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Abstract— We consider a mobile robot tasked with gathering
data in an environment of interest and transmitting these data
to a data center. The task is specified as a high-level Linear
Temporal Logic (LTL) formula that captures the data to be
gathered at various regions in the workspace. The robot has a
limited buffer to store the data, which needs to be transmitted
to the data center before the buffer overflows. Communication
between the robot and the data center is through a dedicated
wireless network to which the robot can upload data with rates
that are uncertain and unknown. In this case, most existing
methods based on dynamic programming can not be applied
due to the lack of an accurate model. To address this chal-
lenge, we propose here an actor-critic reinforcement learning
algorithm where the task execution, workspace exploration,
and parameterized-policy learning are all performed online
and simultaneously. The derived motion and communication
control strategy satisfies the buffer constraints and is reactive
to the uncertainty in the wireless transmission rate. The
overall complexity and performance of our method is compared
in simulation to static solutions that search for constrained
shortest paths, and to existing learning algorithms that rely on
the construction of the product automaton.

I. INTRODUCTION

Autonomous robots have been proposed for a variety of
applications ranging from transportation, and healthcare, to
agriculture. In many of these applications the robots are
required to collect information about their environment or the
status of their tasks and send it to a user that can respond
to possible situations. Communication between robots and
users can take place through dedicated wireless networks to
which the robots are able to connect. Then, the goal is to
transmit information to the users in a timely and reliable way.
Recognizing that the wireless channel is uncertain and that
it is almost impossible to maintain reliable communications
for all time, in this paper we propose a new definition of
reliability that depends on the ability of the robot to transfer
a prescribed amount of data to the user over a desired interval
of time, while satisfying buffer size constraints. The tasks
assigned to the robot are specified as Linear Temporal Logic
(LTL) formulas [1]. There has been a large amount of work
focusing on motion planning under high-level temporal tasks
for a single robot [2], [3]. This framework has also been
extended to multi-robot systems; see [4], [5].

Communication among robots has typically relied on
proximity graphs in which case the communication problem
becomes equivalent to preservation of topological connec-
tivity [6]–[8]. Relevant is also recent work on intermittent

The authors are with the Department of Mechanical Engineering and
Materials Science, Duke University, Durham, NC 27708 USA. Emails:
meng.guo, michael.zavlanos@duke.edu. This work is
supported in part by the NSF awards CNS #1261828 and CNS #1302284.

communication control that allows the robots to temporarily
disconnect from the network to accomplish their tasks and
then meet periodically to communicate [9], [10]. While
simple, the above graph-based models do not capture tangible
and reliable communication. Instead, here we employ more
realistic communication models that take into account path
loss, shadowing, and multi-path fading as well as optimal
routing decisions for desired information rates, as discussed
in [11]–[14]. However, most of the aforementioned work
does not address complex high-level tasks specified as tem-
poral logic formulas.

Due to uncertainty in the wireless channel quality, the rate
at which the robot can upload data to the network at different
locations in the workspace becomes a random variable with a
distribution that is often unknown. Planning in such uncertain
systems is usually modeled using Markov Decision Processes
(MDP). If the MDP model is fully-known (particularly the
states and the transition probabilities between them), then
dynamic programming techniques can be applied to construct
an optimal control policy [15]. There has also been work that
controls MDPs to satisfy LTL specifications; e.g., see [16]–
[18]. However, if the transition probabilities are unknown, as
in this work, the above methods can not be directly applied;
instead, learning methods are needed to learn the optimal
policy and the MDP model at the same time. Here, we
rely on a reinforcement learning (RL) algorithm that is a
combination of the dynamic learning framework (see Chapter
9 of [19]) and the least-squares temporal difference (LSTD)
method of the actor-critic type proposed in [20]–[22].

The main contribution of this work lies in the co-design
of a robot motion and communication controller for high-
level data-gathering tasks in realistic wireless communication
network. The proposed algorithm does not assume perfect
knowledge of the wireless network model and the resulting
control strategy is reactive to the network quality during
run time. The computational efficiency and performance of
the proposed algorithm is validated via extensive numerical
simulations. To the best of our knowledge, this is the first
work that addresses high-level data-gathering tasks under
both buffer constraints and realistic wireless communication
networks. At the same time, this is the first approach that
combines reinforcement learning with motion and commu-
nication control synthesis from high-level LTL specifications
when the system model is unknown.

The most related work is [22], which applies the same
LSTD actor-critic algorithm to maximize the probability that
a MDP satisfies a given LTL specification. This work differs
from [22] in three ways: (i) [22] assumes that the MDP



model is known; (ii) [22] performs the learning over the
product automaton between the MDP and the Deterministic
Rabin Automaton (DRA) associated with the task; (iii) the
suffix behavior of the system is not considered in [22].
Since in our case the MDP model is unknown, the product
automaton cannot be constructed. Instead, we first synthesize
a discrete plan in the reduced space of robot positions that
is assumed known, and then use this discrete plan to guide
the learning process in the joint space of robot positions
and communication variables that are unknown. Another
recent work [23] proposes a probably approximately correct
MDP (PAC-MDP) methodology that estimates the MDP
model via a limited number of samples, which guarantees a
threshold on the optimality of the resulting policy. However,
RL algorithms are not explored there.

