the same procedure with the
case of new service requests described previously. Specifically,
the NBA associated with [ϕfij,tj] is computed as B[ϕf

ij,tj
] and

the intersection automaton A[ϕi] is recomputed by adding
one extra layer in B[ϕf

ij,tj
] as in Definition 5. Thus, similar

to Theorem 2, we assume that the formation task ϕfij,tj is
mutually feasible with the local task and the received service
tasks. Then, the resulting intersection automaton always have
an accepting run. Similarly ϕfij,tj will be satisfied at a finite
time, after which, agent i sends a release message to agent j
and then both intersection automata are updated.

Theorem 3. Given that ϕfij,tj is mutually feasible with the
local task ϕli and the service tasks ϕsgi,tg , ∀g ∈ N s

i for
agent i ∈ N , there exists a finite time tf > tj such
that: (i) the trajectory pi([tj , t

f]) of agent i satisfies the
formation task ϕfij,tj and (ii) agent j satisfies the controllable
proposition hij(t) = >, ∀t ∈ [tj , t

f).

Proof. The first part can be proved similarly to Theorem 2. In
particular, the newly-confirmed formation task is incorporated
into A[ϕi]. Since it is co-safe and mutually-feasible with the
local task and the received service tasks, there exists a finite
time tf > tj such that q′i,t|Q reaches the accepting states

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

10

qnav
ṗi =

qform
ṗi =

ofij = >

zji = >

Rg = >

−∇pi Φi(pi, πig) Kij
εij
ρij(t) eij

Figure 2. The hybrid controller module. The arrows indicate the discrete
transitions labeled by the associated guards for agent i ∈ N .

of Bϕf
ij,tj

and thus tracei([tj , tf]) satisfies [ϕfij,tj]. Subse-
quently, it can be shown as in Theorem 1 that the resulting
trajectory pi([tg, t

f]) satisfies the RTL formula ϕfij,tj . At
the same time, a confirmation message is sent from agent i
to j. Secondly, Lemma 2 indicates that the formation control
law (13) guarantees that agent j will converge to the desired
relative formation with prescribed performance, i.e., the con-
trollable proposition hij(t) = >, ∀t ∈ [tj , t

f], until a release
signal is received at time t and zij(t) = >. �

E. Overall Structure

Now we formalize the overall hybrid control architecture,
based on the aforementioned analysis. As depicted in Figure 1,
the architecture is organized in four interconnected modules
that run concurrently in real time. It includes the communica-
tion module from Section IV-C, the discrete planner module
from Section IV-D1, the event monitoring module from Sec-
tion IV-B and the hybrid control module.

Hybrid control module. Agent i is in charge of switch-
ing between the navigation and formation control modes.
As shown in Figure. 2, the hybrid control automaton is
defined as a tuple Hcont , (Q, P, Init, f, D, O, E, G),
where Q = {qnav, qform} is the set of discrete states;
P ⊆ πi0 is the continuous state; Init = qnav × pi(0) is the
initial state; f(qnav, pi) = −∇qi Φi(pi, πig) is the continuous
dynamics (10) within the discrete state qnav , where πig is the
goal region imposed by the discrete planner; f(qform, pi) =
Kji εji eji/ρji(t) is the continuous dynamics (13) within the
discrete state qform, where cji, ρji(t) are the formation
request conveyed via the communication module; D(qnav) =
D(qform) ⊆ πi0 are the domains of the continuous state;
O = {o1, o2, o3} is the set of external events, where o1

is “Rg = >”, o2 is “ofij = >”, and o3 is “zji = >”;
E = {(qnav, qnav), (qnav, qform), (qform, qnav)} involves
the allowed discrete transition edges; G(qnav, qnav) = o1,
G(qnav, qform) = o2, G(qform, qnav) = o3 indicate the
guards that should hold over each discrete transition.

Theorem 4. Given the hybrid control architecture above
and that all static tasks and service/formation requests are
mutually feasible, then each local task ϕi is satisfied by the
trajectory pi(t) of agent i as t→∞, ∀i ∈ N .

