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Abstract Current control applications necessitate in many cases the consideration of
systems with multiple interconnected components. These components/agents may
need to fulfill high level tasks at a discrete planning layer and also coupled con-
straints at the continuous control layer. Towards this end, the need for combined
decentralized control at the continuous layer and planning at the discrete layer be-
comes apparent. While there are approaches that handle the problem in a top-down
centralized manner, decentralized bottom up approaches have not been pursued to
the same extent. We present here some of our results for the problem of combined,
hybrid control and task planning from high level specifications for multi-agent sys-
tems in a bottom up manner. In the first part, we present some initial results on ex-
tending the necessary notion of abstractions to multi-agent systems in a distributed
fashion. We then consider a set up where agents are assigned individual tasks in
the form of Linear Temporal Logic (LTL) formulas and derive local task planning
strategies for each agent. In the last part, the problem of combined distributed task
planning and control under coupled continuous constraints is further considered.

1 Introduction

We consider multi-agent systems that need to fulfill high-level tasks, e.g., to period-
ically reach a given subset of states, or to reach a certain set of states in a particular
order, and also undergo dynamically coupled constraints, e.g., to maintain connec-
tivity, or avoid collisions. Towards this end, the need for combined decentralized
control at the continuous layer and planning at the discrete layer becomes apparent.
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While there are approaches that handle the problem in a top-down centralized man-
ner, decentralized bottom-up approaches have not been pursued to the same extent.
We present here some of our results for the problem of hybrid control synthesis of
multi-agent systems under high-level specifications in a bottom-up manner. This ap-
proach can enhance various system properties, such as reducing the computational
complexity induced by the number of agents, improving modularity in terms of new
agents entering the system, and incorporating fault tolerance, robustness and adapt-
ability to changes in the workspace.

The next part focuses on distributed abstractions of the multi-agent system. We
assume that the agents’ dynamics consist of feedback interconnection terms, which
represent dynamically coupled constraints of the multi-agent system, and additional
bounded input terms, which we call free inputs and provide the ability for motion
planning under the coupled constraints. For the derivation of the symbolic models,
we quantify admissible space-time discretizations in order to capture reachability
properties of the original system. We provide sufficient conditions which establish
that the abstraction of our original system is well posed, in the sense that the finite
transition system which serves as an abstract model for the motion capabilities of
each agent has at least one outgoing transition for every discrete state. Each agent’s
abstract model is based on the knowledge of its neighbors’ discrete positions and the
transitions are performed through the selection of appropriate hybrid control laws
in place of the agent’s free input, which enable the manipulation of the coupling
terms and can drive the agent to its possible successor states. In addition, the de-
rived discretizations include parameters whose tuning enables multiple transitions
and provides quantifiable motion planing capabilities for the system. Finally, the
corresponding results are generalized by allowing for a varying degree of decentral-
ization i.e., by building each agent’s abstract model based on the knowledge of its
neighbors’ discrete positions up to a tunable distance in the communication graph.

In the next part we deal with dependent temporal logic specifications at the dis-
crete planning level. Namely, the agents’ behaviors are limited by mutually indepen-
dent temporal logic constraints, allowing to express safety, surveillance, sequencing,
or reachability properties of their traces, and, at the same time, a part of the specifi-
cation expresses the agents’ tasks in terms of the services to be provided along the
trace. These may impose requests for the other agents collaborations. We propose a
two-phase solution based on automata-based model checking, in which the planning
procedure for the two types of specifications is systematically decoupled. While this
procedure significantly reduces the cost in the case of sparse dependencies, it meets
the complexity the centralized solution at worst-case. We introduce an additional
iterative limited horizon planning technique as a complementary technique.

We then tackle the multi-agent control problem under local temporal logic tasks
and continuous-time constraints. The local tasks are dependent due to collaborative
services, while at the same time the agents are subject to dynamic constraints with
their neighboring agents. Thus, integration of the continuous motion control with the
high-level discrete network structure control is essential. Particularly, the agents are
subject to relative-distance constraints which relate to the need of maintaining con-
nectivity of the overall network. The local tasks capture the temporal requirements



Title Suppressed Due to Excessive Length 3

on the agent’s actions, while the relative-distance constraints impose requirements
on the collective motion of the whole team. Our approach to the problem involves an
offline and an online step. In the offline step, we synthesize a high-level plan in the
form of a sequence of services for each of the agents. In the online step, we dynam-
ically switch between the high-level plans through leader election and choose the
associated continuous controllers. The whole team then follows the leader towards
until its next service is provided and then a new leader is selected. It is guaranteed
that each agent’s local task will be accomplished and the communication network
remains connected at all time.