II. PRELIMINARIES ON LTL

Atomic propositions are Boolean variables that can be
either true or false. The ingredients of an LTL formula are
a set of atomic propositions AP and several boolean and
temporal operators, which are specified according to the
following syntax [1]: ϕ ::= > | p | ϕ1 ∧ ϕ2 | ¬ϕ | ©
ϕ | ϕ1Uϕ2, where > , True, p ∈ AP and © (next), U
(until). ⊥ , ¬>. For brevity, we omit the derivations of
other useful operators like � (always), 3 (eventually), ⇒
(implication). We refer the readers to Chapter 5 of [1] for a
full definition of LTL syntax and semantics.

III. PROBLEM FORMULATION

Consider a mobile robot that satisfies the first-order dy-
namics: ṗ(t) = u(t), where p(t) = [x(t), y(t)] ∈ R2 and
u(t) = [vx(t), vy(t)] are the robot’s position and velocity at
time t ≥ 0. The workspace is a bounded 2D area W ⊂ R2,
within which there are static clusters of obstacles O ⊂ W
and the free space F =W\O.

A. Data-gathering Tasks

The task assigned to the robot is to gather data in regions
of interest. Denote by Π = {π1, · · · , πM} these regions,
where π` ⊂ F , ∀` = 1, · · · ,M and M ≥ 1. Moreover, there
is a set of data-gathering actions that the robot can perform at
these regions, denoted by G = {g0, g1, · · · , gK}, where gk
means that “type-k data is gathered”, ∀k = 1, 2, · · · ,K
and K ≥ 1. By default, g0 means doing nothing. The cost
to perform each action is given by a function Z : G→ R+.

With a slight abuse of notation, we denote the set of
atomic propositions by AP = {π` ∧ gk, ∀π` ∈ Π,∀gk ∈
G}, where π` ∧ gk stands for “the robot gathers type-
k data at region π`”. We can specify a high-level data-
gathering task over AP , denoted by ϕ, following the LTL
semantics in Section II. LTL formulas allow us to specify
data-gathering tasks of finite or infinite executions.

Example 1: A mobile robot can first record video (g1)
at the entrance (π2), then infinitely often record temperature
(g2) at the lab (π1) and sample LiDAR pointclouds (g3) at the
storage (π3). This task can be specified as the LTL formula:
ϕ = 3

(
(π2 ∧ g1) ∧3(�3((π1 ∧ g2) ∧�3((π3 ∧ g3))

)
. �

The robot’s trace is defined as the sequence of regions the
robot has reached and actions it has performed there, i.e.,
TraceR = {π`1 , gk1}{π`2 , gk2} · · · , where π`i ∧ gki ∈ AP ,
∀`i, ki ≥ 1. Given the infinite trace TraceR, it can be verified
whether the robot’s behavior satisfies the task by checking
if TraceR |= ϕ, where |= is the satisfying relation [1].

B. Wireless Communication Network

Along with gathering data, the robot is also tasked with
transmitting this data to a data center. This data transfer hap-
pens through a wireless network deployed in the workspace,
whose set of nodes K , K0 ∪ Kr ∪ Ks consists of the data
center K0 , {0}, K − 1 relay nodes Kr , {1, · · · ,K − 1},
and the source robot Ks , {K}, where K ≥ 2. The data
center and all relay nodes are stationary at positions pk ∈ W ,
∀k ∈ K0∪Kr, while the coordinates of the robot are pK(t) =
p(t), ∀t ≥ 0. In this network, point-to-point connectivity is
modeled through a rate function Rkk′ that determines the
amount of information that is transmitted from node k ∈ K
and is successfully received by node k′ ∈ K. Then, the data
gathered by the robot is transmitted and routed to the data
center in a multi-hop fashion via the relays. The routing
decisions are captured by the variables Tkk′(t) ∈ [0, 1],
∀k, k′ ∈ K, that represent the fraction of time that node
k selects node k′ as its recipient. Since Tkk′(t) represent
time slot shares, they also satisfy

∑
k′∈K Tkk′(t) ≤ 1,

∀k ∈ K. Moreover, we assume that: (i) no self-transmission
is allowed, i.e., Tkk = 0, ∀k ∈ K; (ii) the data center only
receives data, i.e., T0k′ = 0, ∀k′ ∈ K; and (iii) the source
robot only sends data, i.e., Tk′K = 0, ∀k′ ∈ K.

Given routing decisions, the direct transmission rate from
node k to node k′ at time t can be defined as %kk′(t) ,
Tkk′(t)Rkk′ . Between their generation or arrival from an-
other node, and transmission, data are stored in a queue. Let
dk(t) ≥ 0 denote the size of the queue at node k at time t.
Then, the rate of change of the queue at node k is

ḋk(t) = %in
k (t)− %out

k (t), ∀k ∈ K, (1)

where %in
k (t) = %gen

k (t) +
∑
k′∈K %k′k(t) and %out

k =∑
k′∈K %kk′(t) are the total rates at which data arrive at

and leave node k, ∀k ∈ Kr, and %gen
k (t) is the rate of data

generated at node k at time t. The queue sizes dk(t) and
generated data %gen

k (t) satisfy the following assumptions:
Assumption 1: (i) The queue size for all relay nodes is

zero for all time, i.e., dk(t) = 0, ∀k ∈ K0 ∪Kr and ∀t ≥ 0;
and (ii) Only the source robot generates data, i.e., %gen

K (t) ≥ 0
and %gen

k (t) = 0, ∀k ∈ K0 ∪ Kr. �
Note that Assumption 1(i) can be ensured by selecting ap-

propriate routing decisions that satisfy (1), while Assumption
1(ii) is due the data-gathering tasks for the robot only.