Proof. The local task ϕi consists of three parts: ϕli , ϕsi and ϕfi .
Firstly, Theorem 1 guarantees that if no service or formation
requests are confirmed by agent i, then its trajectory will

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
(m

)

r4

r5r6

r0r1

r2 r3

1

2

3

4

Figure 3. Snapshots of the agent’s trajectories at 4.2s, 10.5s, 17s and 20s.
Descriptions of these events can be found in Section V-B.

satisfy the local task ϕli . Subsequently, since ϕli , ϕsi and ϕfi
are assumed to be mutually feasible, we show that they are all
fulfilled when agent i exchanges requests with its neighbors.
In case agent i confirms a service request ϕsgi, tg from agent g,
then Theorem 2 ensures that there exists a finite time tsi > tg
such that the trajectory pi([tg, t

s
i]) satisfies ϕsgi, tg . Moreover,

the same holds for all service requests confirmed by agent i,
which implies that ϕsi is fulfilled. Alternatively, if a formation
request ϕfgi, tg is confirmed, then Theorem 3 ensures that there
exists a finite time tfi > tg such that the trajectory pg([tg, t

f
i])

of agent g fulfills the formation task ϕfgi,tg in finite time
t > tg and meanwhile the formation between agents i and g

satisfies the desired performance specifications during [tg, t
f
i],

i.e., the controllable propositions hij(t) = >, ∀t ∈ [tg, t
f
i] and

∀j ∈ N f
i . Furthermore, since the same holds for all formation

requests confirmed by agent i, it implies that ϕfi is fulfilled.
As a consequence, all three parts of ϕi are fulfilled and thus
ϕi is satisfied for each agent i ∈ N . �

Remark 2. Notice that this hybrid controller will not exhibit
Zeno behavior since agent i will stay within the region for at
least the dwell time δd defined in Section IV-B and a formation
is requested only after the current formation is finished. �

V. CASE STUDY

In this section, we present a simulated paradigm of four
autonomous robots with heterogeneous capabilities. The pro-
posed algorithms were implemented in Python 2.7 and all
simulations were carried out on a desktop computer (3.06 GHz
Duo CPU with 8GB of RAM).

A. Workspace and Task Description

The area of size 4m × 4m is shown in Figure 3, within
which there are seven cyclic regions π0, π1, · · · , π6 of interest

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

11

0 5 10 15 20
Time (s)

0

1

2

3

4

5

Ag
en

ts

S31 F31

S12 F24

F43 S13 F31

F43 F24

Service

Formation

8.0 8.5 9.0 9.5
Time(s)

0

1

2

3

4

5

6

Er
ro

r

e24(t) ρ24(t)

Figure 4. Left: the service/formation tasks each agent is engaged. The label
Sij indicates that agent j is carrying out a service request from agent i
(similarly, Fij for formation request). Right: evolution of the formation errors
and the performance function, for the formation task ϕf

24 during [7.7s, 9.4s].

with various radius. They are labeled by the local propositions
R0, R1, · · · , R6. Moreover, the workspace is bounded by the
circle B([2, 2], 2.35). Additionally, let us denote by R1, R2,
R3, R4 the team of four agents that satisfy the single integrator
dynamics (1). Their neighboring sets are defined as follows:
N1 = {R2, R3}, N2 = {R1, R4}, N3 = {R1, R4}, N4 =
{R2, R3}, representing a ring graph. The agents start from
(0.3, 0.5), (3.8, 0.5), (2.0, 3.5) and (0.3, 3.5), respectively
and the communication radius is uniformly set to 1m.