2 Decentralized Abstractions

2.1 Introduction

In this section, we focus on multi-agent systems with continuous dynamics con-
sisting of feedback terms, which induce coupling constraints, and bounded additive
inputs, which provide the agents’ control capabilities. The feedback interconnection
between the agents can represent internal dynamics of the system, or alternatively, a
control design guaranteeing certain system properties (e.g., network connectivity or
collision avoidance), which appears often in the multi-agent literature. The results
are based on our recent works [3] and [4], which provide sufficient conditions for
the existence of distributed discrete models for multi-agent systems with coupled
dynamics. In particular, our main goal is to obtain a partition of the workspace into
cells and select a transition time step, in order to derive for each agent an abstract
discrete model with at least one outgoing transition from each discrete state. Compo-
sitional approaches for symbolic models of interconnected systems have been also
studied in the recent works [7], [17], [19], [20], and [21], and are primarily focused
on the discrete time case.

2.2 Problem Formulation

We consider multi-agent systems of the form

ẋi = fi(xi,x j)+ vi,xi ∈ Rn, i ∈N , (1)

where N := {1, . . . ,N} stands for the agents’ set. Each agent is assumed to have
a fixed number Ni of neighbors j1, . . . , jNi . The dynamics in (1) are decentralized
and consist for each i ∈ N of a feedback term fi(·), which depends on i’s state
xi and the states of its neighbors, which are compactly denoted by x j(= x j(i)) :=
(x j1 , . . . ,x jNi

), and an additional input term vi, which we call free input. We assume
that the feedback terms fi(·) are globally bounded, namely, there exists a constant
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M > 0 such that
| fi(xi,x j)| ≤M,∀(xi,x j) ∈ R(Ni+1)n (2)

and that they are globally Lipschitz. Thus, there exist constants L1,L2 > 0, such that

| fi(xi,x j)− fi(xi,y j)| ≤ L1|(xi,x j)− (xi,y j)|, (3)
| fi(xi,x j)− fi(yi,x j)| ≤ L2|(xi,x j)− (yi,x j)|, (4)

for all xi,yi ∈ Rn, x j,y j ∈ RNin and i ∈ N . Furthermore, we consider piecewise
continuous free inputs vi that satisfy the bound

|vi(t)| ≤ vmax,∀t ≥ 0, i ∈N . (5)

The coupling terms fi(xi,x j) are encountered in a large set of multi-agent proto-
cols [16], including consensus, connectivity maintenance, collision avoidance and
formation control. In addition, (1) may represent internal dynamics of the system
as for instance in the case of smart buildings (see e.g., [1]). It is also assumed that
the maximum magnitude of the feedback terms is higher than that of the free inputs,
namely, that vmax < M. This assumption is in part motivated by the fact that we
are primarily interested in maintaining the property that the feedback is designed
for, and secondarily, in exploiting the free inputs in order to accomplish high level
tasks. A class of multi-agent systems of the form (1) which justifies this assumption
has been studied in our companion work [5], which is focused on robust network
connectivity maintenance by means of bounded feedback laws. It is worthwhile
mentioning that all these assumptions are removed in [6], where the discrete models
are built online over a bounded time horizon, and require only forward completeness
of the system’s trajectories.

In what follows, we consider a cell decomposition S = {Sl}l∈I of the state space
Rn, which can be regarded as a partition of Rn, and a time step δ t > 0. We will refer
to this selection as a space and time discretization. Given the indices I of a de-
composition, we use the notation li = (li, l j1 , . . . , l jNi

) ∈I Ni+1 to denote the indices
of the cells where agent i and its neighbors belong and call it the cell configuration
of i. Our goal is to build an individual transition system of each agent i with state
set the cells of the decomposition, actions determined through the possible cells of
its neighbors, and transition relation specified as follows. Given the initial cells of
agent i and its neighbors, it is possible for i to perform a transition to a final cell, if
for all states in its initial cell there exists a free input, such that its trajectory will
reach the final cell at time δ t, for all possible initial states of its neighbors in their
cells, and their corresponding free inputs.