C. Robot Buffer Dynamics and Constraints

Moreover, the robot has a limited buffer to store the
gathered data. Let B > 0 denote the maximum buffer size,
so that it should hold that dK(t) ≤ B, ∀t ≥ 0. In this paper,
we separate data generation from transmission. Specifically,
we make the following assumption.



Assumption 2: For all time t ≥ 0 when %gen
K (t) > 0, it

holds that Tkk′(t) = 0 for all k, k′ ∈ K. �
Under Assumption 2 and recalling equation (1), during the

data generation phase, the queue size at the robot evolves as

ḋK(t) = %in
K(t)− %out

K (t) = %gen
K (t) , D(gk)δ(t), (2)

where D : G → Z+ specifies the data units gathered
by taking action gk, as discussed in Section III-A, and
δ(t) is the unit impulse function, so that data generation
is considered instantaneous. Integrating (2), we have that
dK(t+) = dK(t−) +D(gk), where dK(t−) and dK(t+) are
the stored units before and after action gk is performed at t ≥
0. If dK(t+) > B, then this action gk can not be performed
as the buffer will overflow. We assume that D(gk) ≤ B,
∀gk ∈ G so that any action can be performed if the buffer is
empty. Similarly, we can obtain the rate of data leaving the
robot’s buffer during the transmission phase, as

ḋK(t) = %in
K(t)− %out

K (t) = −%out
K (t). (3)

D. Problem Statement

The considered problem is to determine motion and
communication controllers for a mobile robot so that its
LTL tasks are satisfied, the generated data is successfully
transmitted to the data center, and the total distance traveled
is minimized. Formally, this problem is defined as:

minu(t),T(t)

∫ τ

0

‖p(τ)‖dτ −
∫ τ

0

E[%out
K

(
p(τ),T(τ)

)
]dτ

s.t. TraceR |= ϕ,

%out
K (t),T(t) satisfies (1),
dK(t) satisfies (2), (3),
ṗ(t) = u(t) and p(t) ∈ F , ∀t ≥ 0,

(4)

where τ is the total execution time; u(t) is the control input;
T(t) , {Tkk′(t), ∀k, k′ ∈ K} is the set of routing decisions.

Note that LTL tasks such as those described in Example 1
can be executed indefinitely. In this case, τ represents the
time required to execute the plan prefix and single plan suffix
(which are defined in the sequel). Note also that in (4), along
with minimizing the distance traveled, the robot also needs
to maximize the cumulative rate at which it transmits data
to the network. While different objectives are possible to
select T(t), the proposed objective allows for faster data
transmission to the data center. Finally, in practice, the rate
functions Rkk′(t) in (1) depend on the signal-to-noise ratio
of the transmission channel, which is uncertain [11] and can
only be estimated during run time. Thus, the rates Rkk′(t)
become random variables and so is the uploading rate %out

K (t)
of the robot which appears in (4) in the expectation operator;
same holds for (1) and (3).

The main challenge in solving problem (4) lies in: (i)
addressing the joint optimization in the space of robot posi-
tions and communication variables subject to the LTL task;
and (ii) the fact that, the rate functions Rkk′(t) are random
and unknown. We tackle this challenge by decomposing the
high-level planning from communication routing. Then we
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Fig. 1: Example of the roadmap (in dashed green lines) within an
office workspace. The initial discrete plan (in blue) for the task
considered in Section VI is derived by following Section IV-A.2.

employ RL to synthesize the motion and communication
control strategy simultaneously, so that the high-level plan
can be successfully executed while optimizing the total cost.

IV. MOTION AND COMMUNICATION CONTROL

In this section, we present the motion and communication
control modules that are essential to solve Problem 4. We
first discuss the discrete plan synthesis algorithm for the local
task; second, we describe how the plan can be decomposed
into segments and then combined with the wireless routing;
and lastly, we describe the two-mode LSTD actor-critic RL
algorithm that learns the system model and a control policy.

A. Discrete Task Planning

In this section, we show how to build an abstraction of
the robot motion and then how to use this abstraction to
synthesize the initial discrete plan, which satisfies the task.

1) Abstraction of Robot Motion: First, a roadmap is
constructed to model the robot motion within the workspace
avoiding collision with the obstacles. In this work, we rely on
the sampling-based method [24] to construct a deterministic
roadmap. Denote this roadmap byM = (P, E), where P ⊂
F is the set of waypoints and E ⊆ P × P is the set of
edges. M is constructed as follows. Initially, P = {p0}
where p0 ∈ F is the robot’s initial position and E = ∅.
Then, we first uniformly sample the freespace F to obtain pr
and find the nearest waypoint pn ∈ P to pr. If pr can be
reached from pn within the sampling time Ts > 0 via a
straight-line path without colliding with the obstacles, then
we add pr to P and (pn, pr) to E. Otherwise, we resample F
for a new point pr. Given a point pr, we find every existing
waypoint ps ∈ P that can reach pr within time Ts and
add (pr, ps) to E. Finally we repeat the above process until
the maximum number of waypoints is reached.

