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Abstract— We consider a team of multiple dynamical and
heterogeneous robots which are deployed for gathering different
types of data within a common workspace. The robots have
different roles due to different capabilities: some gather data
from the workspace (Type-A robots) and others receive data
from Type-A robots and upload them to a data center (Type-
B robots). The data-gathering tasks are specified locally to
each Type-A robot as high-level Linear Temporal Logic (LTL)
formulas. All robots have a limited buffer to store the data.
Thus the data gathered by Type-A robots should be transferred
to Type-B robots before the buffers overflow, respecting at the
same time limited communication range for all robots. The main
contribution of this work is a distributed task coordination and
intermittent meeting scheme that guarantees the satisfaction of
all local tasks while obeying the above constraints. We present
numerical simulations to demonstrate the advantages of the
proposed method over most existing approaches that require
all-time network connectivity.

I. INTRODUCTION

Data-gathering robots can be deployed in a workspace to
gather a variety of data, which are then uploaded to a data
center for processing. For instance, a team of autonomous
ground vehicles (AGV) can be deployed in a large forest to
monitor the temperature, humidity and stand density, or a
team of autonomous aerial vehicles (AAV) can be deployed
over a farmland to monitor the behavior of animal flocks
and growth of the crops [1]. Due to heterogeneous sensing
and motion capabilities, the robots in these applications can
gather different types of data over different regions of interest
within the workspace. Thus the robots can be assigned local
data-gathering tasks that vary across the team [1]. In this
work, we rely on Linear Temporal Logic (LTL) as the formal
language to describe complex high-level tasks beyond the
classic point-to-point navigation. The LTL task formula is
usually specified with respect to an abstraction of the robot
motion [2], [3]. Then a high-level discrete plan is found
using off-the-shelf model-checking algorithms [4], and is
then executed through low-level continuous controllers [5].
This framework can be extended to allow for both robot
motion and actions in the task specification [6]. Partially-
known or dynamic workspaces are addressed in [7].

The above framework has also been applied to multi-robot
systems either in a top-down approach where a global LTL
task formula is assigned to the whole team of robots [3],
[8], [9], or in a bottom-up manner where an individual LTL
task formula is assigned locally to each robot [7], [10]. We
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favor the latter formalism for the data-gathering application
as the number of deployed robots can be large, the robots
can have heterogeneous capabilities, and each robot can have
a specific data-gathering task assignment.

Besides accomplishing high-level temporal tasks, in this
paper, we also require that the robots obey the following two
additional constraints: (i) limited communication range; and
(ii) limited buffer size to store the gathered data. Most ex-
isting work tackles the first constraint by either maintaining
all initial communication links at all time based on potential
fields [10]–[13], or by allowing the addition or removal of
communication links while ensuring network connectivity at
all time [6], [14]–[16]. However, these approaches are rather
conservative and inefficient for the data-gathering application
addressed in this paper, as all robots need to stay in close
proximity to each other for all time. Our earlier work [17]–
[19] proposes an intermittent connectivity control strategy for
mobile robot networks, although without considering buffer
constraints and local temporal tasks. The second constraint
above is of practical importance for data-gathering appli-
cations, especially when the local tasks require an infinite
sequence of data-gathering actions. In this case, the robots
cannot keep gathering data indefinitely as their buffers have
a limited size to store these data.

The main contribution of this work lies in the distributed
on-line motion and task coordination scheme for multiple
heterogeneous data-gathering robots, under limited commu-
nication and buffer size constraints. We show that all local
data-gathering tasks specified as LTL formulas are satisfied
while obeying both constraints. Intermittent communication
and data transfer are coordinated during run time and are
closely coupled with the execution of local plans. The
proposed scheme does not require nor impose all-time con-
nectivity of the communication network. Its overall efficiency
over the centralized approach and two static approaches is
demonstrated via a numerical case study.

II. PRELIMINARIES OF LTL

Atomic propositions are Boolean variables that can be
either true or false. The ingredients of an LTL formula are
a set of atomic propositions AP and several boolean and
temporal operators, via the syntax [4]: ϕ ::= > | p | ϕ1 ∧
ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2, where > , True, p ∈ AP
and © (next), U (until). ⊥ , ¬>. For brevity, we omit
the derivations of other useful operators like � (always),
3 (eventually), ⇒ (implication). We refer the readers to
Chapter 5 of [4] for details of LTL syntax and semantics.