For agent R1, the local task ϕl1 =
(
♦(R2 ∧ ♦R5)

)
∧(

�♦R3 ∧ �♦R6

)
requires that it first visits region π2,

then π5 and surveils over regions π3 and π6. Its predefined
service requests concern R2 (i.e., ϕs12 = ♦R6) and R3 (i.e.,
ϕs13 = ♦(R2 ∧ ♦R5)), while there are no formation requests
to either R2 or R3. Agent R2 has the local task ϕl2 =
�♦(R2 ∧ ♦R5) ∧ �¬R0 to surveil over regions π2 and then
π5, and avoid π0 all the time. Moreover, there are no service
requests to R1 or R4, while the formation request to R4 is
described by c24 = (−0.5, 0), ρ24,0 = 6, ρ24,∞ = 0.0001 and
l24 = 3, under the formation task ϕf24 = ♦R2. Agent R3 has
the local task ϕl3 = (♦R3)∧ (♦R4)∧ (♦�R5)∧ (�¬R0), i.e.,
it should visit regions π3, π4 and π5 in any order, and avoid π0

all the time. The predefined service request to R1 is given by
ϕs31 = ♦(R1∧♦R2) and the formation request to R1 is given
by c31 = (0.5, 0), ρ31,0 = 7, ρ31,∞ = 0.0001 and l31 = 4,
under the formation task ϕf31 = ♦R5. There are no service or
formation requests to R4. Finally, agent R4 has the local task
ϕl4 = �♦R3 ∧ �♦R4 to surveil regions π3 and π4. There are
no service requests to R2 or R3, while the formation request
to R3 is defined as c43 = (0.3, 0), ρ43,0 = 7, ρ43,∞ = 0.0001
and l43 = 10 under the formation task ϕf43 = ♦R3.

B. Simulation Results

The system was simulated for 20s when the agents are
at (1.1, 3.2), (2.7, 3.3), (3.4, 0.9) and (2.7, 0.5), respectively.
Notice that all service and formation requests which are
defined earlier were exchanged and accomplished at 17.1s.
An accompanying video can be found in [29].

More specifically, at t = 0, the initial synthesis of the
discrete plan is done locally by each agent. The initial plan
of R1 is given by τ1 = π2π5π3π6(π0π3)ω , the initial plan
of R2 is given by τ2 = π3(π2π5)ω , the initial plan of R3

is given by τ3 = π5π4π3(π5)ω and the initial plan of R4 is

given by τ4 = π6(π4π3)ω . It can be easily verified that all
satisfy the respective local tasks. After the system initialized,
the predefined formation and service tasks were performed by
the agents as shown in the left plot of Figure 4. Snapshots
of the agents’ trajectories at key time instants are shown in
Figure 3. In particular, at t = 0.1s, R3 receives R4’s formation
request and executes it until t = 5.5s, when R4 finishes
the formation task ♦R3 by reaching π3. The evolution of
the formation error along with the corresponding performance
function is shown in the right plot of Figure 4. At 0.6s, R2

confirms the service request ♦R6 from R1 and changes its
local plan to visit π6 first, which is done at 4.2s. At the same
time, R1 confirms service request ♦(R1 ∧ ♦R2) from R3

and changes its local plan to visit π1 and then π2, which is
done at 7.1s. During [7.7s, 9.4s], R4 carries out a relative
formation task with R2 until R2 finishes the formation task
♦R2 by reaching π2. Then R3 confirms the service request
♦(R2 ∧ ♦R5) from R1 at 5.5s. This service is accomplished
at 14.8s by R3’s detour to π2 first and π5 afterwards. Finally,
R1 establishes a relative formation with R3 at 14.8s until
agent R3 finishes the formation task ♦R5 by reaching π5 at
17.1s. By then, all predefined contingent tasks were fulfilled
and no further contingent service or formation tasks will
be exchanged. Subsequently, each agent continues executing
its local plan to fulfill its local task. Note that since some
agents have an infinite plan, we simulate the system until 20s.
Finally, regarding the formation requests ϕf43 during [0s, 5.5s],
ϕf24 during [7.7s, 9.4s] and ϕf31 during [14.8s, 17.1s], notice
that the evolution of the formation errors, as depicted in
Figure 4, meets the predefined performance specifications until
the associated formation task is fulfilled.

VI. CONCLUSIONS

We presented a hybrid control strategy for multi-agent sys-
tems with contingent temporal tasks and prescribed formation
constraints that fulfills all local high-level temporal tasks and
contingent service/formation requests. Future research efforts
will address physically interacting cooperative tasks and more
complex agent dynamics with non-zero agent volume.