Given M, we can construct a finite transition system
(FTS) to abstract the robot motion among different regions
in the workspace, which is denoted by T , (Π, →, Π0, C),
where Π ⊂ F is the set of regions of interest, →⊆ Π × Π
denotes the transition relation, Π0 ∈ Π is the initial region,
C : “ →′′→ R+ approximates the duration of each transi-
tion. Particularly, consider two regions πs, πf ∈ Π. Denote
by ps, pf ∈ P the closest waypoints to the center of πs



and πf , respectively. Then (πs, πf ) ∈→ if there exists a path
inM starting from ps and ending at pf without crossing any
other other region π` ∈ Π with ` 6= s, f . Denote the shortest
path by Γsf = psps+1 · · · pf . Then, C(πs, πf ) , |f − s| ·Ts
is the time to traverse Γsf , ∀(πs, πf ) ∈→.

Then the complete robot motion and action model is
defined by R = (Ξ, →R, AP, LR, ξ0, TR), where Ξ =
Π × G is the set of states; →R⊆ Ξ × Ξ is the transition
relation so that (〈πs, g`〉, 〈πf , gk〉) ∈→R if (i) 〈πs, πf 〉 ∈→
and gk = g0, or (ii) πs = πf and g`, gk ∈ G; AP are the
atomic propositions; LR(〈πs, g`〉) = {πs, g`}, ∀〈πs, g`〉 ∈
Ξ is the labeling function; ξ0 = 〈Π0, g0〉 is the initial
state; and TR(〈πs, g`〉, 〈πf , gk〉) = C(πs, πf ) + Z(g`),
∀(〈πs, g`〉, 〈πf , gk〉) ∈→R is the cost function.

2) Robot Motion and Action Plan: GivenR, we can apply
the method proposed in our earlier work [5] to synthesize
a discrete motion and action plan that has a prefix-suffix
structure and a minimal total cost (with respect to the cost
function TR above). We omit the algorithmic details here
due to limited space. This discrete plan has the form

Ξ , ξ0 ξ1 · · · ξL−1
[
ξL ξL+1 · · · ξH

]ω
, (5)

where ξ` ∈ Ξ, ∀` = 0, 1, · · · , H . Note that the suffix part
ξL ξL+1 · · · ξH is repeated infinitely often. Namely, Ξ is a
sequence of states that the robot follows to satisfy task ϕ, as
the trace of Ξ satisfies ϕ automatically [5]. An example of the
synthesized plan is shown in Figure 1. However, the discrete
plan Ξ does not account for the buffer constraints. Thus an
associated communication protocol needs to be designed for
the successful execution of Ξ.

B. Plan Decomposition and Critical Segments

As the robot follows Ξ, it collects data which needs to be
uploaded to the network before its buffer overflows. Let

ϑ , (ξs0 , ξg0)(ξs1 , ξg1) · · ·
[
(ξsC , ξgC ) · · · (ξsF , ξgF )

]ω
, (6)

be a subsequence of Ξ that contains states where the robot
needs to empty its buffer while executing Ξ, where ξsi , ξgi ∈
Ξ are the start and goal states of each segment, ∀si, gi ≥
0 and s0 < g0 ≤ s1 < g1 ≤ · · · ≤ sF < gF . We call
(ξsi , ξgi) ∈ ϑ the critical segments of Ξ.

Given Ξ and B, ϑ is constructed as follows: (i) First, s0, g0
are the smallest indices such that 0 <

∑s0
`=0D(g`) ≤ B,

and
∑g0
`=0D(g`) > B, where ξ` = 〈π`, g`〉 ∈ Ξ. Namely,

the robot buffer is less than or equal to B up to ξs0 , but
it will overflow after performing the data-gathering action
at ξg0 . Thus it is critical that the robot uploads the data
in its buffer within that segment. (ii) Second, si+1, gi+1

can be derived iteratively, such that gi ≤ si+1 < gi+1

are the smallest indices such that 0 <
∑si+1

`=gi
D(g`) ≤

B, and
∑gi+1

`=gi
D(g`) > B, which holds for all i ∈ [0, F ]

except for i = C,F , where C is the smallest index such
that gC−1 ≥ L and F is the smallest index such that gF ≥ H ,
where the indices L,H are given by the first and last states
of the suffix in Ξ of (5). (iii) Last, ξgC−1

, ξL and ξgF , ξL.
Namely, the repetitive suffix of ϑ is achieved by enforcing
an empty buffer each time the suffix of Ξ is executed.

C. Motion and Communication Policy Synthesis

In this section, we present how to synthesize a randomized
control policy such that a critical segment in (6) can be
executed and the robot’s buffer is emptied. The method is
based on the actor-critic RL algorithm [19] and the resulting
control policy is learned and improved during run time.
Specifically, we address the following problem.