III. PROBLEM FORMULATION

Consider a team of N dynamical robots where each
robot i ∈ N , {1, · · · , N} satisfies the unicycle dynamics:
ẋi = vi cos(θi), ẏi = vi sin(θi), and θ̇i = ωi, where pi(t) =
(xi(t), yi(t)) ∈ R2, θi(t) ∈ (−pi, pi] are robot i’s position
and orientation at time t > 0. The control inputs are given
by ui(t) = (vi(t), ωi(t)) as the linear and angular velocities
(with reference denoted by vrefi and ωrefi ). The workspace
is a bounded 2D area W ⊂ R2, within which there are
clusters of obstacles O ⊂ W . The free space is denoted
by F =W\O. Note that all robots are assumed to be point
masses and robot collision is not considered here.

The robots are categorized into two subgroups, denoted
by N l, N f ⊂ N and N l ∪ N f = N . Robot i ∈ N f can
only send and receive data locally with other robots within
its proximity, i.e., ‖pi(t) − pj(t)‖ ≤ ri, where ri > 0 is
the communication range. Robot j ∈ N l, besides the local
communication ability, has an extra function to upload its
stored data to the remote data center. In the sequel, we simply
refer to robots in N f as Type-A robots and robots in N l as
Type-B robots. Note that |N f |, |N l| ≥ 1 holds.

A. Data-gathering Tasks

Each Type-A robot i ∈ N f has a local data-gathering
task over its regions of interest within the freespace. Denote
by Πi = {πi,1, · · · , πi,Mi} these regions, where πi,` ⊂ F ,
∀` = 1, · · · ,Mi and Mi > 0. They contain information of
interest. Moreover, there is a set of data-gathering actions
that robot i can perform at these regions, denoted by Gi =
{gi,0, gi,1, · · · , gi,Ki}, where gi,k means that “type-k data is
gathered”, ∀k = 1, · · · ,Ki and Ki ≥ 1. By default, gi,0
means doing nothing. The time needed to perform each
action is given by Zi : Gi → R+. With a slight abuse of
notation, we denote the set of robot i’s atomic propositions
by APi = {πi,`∧gi,k, ∀πi,` ∈ Πi,∀gi,k ∈ Gi}, where πi,`∧
gi,k stands for “robot i gathers type-k data at region πi,`”.
Then we can specify a high-level data-gathering task over
APi, denoted by ϕi, following the LTL semantics in Sec-
tion II. For instance, ϕi = �3(πi,6 ∧ gi,7)∧�3(πi,7 ∧ gi,2)
means that “robot i should infinitely often gather type-7 data
at region 6 and type-2 data at region 7”.

B. Buffer Size and Communication Constraints

Each robot i ∈ N has a limited buffer to store data.
Here we quantify the data size into units, i.e., robot i has
a buffer to store maximum Bi > 0 units of data, ∀i ∈ N .
Denote by bi(t) ∈ N≥0 the number of data units stored in
the buffer of any robot i ∈ N at time t ≥ 0. It should hold
that bi(t) ≤ Bi, ∀t > 0. Whenever robot i ∈ N f performs
action gi,k ∈ Gi at time t ≥ 0, bi(t) changes by bi(t

+) =
bi(t
−)+Di(gi,k), where Di : Gi → Z+ is the data-gathering

function for robot i’s actions; bi(t−) and bi(t+) are the data
units stored at robot i’s buffer before and after action gi,k is
performed. If bi(t+) > Bi, then gi,k can not be performed as
the buffer would overflow. We assume that Di(gi,k) ≤ Bi,
∀gi,k ∈ Gi. Moreover, two robots can send and receive data
within their proximity. Particularly, denote by cij : R→ Z+

the data-transfer function from robot i to j at time t ≥ 0.
When robot i transfers cij(t) units of data to robot j,
their stored data change by bi(t

+) = bi(t
−) − cij(t) and

bj(t
+) = bj(t

−) +cij(t), where the notations are similar as
before. To allow this transfer, two conditions should hold:
(i) cij(t) ≤ bi(t−); and (ii) bj(t+) ≤ Bj .