REFERENCES

[1] S. G. Loizou, K. J. Kyriakopoulos. Closed loop navigation for multiple
non-holonomic vehicles. IEEE International Conference on Robotics and
Automation, 3: 4240-4245, 2003.

[2] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems
in multi-agent coordination. American Control Conference (ACC), 1859–
1864, 2005.

[3] M. Ji and M. B. Egerstedt. Distributed coordination control of multi-agent
systems while preserving connectedness. IEEE Transactions on Robotics,
23(4): 693–703, 2007.

[4] G. E. Fainekos, S. G. Loizou, and G. J. Pappas, Translating temporal
logic to controller specifications, IEEE Conference on Decision and
Control(CDC), 899–904, 2006.

[5] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta. Formal approach to the
deployment of distributed robotic teams. IEEE Transactions on Robotics,
28(1):158–171, 2012.

[6] S. Karaman and E. Frazzoli. Vehicle routing with temporal logic
specifications: Applications to multi-UAV mission planning. International
Journal of Robust and Nonlinear Control, 21:1372–1395, 2011.

[7] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multi-agent
motion tasks based on ltl specifications. IEEE Conference on Decision
and Control(CDC), 153–158, 2004.

2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2555581, IEEE
Transactions on Control of Network Systems

12

[8] S. G. Loizou and K. J. Kyriakopoulos. Automated planning of motion
tasks for multi-robot systems. IEEE Conference on Decision and Control
(CDC), 78–83, 2005.

[9] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus. Optimality and
robustness in multi-robot path planning with temporal logic constraints.
International Journal of Robotics Research, 32(8): 889–911, 2013.

[10] M. Guo and D. V. Dimarogonas. Multi-agent Plan reconfiguration under
local LTL specifications. International Journal of Robotics Research,
34(2): 218-235, 2015.

[11] J. Tumova and D. V. Dimarogonas. A receding horizon approach
to multi-agent planning from LTL specifications. American Control
Conference (ACC), 1775–1780, 2014.

[12] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas. Where’s Waldo? Sensor-
based temporal logic motion planning. IEEE International Conference on
Robotics and Automation, 3116-3121, 2007.

[13] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE Transactions on Robotics,
25(6), 1370-1381, 2009.

[14] P. Ogren, M. Egerstedt, and X. Hu. A control Lyapunov function
approach to multi-agent coordination. IEEE Conference on Decision and
Control(CDC), 1150–1155, 2001.

[15] C. P. Bechlioulis and G. A. Rovithakis. Robust adaptive control of feed-
back linearizable MIMO nonlinear systems with prescribed performance.
IEEE Transactions on Automatic Control, 53(9): 2090-2099, 2008.

[16] C. P. Bechlioulis, K. J. Kyriakopoulos. Robust model-free formation
control with prescribed performance and connectivity maintenance for
nonlinear multi-agent systems. IEEE Conference on Decision and Control
(CDC), 2014.

[17] E. D. Sontag. Mathematical Control Theory. Springer, 1998.
[18] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,

2008.
[19] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G. J. Pappas.

Symbolic planning and control of robot motion. IEEE Robotics and
Automation Magazine, 14: 61-71, 2007.

[20] P. Gastin, D. Oddoux. Fast LTL to Büchi automaton translation. Inter-
national Conference on Computer Aided Verification (CAV’01), 2001.

[21] O. Kupferman and M. Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19:291–314, 2001.

[22] M. Reynolds. Continuous temporal models. Australian joint conference
on artificial intelligence, 414425. Springer, 2001.

[23] G. E. Fainekos, A. Girard, H. Kress-Gazit, G. J. Pappas. Temporal logic
motion planning for dynamic robots. Automatica, 45(2): 343–352, 2009.

[24] D. E. Koditschek, E. Rimon. Robot navigation functions on manifolds
with boundary. Advances Appl. Math., 11:412-442, 1990.

[25] A. Bhatia, L. E. Kavraki, M. Y. Vardi. Sampling-based motion planning
with temporal goals. IEEE International Conference on Robotics and
Automation, 2010.