Problem 1: Given a critical segment (ξsi , ξgi) in (6),
design a motion and communication policy such that the
robot starts from ξsi with buffer b ≤ B and reaches ξgi with
buffer 0, with a minimum expected travel distance. �

1) Joint Motion and Communication Space: We model
the joint motion and communication space as a Markov De-
cision Process (MDP) with unknown transition probabilities.
Particularly, it is defined as a 4-tuple:

χ , (S, A, δ, R), (7)

where: (i) The set of states is given by S = P ×D where P
is the set of waypoints from M and D = {0, ι, 2ι, · · · , Iι}
is a user-defined quantization of the buffer size with I ∈ N
the largest integer such that Iι ≤ B and ι > 0. Therefore,
state 〈pn, dk〉 ∈ S means that the robot is at waypoint pn
with dk units of data in its buffer, ∀pn ∈ P and ∀dk ∈
D; (ii) The function of admissible actions A : S → 2A

is given by A(〈pn, dk〉) = {apnpm ,∀(pn, pm) ∈ E}, ∀s =
〈pn, dk〉 ∈ S, where apnpm stands for “moving from pn
to pm” and A is the set of all allowed actions. (iii) The
transition probabilities are given by the function δ : S ×
A × S → [0, 1] such that δ(s, as, s′) is the probability of
transitioning from s to s′ via action as ∈ A(s), ∀s, s′ ∈ S.
In particular, consider s = 〈pn, dk〉, action apnpm ∈ A(s),
and s′ = 〈pm, d`〉. Then, it holds that

δ(s, apnpm , s
′) , Pr

(
ι ≤ ζ(pn, pm) ≤ dl − dk

)
, (8)

where ζ(·) =
∫ tm
tn

%out
K (p(τ),T(τ))dτ is a function that

returns the total amount of data that can be uploaded by the
robot to the network while moving from waypoint pn to pm
following M (during time tn to tm) and %out

K (p(t),T(t)) is
the optimal solution to the optimization problem

maxT(t) %
out
K (pK(t),T(t)), s.t. constraints by (1), (9)

for t ∈ [tn, tm]. Given the channel rates Rkk′(t) and robot
position p(t) at time t ∈ [tn, tm], problem (9) is linear and
can be solved efficiently via a Linear Program (LP) solver,
such as Gurobi [25]. For example, the data-uploading rate
within an office workspace given a wireless network is shown
in Figure 2; (iv) The reward function R : S × A → R≥0
satisfies R(s, a) = 0, ∀a ∈ A(s) if s = s0 , 〈psi , Iι〉,
R(s, a) = 1, ∀a ∈ A(s) if s = sg , 〈pgi , 0〉, and
R(s, a) = −1 otherwise, where s0, sg are the initial and
goal states, and psi , pgi are waypoints of ξsi , ξgi . Namely,
a positive reward is received only at the goal state, while a
negative reward is received at all intermediate states in order
to minimize the total distance to reach the goal state.
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Fig. 2: Heatmap of the data-uploading rate (in “MB/s”) within an
office workspace used in simulation Section VI, where the data
center (purple diamond) and relay nodes (green pentagons) are also
shown. The transmission rate at each location is derived by (9).

Remark 1: The function ζ(pn, pm) is unknown because
the channel rates Rkk′ are unknown and so is the distri-
bution of uploading rates %out

K (·) along the trajectory from
waypoint pn to pm by (9). Therefore, the rates %out

K (·) can
only be determined empirically during run time. �

Remark 2: The communication problem (9) is defined
here as a proxy to the second objective in problem (4). Deter-
mining robot waypoints associated with maximum uploading
rates as per (9) is a sufficient condition for solving (4). �

2) Two-mode LSTD Actor-Critic RL Algorithm: Standard
dynamic programming techniques [15] can not be applied
directly here since the exact model of χ is unknown. Instead
we employ RL algorithms [19], [21] so that the robot
can actively explore its environment, learn the model, and
determine the optimal control policy, all at the same time. In
the sequel, we denote by χ̃ the current estimate of χ that is
known by the robot, and by δ̃ the estimate of the transition
probability. Moreover, δ̃ can be initialized based on empirical
data of the uploading rate across the workspace.

We consider the actor-critic RL algorithm proposed in [19]
and particularly the LSTD type proposed in [20]–[22]. It
consists of two parts: the actor that controls the system
according to the current policy and the critic that oversees the
actor’s actions and more importantly the received reward in
order to evaluate how the policy can be improved. The policy
employed by the actor is a parameterized and randomized
stationary policy given by (instead of a lookup table):

ηθ(s, a) ,
eh(θ,s,a)∑

b∈A(s) e
h(θ,s,b)

(10)

where θ ∈ R2 is the parameter; ηθ(s, a) ∈ [0, 1] is the
probability of applying action a ∈ A(s) at state s ∈ S
using the Boltzmann distribution [19]; h(θ, s, a) ∈ R is the
estimated score of applying action a at state s given the
current value of θ:

h(θ, s, a) , θᵀ ·w(s, a) (11)

where w(s, a) ∈ R2 is the estimated feature vector of the
state-action pair (s, a) within χ̃, defined as

w(s, a) ,

[
νp(s, sg)−

∑
s′ δ̃(s, a, s

′) νp(s
′, sg)

νd(s, sg)−
∑
s′ δ̃(s, a, s

′) νd(s
′, sg)

]
, (12)

where νp(s, sg) , dijkstra(M, p, pg) ≥ 0 is the distance
feature measured by the length of the shortest path from
waypoint p to pg in the roadmap M; and νd(s, sg) , ‖dg −
d‖ ≥ 0 is the data feature measured as the difference in
the data size, where s = 〈p, d〉 and sg = 〈pg, dg〉, ∀s, sg ∈
S. Note that both νp and νd can be computed easily given
the estimated model χ̃. Thus, given a value of θ, for any
state s ∈ S and any allowed action a ∈ A(s), ηθ(s, a) can
be computed on-the-fly, without the need of a table to store
it. On the other hand, the critic maintains an estimate of the
parameterized state-action value function Q(s, a) defined as