At last, any Type-B robot j ∈ N l has an extra function
to upload its stored data to the remote data center. Denote
by dj : R→ Z+ the upload function of robot j at time t >
0. When robot j uploads dj(t) units of data to the data
center, its stored data changes as bj(t+) = bj(t

−) − dj(t),
where bj(t

+) and bj(t
−) are defined similarly as before.

Clearly, the uploaded data should not be more than the stored
data, i.e., dj(t) ≤ bj(t−) and bj(t+) ≥ 0.

C. Problem Statement

Given the communication and buffer size constraints
above, our goal is to synthesize the motion and action plan,
and the associated data transfer protocol for all robots in N
such that the local task ϕi is satisfied, ∀i ∈ N f .

IV. DYNAMIC APPROACH

The proposed dynamic approach consists of three main
parts: (i) the workspace abstraction and the synthesis of the
discrete plan; (ii) the coordination of meeting events between
Type-A and Type-B robots; and (iii) the execution of the
discrete plan and the data transfer protocol.

A. Local Discrete Plan Synthesis

Initially at time t = 0, each Type-A robot i ∈ N f

synthesizes its local discrete plan to satisfy its local task ϕi.
1) Road Map Construction: First, an abstraction of the

allowed freespace F is constructed as the roadmap for all
robots. In this work, we rely on the triangulation algorithm
for polygons with holes; see Chapter 6 of [20]. Given the
triangular decomposition, we can connect the center of each
cell to the middle points of each facet (called waypoints).

Definition 1: The roadmap over F is a weighted undi-
rected graph M = (M, H, W ), where M is the set of
waypoints m ∈ R2, ∀m ∈ M ; H ⊆ M × M indicates
whether two waypoints are connected; and W : H → R+ is
the Euclidean distance between two waypoints. �

Using the roadmap M, we can construct a finite transition
system (FTS) to abstract the motion of each Type-A robot i ∈
N f among its regions of interest. Denote this motion model
by Ti = (Πi, →i, Πi,0, Ti), where →i⊆ Πi × Πi is the
transition relation, Πi,0 ∈ Πi is the initial region, Ti :
“ →i ” → R+ approximates the time of each transition.
Particularly, consider two regions πi,s, πi,f ∈ Πi, of which
the closest waypoints to their center points are denoted
by mi,s, mi,f ∈ M , respectively. Then (πi,s, πi,f ) ∈→i if
there exists a path in M starting from mi,s to mi,f without
crossing any other waypoint mi,` ∈ M that belongs to any
other region πi,` ∈ Πi with ` 6= s, f . Denote the shortest
one by Γi,sf = mi,smi,s+1 · · ·mi,f over M. Furthermore,
the time for robot i to traverse Γi,sf can be approximated
easily given its reference linear and angular velocities.



The complete robot model [6] integrates the motion ab-
straction Ti above with the data-gathering actions in Gi:

Definition 2: The complete robot model is given by
the FTS Ri = (Πi,R, →i,R, APi, Li, Πi,0,R, Ti,R),
where Πi,R = Πi × Gi is the full state; →i,R⊆
Πi,R × Πi,R is the allowed transitions via motion
or actions so that (〈πi,s, gi,`〉, 〈πi,f , gi,k〉) ∈→i,R
if (i) 〈πi,s, πi,f 〉 ∈→i and gi,k = gi,0, or (ii) πi,s = πi,f
and gi,`, gi,k ∈ Gi; APi are the atomic propositions;
Li(〈πi,s, gi,`〉) = {πi,s, gi,`}, ∀〈πi,s, gi,`〉 ∈ Πi,R is the
labeling function; Πi,0,R = 〈Πi,0, gi,0〉 is the initial state;
and Ti,R(〈πi,s, gi,`〉, 〈πi,f , gi,k〉) = Ti(πi,s, πi,f ) +Zi(gi,k),
∀(〈πi,s, gi,`〉, 〈πi,f , gi,k〉) ∈→i,R is the time measure. �

2) Local Plan Synthesis: The local plan of each robot i ∈
N is an infinite path of Ri, denoted by τR,i, such
that ϕi is satisfied. The algorithm to compute τR,i with
the prefix-suffix structure and minimal summation cost
can be found in [7], [21]. We omit details here due to
limited space. The initial plan is denoted by τ0

i,R =

π0
i,R · · ·π

Li−1
i,R (πLii,R · · ·π

Hi
i,R)ω , where π`i,R ∈ Πi,R, ∀` =

0, · · · , Hi. Thus τ0
i,R provides an infinite sequence of motion

and data-gathering actions to be performed to satisfy ϕi.
Remark 1: Note that each Type-A robot i ∈ N f syn-

thesizes its discrete plan τ0
i,R locally without coordination

with other robots. Thus, robot i might not execute τ0
i,R

successfully, due to its limited buffer size and the infinite
sequence of data-gathering actions in τ0

i,R. �

B. Intermittent Meeting-events Coordination

To execute the plan of each Type-A robot i ∈ N f , we
need to ensure that its stored data is transferred to any
Type-B robot j ∈ N l before its buffer overflows. The main
difficulty lies in the limited communication range for both
Type-A and Type-B robots, meaning that both data transfer
and coordination are only possible when two robots are close
enough. The key idea is to design a method that allows Type-
A and Type-B robots each time they meet (i.e., connect to
each other) to negotiate when and where they should meet
the next time, while minimizing the waiting time at the
new meeting location. Afterwards, they move independently
without communication, until they meet again at the agreed
location and time, and the same procedure repeats.

1) Initial Coordination: Initially at t = 0, each Type-A
robot needs to coordinate its first meeting event with at least
one Type-B robot. Denote by Ni(t) ⊂ N the set of robots
that robot i ∈ N can communicate with at time t ≥ 0,
i.e., Ni(t) = {j ∈ N | ‖pi(t) − pj(t)‖ ≤ r}. Then denote
by N l

i (t) = Ni(t)∩N l the set of Type-B robots that a Type-
A robot i ∈ N f is connected to at time t. To begin with, we
need the following assumption for the initial configuration:

Assumption 1: At time t = 0, each Type-A robot i ∈
N f is connected to at least one Type-B robot j ∈ N l,
i.e., N l

i (0) 6= ∅, ∀i ∈ N f . �
Meeting requests by Type-A robots: Every Type-A

robot i ∈ N f needs to estimate where and when it needs
to meet with a Type-B robot j ∈ N l, given its discrete
plan τ0

i,R from Section IV-A. Particularly, it searches through

the future sequence of states in τ0
i,R and determines the first

state where the data stored in its buffer would exceed its
size Bi if it has not met any Type-B robot to transfer its
data in the meanwhile. Denote by πkei,R ∈ τ0

i,R this state and
by πkti,R ∈ τ0

i,R the current state of robot i, where ke > kt ≥
0. Specifically, the index ke is the index that∑ke

k=kt
Di(gi,`k) < Bi,

∑ke+1
k=kt

Di(gi,`k) ≥ Bi, (1)

where πki,R = 〈πi,sk , gi,`k〉, ∀kt ≤ k ≤ ke and Di(gi,`k) is
the number of data units gathered via action gi,`k . Thus the
buffer is not full after storing the gathered data up to πkei,R,
but it will overflow at πke+1

i,R after performing gi,`ke+1
.

Then, robot i calculates the trajectory and the associated
time to transition from πkei,R to πke+1

i,R . Let πkei,R|Πi = πi,si
and πke+1

i,R |Πi = πi,fi . From Section IV-A.1, we know that
the shortest path from πi,si to πi,fi is given by Γi,sifi =
mi,si · · ·mi,fi and the associated time of reaching each
waypoint mi,si ∈ Γi,sifi is denoted by ti,ki ∈ Ti,sifi ,
where Ti,sifi = ti,si · · · ti,fi , and ki ∈ Isfi , {si, · · · , fi}.
Similar to Ti(·) in the FTS Ti, the time sequence Ti,sifi
is calculated using the reference velocities. At last, the
request message from a Type-A robot i ∈ N f to a Type-
B robot j ∈ N l

i (0), denoted by Reqij(0), is given by
Reqij(0) = (Γi,sifi , Ti,sifi), where Γi,sifi and Ti,sifi are
defined above, ∀j ∈ N l

i (0).
Replies by Type-B robots: Upon receiving the requests

from all Type-A neighbors i ∈ N f
j (0), where N f

j (0) ,
Nj(0) ∩ N f , each Type-B robot j ∈ N l should decide
the location and time to meet each of them and reply
accordingly. Denote by Repji(t) the reply message from
robot j to robot i at time t ≥ 0, which has the structure:
Repji(0) = (mji, tji), where mji ∈ M is the waypoint
where the two robots would meet; tji > 0 is the meeting
time, ∀i ∈ N f

j (0). In the following we describe how the
replies can be determined to satisfy all the requests.