[26] M. Guo and D. V. Dimarogonas. Reconfiguration in motion planning of
single- and multi-agent systems under infeasible local LTL specifications.
IEEE Conference on Decision and Control(CDC), 2758-2763, 2013.

[27] S. G. Loizou, A. Jadbabaie. Density Functions for Navigation Function
Based Systems. IEEE Conference on Decision and Control, 2006.

[28] K. H. Johansson, M. Egerstedt, J. Lygeros, S. Sastry. On the regular-
ization of Zeno hybrid automata. Systems and Control Letters, 38(3),
141-150, 1999.

[29] Simulation Video. https://vimeo.com/138463775

Meng Guo received his M.Sc. degree in System,
Control and Robotics in 2011 and Ph.D. degree
in Electrical Engineering in 2016, both from KTH
Royal Institute of Technology, Sweden. Currently
he is a postdoc associate at the Department of Me-
chanical Engineering and Materials Science, Duke
University, USA. His main research interest includes
distributed motion and task planning of multi-agent
systems and formal control synthesis.

Charalampos P. Bechlioulis was born in Arta,
Greece, in 1983. He is currently a postdoctoral
researcher in the Control Systems Laboratory at
the School of Mechanical Engineering of the Na-
tional Technical University of Athens. He received
a diploma in electrical and computer engineering
in 2006 (first in his class), a bachelor of science
in mathematics in 2011 (second in his class) and
a Ph.D. in electrical and computer engineering in
2011, all from the Aristotle University of Thessa-
loniki, Thessaloniki, Greece. His research interests

include nonlinear control with prescribed performance, system identification,
control of robotic vehicles, multi-agent systems and object grasping. He has
authored more than 55 papers in scientific journals, conference proceedings
and book chapters.

Kostas J. Kyriakopoulos was born in Athens,
Greece (1962). He received the Mechanical Eng.
Dipl., with Honours, from the National Technical
University of Athens (NTUA), Greece in 1985 and
MS & Ph.D. degrees in Computer & Systems Eng.
at Rensselaer Polytechnic Institute (RPI), Troy, NY,
in 1987 and 1991, respectively. Between 1988-91
he did research at the NASA Cntr for Intelligent
Robotic Systems for Space Exploration while be-
tween 1991-93 he was a Research Assistant Profes-
sor at the Electrical, Computer and Systems Eng.

Dept. of RPI and the New York State Cntr for Advanced Technology in
Automation & Robotics. Since December 1994 he has been with Mechanical
Eng. Dept at NTUA where he serves as a Professor and Director of the
Graduate Program on Automation Systems. His research interests are in the
areas of: (i) Nonlinear Control applications to Sensor Based Motion Planning
& Control of Robotic multi-agent systems: Manipulators & Vehicles (Mobile,
Marine, Aerial) and (ii) Neuro-Robotics.

Dimos V. Dimarogonas was born in Athens, Greece,
in 1978. He received the Diploma in Electrical
and Computer Engineering in 2001 and the Ph.D.
in Mechanical Engineering in 2007, both from the
National Technical University of Athens (NTUA),
Greece. Between May 2007 and February 2009,
he was a Postdoctoral Researcher at the Automatic
Control Laboratory, School of Electrical Engineer-
ing, ACCESS Linnaeus Center, KTH Royal Institute
of Technology, Stockholm, Sweden. Between Febru-
ary 2009 and March 2010, he was a Postdoctoral

Associate at the Laboratory for Information and Decision Systems (LIDS)
at the Massachusetts Institute of Technology (MIT), Boston, MA, USA. He
is currently an Associate Professor at the Automatic Control Laboratory,
ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm,
Sweden. His current research interests include Multi-Agent Systems, Hybrid
Systems and Control, Robot Navigation and Networked Control. He was
awarded a Docent in Automatic Control from KTH in 2012. He serves in
the Editorial Board of Automatica, the IEEE Transactions on Automation
Science and Engineering and the IET Control Theory and Applications and is
a member of IEEE and the Technical Chamber of Greece. He received an ERC
Starting Grant from the European Commission for the proposal BUCOPHSYS
in 2014 and was awarded a Wallenberg Academy Fellow grant in 2015.