Qrθ(s, a) , φᵀ
θ(s, a) · r, (13)

where r ∈ R2 is the parameter and φθ(s, a) ∈ R2 is the
gradient of the function ln

(
ηθ(s, a)

)
with respect to θ, i.e.,

φθ(s, a) , ∇θ ln
(
ηθ(s, a)

)
= w(s, a)−

∑
b∈A(s)

ηθ(s, b)w(s, b),
(14)

where the second equation is derived directly from (11)
and (12). The reason that Qrθ(s, a) is designed to have the
structure above is closely related to the actor-critic update
algorithm below. Specifically, denote by θk, rk the value of
the parameters θ and r at time k, by sk the state at which
robot is and by ak the action robot takes at time k, ∀k ≥ 0.
Then, at time k ≥ 0, the actor updates θk as

θk+1 = θk − βk rᵀkφθk
(sk, ak)φθk

(sk+1, ak+1), (15)

where θ0 is the initial value and βk > 0 is a time-varying
step size. On the other hand, the critic updates rk as

zk+1 = λ zk + φθk
(sk, ak),

bk+1 = bk + γk
[
R(sk, ak)zk − bk

]
,

Ak+1 = Ak + γk
[
zk
(
φᵀ

θk
(sk+1, ak+1)

− φᵀ
θk

(sk, ak)
)
−Ak

]
,

rk+1 = −A−1k bk,

(16)

where zk ∈ R2, bk ∈ R2, Ak ∈ R2×2 are internal variables
initialized as A0 = I2, z0 = b0 = r0 = [0, 0], λ ∈ (0, 1)
is a design parameter, and γk > 0 is another time-varying
step size. Note that R(sk, ak) is the reward obtained by the
robot for performing action ak at sk from (7).

The proposed RL algorithm is shown in Alg. 1. It can
be run in two different modes: (i) the direct mode where
the robot learns from real experience by interacting with
the environment, and (ii) the indirect mode where the robot
learns from simulated experience. Specifically, in the case
of direct learning (as shown in Lines 3-7), starting from the
initial state s = 〈pn, dk〉, the robot chooses its action as by
following the randomized policy ηθ(s, a) (to move from pn
to pm). While executing the action as, it uploads data
according to the optimal routing decisions T?(pn) obtained
by solving problem (9). After the robot reaches waypoint pm,
it updates its state as s = 〈pm, dh〉, where dh ∈ D
is the amount of data left in the robot’s buffer. Then, δ̃
is updated given the transition (〈pn, dk〉, 〈pm, dh〉). More
importantly, the policy parameter θ is updated as in (15).



Algorithm 1: Policy Synthesis for One Critical Segment
Input: (ξsi , ξgi) ∈ ϑ, optional θsigi , χ̃0

1 Initialize variables in (15) and (16).
2 if direct mode then // Direct learning
3 Choose randomized action as by ηθ(s, a) in (10).
4 Transmit data with the routing parameter T?(t) via

solving optimization (9). // Communication
5 Update state s after action as is done, based on the

amount of data b(t) in buffer.
6 Update δ̃ of χ̃, and update θ via (15)-(16).
7 Repeat lines 3-6 until s = sg .
8 else // Indirect learning
9 Choose randomized action as by ηθ(s, a) in (10).

10 Determine the next state s′ directly via χ̃.
11 Update θ via (15)-(16) and set s = s′.
12 Repeat lines 9-11 until desired number of episodes.

13 return χ̃, θsigi = θ.

Similar procedure applies to the case of indirect learning
(as shown in Lines 9-12), where the main difference is that
instead of moving to pm and measuring the uploaded data,
the robot simulates the next state based on δ̃. As mentioned
in Chapter 9 of [19], indirect methods often make fuller use
of a limited amount of experience and thus achieve a better
policy with fewer environmental interactions. On the other
hand, direct methods refine the policy using actual data and
are not affected by bias in the estimated model.

Theorem 1: For each (ξsi , ξgi) ∈ ϑ, assuming that the real
model χ is static, then Alg. 1 converges to the neighborhood
of the locally optimal θ? after a finite repetition of Ξ, under
the appropriate choices of the step-size {γk}, {βk} and λ.

Proof: The proof follows directly from Theorem III
of [20] and Theorem 3.13 of [22]. Given that the choices
of {γk}, {βk} satisfy Assumption C of [20] and λ is
sufficiently close to 1, θ converges to the neighborhood of
the locally optimal θ? such that no improvement larger than
a given bound can be made regarding the expected total
reward. The same argument holds for each critical segment
in ϑ. A detailed proof is omitted due to limited space.

V. THE INTEGRATED SYSTEM

In this section, we integrate the components described in
Section IV into a complete system. Then we discuss the
performance and computational complexity of our method.

A. Complete Plan Execution and Task Satisfaction

The integrated algorithm alternates between the execution
of the discrete plan Ξ and the online policy learning for each
critical segment. By guaranteeing that each critical segment
can be successfully executed, we also ensure the successful
execution of Ξ and thus the satisfaction of task ϕ. More
importantly, we fuse the two-mode LSTD actor-critic RL
algorithm with the high-level plan execution.