Given the requests Reqij(0) = (Γi,sifi , Ti,sifi), ∀i ∈
N f
j (0), we intend to find a path Γj(0) = mj,1 · · ·mj,Sj ,

where mj,sj ∈ M , ∀sj = 1, · · · , Sj and the associated
time sequence Tj(0) = tj,1 · · · tj,Sj such that the following
two criteria hold. First, Γj intersects with Γi,sifi exactly
once, i.e., there exists exactly one waypoint mji ∈ Γi,sifi
that mji ∈ Γj , ∀i ∈ N f

j . Without loss of generality,
let mji = mi,kji where si ≤ kji ≤ fi and mji = mj,sji

where 1 ≤ sji ≤ Sj . Second, this path minimizes the sum
of the differences in the expected meeting time between
robot j and each i ∈ N f

j (0), i.e.,
∑
i∈N fj

|ti,kji − tj,sji |,
where ti,kji ∈ Ti,sifi and tj,sji ∈ Tj are the corresponding
time instances of reaching mji in Γi,sifi(0) and Γj(0).

The above problem is closely related to the well-known
traveling salesman problem (TSP) and the generalized
TSP [22]. This problem is NP-hard [20] as it contains
the TSP as a special case. To find the exact solution, we
formulate the following integer linear program (ILP):

min
∑

ki, kh∈Isfi,h; i,h∈N fj,+

ckikh · βkikh (2)



s.t. (I)
∑

kh∈Isfh ;h∈N fj,+

βkhki =
∑

h∈N fj,+; kh∈Isfh

βkikh ,

∀ki ∈ Isfi , ∀i ∈ N f
j,+;

(II)
∑

ki, kh∈Isfi,h;h∈N fj,+

βkikh = 1, ∀i ∈ N f
j,+;

(III) αki − αkh + (Nf
j + 1) · βkikh ≤ N

f
j ,

∀ki, kh ∈ Isfi,h; ∀i, h ∈ N f
j ∪ {ν};

where N f
j,+ = N f

j ∪ {j} ∪ {ν} and ν is an artificial node;
Nf
j = |N f

j |; ki, kh ∈ I
sf
i,h implies ki ∈ Isfi and kh ∈ Isfh ,

similar definition for ki, kj ∈ Isfi,j ; Γj,sjfj = Γν,sνfν =
mν,0 and Tj,sjfj = Tν,sνfν = 0 to unify the notation;
ckikh = |ti,ki + Ti(mi,ki ,mh,kh) − th,kh |, ∀ki, kh ∈ I

sf
i,h

and ∀i, h ∈ N f
j ; ckhkν = 0, ∀kh ∈ Isfh and ∀h ∈ N f

j ∪{j};
ckνkh = ∞, ∀kh ∈ Isfh and ∀h ∈ N f

j but ckνkj = 0;
βkikh ∈ B is 1 if Γj contains a segment from mi,ki to mh,kh

and 0 otherwise, ∀ki, kh ∈ Isfi,h and ∀i, h ∈ N f
j,+. The

first two constraints (I)-(II) require that exactly one element
of Γi,sifi is intersected by Γj , ∀i ∈ N f

j,+ and the last
constraint (III) requires that all these elements belong to
one big cycle where ν is the last node and connected to j.
More detailed explanations can be found in [22]. The above
problem has

(
N̂
2

)
Boolean variables and N̂ Integer variables,

where N̂ =
∑
i∈N fj,+

|Γi,sifi |. Lastly, given the solutions Γj

and Tj , the replies Repji(t) can be determined easily.
Confirmation by Type-A robots: Upon receiving the

replies Repji(0) from all Type-B robots j ∈ N l
i (0), each

Type-A robot i ∈ N f evaluates these replies and sends
confirmations back. Denote by Confij(0) the confirmation
message from robot i to j ∈ N l

i (0) so that Confij(0) = > if
robot i confirms the meeting location and time with robot j,
while Confij(0) = ⊥ if robot i refuses the reply and thus is
not committed to the meeting event with robot j.