Firstly, the discrete plan Ξ and the sequence of critical
segments ϑ are synthesized. Then starting from the first

element ξ` of Ξ for ` = 0, the robot moves towards ξ`+1.
There are two cases: (i) If ξ` = 〈πs, gl〉 does not belong to a
critical segment of ϑ, then the robot does not need to transmit
data and can move directly to the next state ξ`+1 = 〈πf , gk〉
in Ξ by following the shortest path from πs to πf inM. Also
the robot needs to perform the action gk at πf to gather data.
(ii) If ξ` corresponds to a critical segment (ξ`, ξ`+1) ∈ ϑ, the
robot needs to empty its buffer before reaching ξ`+1. Then,
Alg. 1 is called first in the indirect mode for a desired number
of episodes to improve θsigi . Afterwards, Alg. 1 is called in
the direct mode to update χ̃ and θsigi .

It is worth mentioning that the policy parameter θsigi is
saved for each critical segment (ξsi , ξgi) ∈ ϑ and used as
the initial θ in Alg. 1 each time the robot traverses (ξsi , ξgi).
Furthermore, each time the robot runs Alg. 1 for the segment
(ξsi , ξgi), not only the policy parameter θsigi but also the
model χ̃ are improved. The model χ̃ can be used in Alg. 1 as
the updated model for all critical segments, by only changing
the reward function (given the initial and final states of the
current critical segment). The above process repeats itself
for all consecutive segments (ξ`, ξ`+1) ∈ Ξ in (6) until the
system is stopped. Notice that over time, while the robot
keeps executing the plan and exploring the workspace, the
model χ̃ becomes accurate in terms of its ability to represent
the real world. Consequently, the control policy for each
critical segment (ξsi , ξgi) ∈ ϑ, i.e., the parameter θsigi , will
converge to a steady value as shown in Theorem 1.

Theorem 2: (I) TraceR |= ϕ; (II) %out
K (t),T(t) satis-

fies (1), ∀t ≥ 0; (III) b(t) satisfies (2), (3), ∀t ≥ 0.
Proof: The first part is ensured by the correctness of

the discrete plan Ξ and the model-checking process. The
second and third parts are guaranteed by the construction
of the critical segments ϑ and Alg. 1. Particularly, while
executing Ξ, the robot buffer size increases when the robot
performs a data-gathering action and is emptied when the
robot learns the dynamic policy for each critical segment.

Note that the proposed approach does not necessarily
provide the optimal solution of (4), as the discrete plan Ξ is
synthesized without full knowledge of the wireless network.

B. Computational Complexity

The size of the roadmap M depends on the number of
waypoints. Then the size of R is polynomial in |M| and
the robot action model is typically small. The algorithm
in [5] to construct Ξ has complexity O(|R| · 22

|ϕ|
), i.e.,

polynomial in the size of R and double-exponential in the
length of ϕ [1]. Lastly, as also discussed in [22]. The learning
space of Alg. 1 lies in R2, independent of the size of χ. The
complete complexity is linear to the length of the discrete
plan Ξ, particularly the number of critical segments in ϑ.

VI. CASE STUDY

This section presents simulation results for the proposed
approach. All algorithms are implemented in Python 2.7 and
are available in [26]. The simulations are carried out on a
laptop (3.06GHz Duo CPU and 8GB of RAM).
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Fig. 3: Snapshot of the simulation at time 75s. The robot (in
filled blue circle) is learning the policy for the critical seg-
ment ((74, 42), (23, 24)). The robot’s past trajectory is shown in
yellow, while the absolute shortest path is in red and the constrained
shortest path is in black. The robot’s buffer is shown as the filled
bar (in magenta). Simulation videos can be found at [27].

A. System Description

A robot that satisfies the first-order dynamics is deployed
in the workspace shown in Figure 3. Its maximum velocity
is set to 1m/s. It has buffer size of 80 data units. The
workspace has size 100m × 45m and is partitioned into
regions that resemble an office environment. The control
sampling time is chosen to be 1s. The wireless network
consists of one data center located at (2, 2), four relay nodes
located at (85, 2),(10, 42),(70, 42),(40, 2), respectively, and
the robot. Furthermore, we use the model discussed in [11]
to estimate the channel quality: Pkk′ ∼ L0−10n · log

(
‖pk−

pk′‖
)
− W (pk, pk′) − Fkk′ , where pk, pk′ ∈ W are the

positions of nodes k, k′ ∈ K; L0 > 0 denotes the measured
power at a distance d0 > 0 from the source, n is a path loss
exponent, W (pk, pk′) is a non-smooth function that models
shadowing effects, and Fkk′ is a Gaussian random variable
that models fading effects. Using the signal strength, we
can generate samples of the packet error rate and thus the
transmission rate Rkk′ [11]. We set L0 = 10, n = 0.1 and the
effect of W, F is represented by a 40% uniform uncertainty.

The robot is capable of performing three actions
(g1, g2, g3) to collect type-1, type-2, and type-3 data over four
regions of interest r1, r2, r3, r4, located at (55, 37), (23, 24),
(84, 13), (75, 42), as shown in Figure 1. Moreover, the ac-
tions g1, g2, g3 gather 40, 50, 70 units of data, respectively.
Initially, the robot starts from r1. The robot is tasked with
infinitely often gathering type-2 data at region r2 and type-1
data at region r1, visiting region r3 before gathering type-3
data at region r4, and then gathering type-1 data at region r2,
i.e., ϕ = (�3(r2 ∧ g2))∧ (�3(r1 ∧ g1))∧�(3((r3 ∧ g0)∧
3(r4∧g3)))∧(�3(r2∧g1)). It can be seen that none of the
two data-gathering actions can be performed consecutively
by the robot without emptying its buffer first.

B. Simulation Results

Following Section V, first, a roadmap of 150 nodes
and 810 edges is constructed as shown in Figures 1-3.
Then it took 0.6s for the synthesis algorithm in [5] to
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Fig. 4: Evolution of θ for two critical segments in ϑ, after 30
repetitions of the suffix of the discrete plan Ξ.

Approach MDP χ Size Time Iterations Cost

Proposed (1.2e4, 6.5e4) 2.5 mins 120 186

Product-

based

LP (5.2e5, 3.1e6) 6.8 hrs 1 133

RL (5.2e5, 3.1e6) 20.3 hrs 30 157

TABLE I: Comparison between the proposed method and the
product-based approach via [17] (based on LP) and [22] (based
on Actor-critic RL), if the model is fully known, regarding the
computational complexity and performance. Note aeb , a× 10b.

find the discrete plan Ξ, of which the repetitive suffix
is [r1g1r2g2r3g0r4g3r1g1] and shown in Figure 1. Lastly,
the sequence of critical segments is derived as ϑ =
[((r1, g1), (r2, g0)), ((r2, g2), (r4, g0)), ((r4, g3), (r2, g0)),
((r2, g1), (r1, g0))]ω , which contains four repeated critical
segments. For each critical segment, we initialize the RL
algorithm by θ = [1.0, 0.1], ι = 0.5, λ = 0.99 and the step
size γ = 1/k, β = 1/k2, for k = 1, · · · ,K, where K
is the number of times that the suffix of Ξ is repeated.
The initial model χ̃0 is derived by (7), which has 12150
nodes and 65610 transitions. Then Alg. 1 is called for 10
episodes of indirect learning and 1 episode of direct learning,
for each critical segment in ϑ. We perform 30 executions
of Ξ and every critical segment is executed once during each
execution. It took 95s in total and the evolution of θ for
two critical segments is shown in Figure 4, which shows
that θ converges to a local optimal as proven in Theorem 1.
Note that a different final value of θ is reached for differ-
ent segments. For instance, θ converges to [2.13, 0.09] for
segment ((r1, g1), (r2, g0)); and to [2.56, 0.14] for segment
((r2, g2), (r4, g0)). Furthermore, given the final values of θ,
we performed 200 Monte-Carlo simulations of the robot
executing the plan Ξ by following the policies in (10). The
distribution of the total cost of the resulting trajectories is
shown in Figure 5. The simulation videos of the first and
final learning process are available at [27].

C. Comparisons

1) Product-based Approach: As mentioned in Section V-
B, assuming that the system model χ is fully known, the
product-based approach proposed in [17] (based on Lin-
ear Programming) and in [22] (based on Actor-critic RL)
requires first the full construction of motion and action
model χ (which has 12482 states and 191242 edges) and
the Deterministic Robin Automaton (DRA) Aϕ associated
with ϕ [1] (which has 42 states, 210 edges and 2 accepting
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Fig. 5: Distribution of the total cost for each critical segment under
200 Monte-Carlo simulations, by the proposed approach and the
adaptive shortest path strategy described in Section VI-C.2.

pairs). Then, the product automaton between χ and Aϕ can
be constructed (which has 5.2 × 105 states and 3.1 × 106

edges and 2 accepting pairs). The resulting policy drives the
system to reach and remain within the accepting maximum
end components (AMEC). Table I compares the complexity
and performance of these three approaches. It can be seen
that while the average total cost via the product-based
approach is smaller than our approach, the computational
time and memory complexity is much higher due to the
enormous size of the product automaton and the complexity
of evaluating the feature vector for each state as proposed
in [22]. Implementation details can be found in [26].

2) Adaptive Shortest Path Strategy: One simple control
strategy to overcome uncertainties in the communication
network is via the adaptive shortest path. Namely, the robot
follows the shortest path to reach a goal state in χ̃. Each
time it reaches a new state, it checks if its current buffer
size is less than the expected size at this state. If not, it
waits there and uploads data until this condition holds. This
strategy ensures the robot buffer will never overflow, but
can be quite inefficient when the uploading rate has large
uncertainty and particularly falls below the expected value.
We performed 200 Monte-Carlo simulations of the robot
executing Ξ by this strategy. The distribution of total cost
for each critical segment is shown in Figure 5. It can be
seen that the proposed approach reduces greatly the control
effort for each critical segment and thus the whole plan.

VII. CONCLUSION AND FUTURE WORK

In this work we propose a joint robot motion and commu-
nication control strategy that guarantees the satisfaction of a
data-gathering task subject to buffer constraint and wireless
network routing constraint. The task execution, workspace
exploration and parameterized control policy learning are
all performed online and simultaneously. Compared with
existing work, it does not assume a fully-known environment
model and avoids constructing the product automaton. Future
work involves multiple-robot systems.
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