Specifically, given the replies Repji(0) = (mji, tji), ∀j ∈
N l
i (0), robot i chooses the Type-B robot j?i ∈ N l

i (0)
that yields the minimum waiting time for itself, i.e., j?i =
argminj∈N li (0)|tji − ti,kji |, where si ≤ kji < fi sat-
isfies that mi,kji = mji. Then the confirmation mes-
sage is Confij?i (0) = > for the j?i obtained above,
while Confij?i (0) = ⊥, ∀j ∈ N l

i (0) and j 6= j?i .
On the other hand, after receiving the confirmation mes-

sages Confij(0) back from all i ∈ N f
j (0), each Type-B

robot j ∈ N l marks the confirmed meeting events in its
path Γj(0) from (2) such that it is only committed to meet
the Type-A robot i that Confij(0) = >, ∀i ∈ N f

j (0).
2) Coordination for Next Meeting Event: After the initial

coordination at t = 0, robots i and j?i will meet at the
waypoint mj?i i

at time tj?i i, ∀i ∈ N
f . To simplify notation,

we replace j?i by j in this section. At the meeting, after the
stored data at robot i is transferred to robot j, the two robots
coordinate for their next meeting event.

First, robot i needs to determine again the segment of
path during which it should meet with a Type-B robot. The
same equation by (1) can be applied given that its current

buffer size is zero and πkti,R is the current state. Denote
the new request message by Reqij(t) = (Γi,sifi , Ti,sifi)
where Γi,sifi = mi,si · · ·mi,fi and Ti,sifi = ti,si · · · ti,fi
are defined analogously as before. Then, after receiving
the request, robot j needs to reply with its preferred next
meeting location and time with robot i, denoted by m+

ji

and t+ji, respectively. Let mj,fj and tj,fj be the last com-
mitted meeting location and time of robot j with another
Type-A robot, based on Γj(t) and Tj(t) after time t.
Then choosing the index s+

ji of Γi,sifi in order to move
from mj,fj to mi,s+ji

yields the minimum waiting time, i.e.,
s+
ji = argminsi≤sji≤fi |tj,fj − ti,sji + Tj(mj,fj , mi,sji)|,

where Tj(mj,fj , mi,sji) is the time robot j would take to
navigate from waypoint mj,fj to mi,s+ji

. This optimization
problem can be solved by iterating through all waypoints
in Γi,sifi to find the minimum relative waiting time. Thus
the reply message from robot j to i is given by Repji =

(m+
ji, t

+
ji), where m+

ji = mi,s+ji
and t+ji = ti,s+ji

. After
receiving the reply message, robot i sends back the con-
firmation as Confij = > and marks mji as the next meeting
location with robot j. On the other hand, after receiving
the confirmation, robot j concatenates its path Γj with the
shortest path Γj(mj,fj , m

+
ji) and marks m+

ji as the next
meeting location with robot i.

3) Spontaneous Meeting Events: Lastly, when there are
more than one Type-B robots in the team, it is possible that
robot i ∈ N f

i meets with another Type-B robot j′ ∈ N l on
its way to meet the confirmed Type-B robot j?i . We call this
situation a spontaneous meeting event.

In this case, robot i transfers the stored data in its buffer to
robot j′, and coordinates with j′ for the next meeting event in
a similar way as described in Section IV-B.2, but now robot i
takes into account the fact that it will meet with j?i at m+

j?i i

as previously confirmed. Thus the next path segment of Γi
where robot i needs to meet with a Type-B robot should
be calculated as in (1) by setting πkti,R = (m+

j?i i
, g0), i.e.,

robot i’s buffer is zero after meeting robot j? at m+
j?i i

. After
the coordination with robot j′, robot i continues to meet
robot j?i . In this way, a Type-A robot can meet and transfer
data through all Type-B robots it has met, instead of being
restricted to the Type-B robot it was connected to initially.

Remark 2: It is crucial that the Type-A robot i still meets
its initially confirmed Type-B robot j?i (even with an empty
buffer), after a spontaneous meeting with robot j′ ∈ N l.
Otherwise, robot j?i will wait for robot i at the confirmed
region indefinitely, which leads to a deadlock. �

C. Integrated System

1) Plan Execution: At t = 0, after the initial coordination,
each Type-A robot i ∈ N f starts executing its discrete
plan τ0

i,R = π0
i,R · · ·π

ki−1
i,R (πkii,R · · ·π

Ki
i,R)ω , where πki,R =

〈πi,sk , gi,`k〉 ∈ Πi,R, ∀k = 0, · · · ,Ki. Starting from the
initial position πi,s0 , robot i first navigates to region πi,s1
through path Γi,s0s1 . The control inputs follow the turn-
and-forward switching control: turn by ωi = ωref

i and
then forward by vi = vref

i . Once robot i reaches πi,s1 , it



performs action gi,`1 there. Afterwards, robot i continues
to state 〈πi,s2 , gi,`2〉. This procedure repeats itself until
robot i reaches the (ke)th state πkei,R according to (1). During
this period of time, the amount of data units stored in
robot i’s buffer is increased incrementally by Di(gi,`k),
∀k = 0, · · · , ke. Then on its way from state πkei,R to πke+1

i,R ,
robot i meets with robot j?i at waypoint mj?i i

. It is ensured
by (1) that the buffer is never overflowed and all data-
gathering actions can be performed before reaching πke+1

i,R .
After the meeting, robot i continues executing the rest of its
plan until the next meeting event with j?i or another Type-B
robot. On the other hand, each Type-B robot j ∈ N l executes
the path Γj derived from (2) in a similar way.

2) Meeting Event Execution: Assume that Γi,sifi =
mi,si · · ·mi,fi is the route that robot i follows to navigate
from mi,si to mi,fi , and assume also that its confirmed
meeting waypoint with a Type-B robot j ∈ N l is mi,s.
Starting from mi,si , robot i moves towards mi,s. Then two
cases are possible: (i) if robot j is already waiting at mi,s,
then robot i continues moving towards mi,s until robot j
is in its communication range. When this happens, robot i
transfers all its data to robot j. As a result, the stored data
in the buffers of robots i and j are changed to bi(t

+) = 0
and bj(t

+) = bj(t
−) + bi(t

−). When the data transfer is
completed, robot j uploads all its data to the data station.
Thus its stored data is changed to bj(t+) = 0. If the stored
data at robot i is more than robot j’s buffer size, it needs to
be divided into smaller batches, which are then transferred
to robot j sequentially; (ii) if robot j has not arrived at mji

yet, then robot i waits until robot j enters its communication
range and then follows the same procedure as in (i).

V. CASE STUDY

This section presents the simulation results for a team of
12 data-gathering robots. All algorithms are implemented in
Python 2.7. “Gurobi” [23] and “poly2tri” are exter-
nal packages. All simulations are carried out on a laptop
(3.06GHz Duo CPU and 8GB of RAM).

A. System Description

All 12 robots satisfy the unicycle dynamics. There are 9
Type-A robots (denoted by a0, a2, · · · , a8) and 3 Type-
B robots (denoted by l1, l2, l3). Their common workspace
has size 10m × 10m with three polygonal obstacles. All
robots’ communication ranges are set to 1m. The refer-
ence linear and angular velocities are chosen randomly
between [0.5, 0.8]m/s and [0.1, 0.3]rad/s. The buffer size
of all Type-A robots is chosen randomly between [3, 5] data
units, while all Type-B robots have buffer size of 5 data units.

To simplify the task description, we divide the Type-A
robots into three categories. The first category (a0, a1, a2)
will gather type-1 data at region r1, type-2 data at region r2

and type-3 data at region r3 (in any order), infinitely of-
ten. This specification can be expressed by the LTL for-
mula ϕc1 = �3(r2 ∧ g2)∧�3(r1 ∧ g1)∧�3(r3 ∧ g3). The
second category (a3, a4, a5) will gather type-4 and type-5
data at regions r4, then type-4 data at region r6 (in this order)
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Fig. 1: Snapshots of simulation at 40s and 80s. Type-A and Type-B
robots are red and green squares, while the stored data units are
indicated by black circles. The data-gathering actions, data transfer
and upload actions are shown by filled green text boxes.

and also type-5 data at region r5, infinitely often, i.e., ϕc2 =
�3(((r4 ∧ g4)∧©(r4 ∧ g5))∧3(r6 ∧ g4))∧�3(r5 ∧ g5).
Finally, the third category (a6, a7, a8) will gather type-6 data
at regions r7, r9 and type-7 data at region r8, infinitely
often, i.e., ϕc3 = �3(r8 ∧ g7) ∧ �3(r7 ∧ g6) ∧ �3(r9 ∧
g6). The actions g2, g3, g4, g6 gather 2 units of data, while
actions g1, g5, g7 gather 1 unit.

B. Simulation Results

First, the roadmap of each robot is constructed using
the triangular partition as described in Section IV-A.1. For
instance, for robots a0, a1, a2, the FTS Ri has 16 nodes and
112 edges, the NBA Aϕi has 4 nodes and 13 edges.

Then each Type-A robot synthesizes its discrete plan using
the algorithm in [7], [21]. For instance, the first category
has the discrete plan τc1 = r0(r1g1r2g2r3g3)ω . The discrete
plans are executed according to Section IV-C.1, while the
data are transferred and uploaded during the meeting events
described in Section IV-C.2. The coordination for the next
meeting event and spontaneous meetings follow Sections IV-
B.2 and IV-B.3. We simulate the system for 100s and 115
units of data are uploaded, as shown in Figure 3. Simulation
snapshots at 40s and 80s are shown in Figure 1, where
we show the number of data units stored at each robot’s
buffer and the data gathering or transfer actions taken by
each robot. The evolution of stored data units at each
robot’s buffer along with time is shown in Figure 2. The
complete simulation video can be found online [24]. Notice
that the communication network among the robots is almost
never connected, given the communication range of 1m. In
particular, the maximum number of connected robots remains
below 5 during most of the simulation.

C. Comparisons to Other Approaches

1) Centralized Approach: A naive and centralized solu-
tion involves composing the motion models and task spec-
ifications of all robots into a complete system, which can
then be model-checked to find a centralized plan, subject to
the data constraints. This plan is then executed in a fully-
synchronized way by all robots [4]. If this approach is used,
the composed motion model of the whole system would have
around 1.6×1014 nodes and 7.3×1022 edges. The composed
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Büchi automaton would have around 1.4 × 106 nodes and
1.5 × 1011 edges. Thus to construct the product automaton
for the whole system would be computationally infeasible,
not to mention the plan synthesis.

2) Static Approaches: One static approach is to require
that all Type-B robots remain still at where they initial start
at all time. As long as each Type-A robot is informed about
the location of at least one Type-B robot, a Type-A robot
can simply navigate to the closest Type-B robot once it has
gathered some data that needs to be transferred. This solution
is always feasible for the given formulation, but can be very
inefficient if the workspace is large and many Type-B robots
are located close to each other initially. We implement the
above approach and simulate the system for 100s under the
same settings. As a result, 58 units of data are uploaded in
total, as shown in Figure 3, compared with 115 units via the
proposed dynamic approach.

Alternatively, all Type-A and Type-B robots can converge
to one location and move as a group at all time. Then the
Type-A robots could follow a predefined order to execute
their local plans. Since all Type-B robots are within the com-
munication range, the data gathered by any Type-A robot can
be transferred immediately to any Type-B robot and uploaded
directly. This approach imposes all-time connectivity of the
network. It can be inefficient since Type-A robots can not
execute their local plans simultaneously, while Type-B robots
are not fully utilized. We implement the above approach and
simulate the system for 100s under the same settings. The
Type-A robots rotate to execute their local plans according
to the order of their indexes. As shown in Figure 3, only 8
units of data are uploaded in total.

VI. CONCLUSION AND FUTURE WORK

In this work we proposed an online coordination scheme
for multiple robots under local data-gathering tasks, under
both communication and buffer size constraints. Future work
includes realistic communication models.
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