For the synthesis of high level plans, we require the discretization to be well
posed, in the sense that for each agent and any initial cell it is possible to perform a
transition to at least one final cell. In order to illustrate the concept of a well posed
space-time discretization, consider the cell decompositions depicted in Fig. 1 and a
time step δ t. For both decompositions in the figure we depict a cell configuration of
agent i and represent the endpoints of agent’s i trajectories at time δ t through the tips
of the arrows. In the left decomposition, we select three distinct initial conditions of
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i and observe that the corresponding reachable sets at δ t lie in different cells. Thus,
given this cell configuration of i it is not possible to find a cell in the decomposition
which is reachable from every point in the initial cell and we conclude that the dis-
cretization is not well posed for the system. In the right figure, we observe however
that for the three distinct initial positions in cell Sli , it is possible to drive agent i to
cell Sl′i

at time δ t. We assume that this is possible for all initial conditions in this
cell and irrespectively of the initial conditions of i’s neighbors in their cells and the
inputs they choose. By additionally assuming this property for all configurations of
the agents, we establish a well posed discretization for the system.

Sli xi

Sl j1

x j1

Sl j2

x j2

Discretization (A) Discretization (B)

Sli xi

Sl j1x j1

Sl j2
x j2Sl′i

xi(δ t) xi(δ t)

Fig. 1 Illustration of a non-well posed (A) and a well posed (B) discretization.

2.3 Derivation of Well Posed Discretizations

In order to enable the desired transitions of each agent in the presence of the cou-
pling terms fi(·), we assign hybrid control laws to the free inputs vi. We next pro-
vide the specific feedback laws that are utilized therefore. Consider first a cell de-
composition S = {Sl}l∈I of Rn and a time step δ t. For each agent i ∈ N and
cell configuration li = (li, l j1 , . . . , l jNi

) of i select an Ni +1-tuple of reference points
(xi,G,x j,G)∈ Sli×(Sl j1

×·· ·×Sl jNi
) and define Fi,li(xi) := fi(xi,x j,G), xi ∈Rn. Also,

let zi(·) be the solution of the initial value problem żi = Fi,li(zi), zi(0) = xi,G, which
we call the reference trajectory of i. This trajectory is obtained by “freezing” agent
i’s neighbors at their corresponding reference points through the feedback term

ki,li,1(t,xi,x j) := fi(zi(t),x j,G)− fi(xi,x j), (6)

in place of the agent’s free input vi. Also, by selecting a vector wi from the set

W := B(λvmax),λ ∈ (0,1), (7)



6 Meng Guo, Dimitris Boskos, Jana Tumova, and Dimos V. Dimarogonas

(the ball with radius λvmax in Rn) and assuming that we can superpose to the ref-
erence trajectory the motion of i with constant speed wi, namely, move along the
curve x̄i(·) defined as x̄i(t) := zi(t)+ twi, t ≥ 0, we can reach the point x inside the
depicted ball in Fig. 2 at time δ t from the reference point xi,G. The parameter λ in
(7) stands for the part of the free input that is used to increase the transition choices
from the given cell configuration. In a similar way, it is possible to reach any point
inside the ball by a different selection of wi. This ball has radius

r := λvmaxδ t, (8)

namely, the distance that the agent can cross in time δ t by exploiting the part of the
free input that is available for reachability purposes. For the abstraction, we require
the ability to perform a transition to each cell which has nonempty intersection with
B(zi(δ t);r). These transitions are enabled via the feedback laws

ki,li(t,xi,x j;xi0,wi) := ki,li,1(t,xi,x j)+ ki,li,2(xi0)+ ki,li,3(wi), (9)

parameterized by xi0 ∈ Sli , wi ∈W , where ki,li,1(·) is given in (6) and with

ki,li,2(xi0) :=
1
δ t

(xi,G− xi0), ki,li,3(wi) := wi, xi0 ∈ Sli ,wi ∈W. (10)

In order to perform for instance a transition to the cell where the point x in Fig. 2
belongs, we require that the feedback law ki,li(·) drives agent i to the endpoint of
the curve x̄i(·) from each initial condition in Sli . This is accomplished by exploit-
ing the extra terms ki,li,2(·) and ki,li,3(·). The derivation of well posed discretiza-
tions is additionally based on the choice of cell decompositions and associated time
steps δ t which ensure that the magnitude of the feedback law apart from the term
wi in ki,li,3(·) does not exceed (1− λ )vmax. Thus, due to (7), which implies that
|wi| ≤ λvmax, it follows that the total magnitude of the applied control law will be
consistent with assumption (5) on the free inputs’ bound. Notice also that due to the
assumption vmax < M, it is in principle not possible to cancel the interconnection
terms. Furthermore, the control laws ki,li(·) are decentralized, since they only use
information of agent i’s neighbors states and they depend on the cell configuration
li, through the reference points (xi,G,x j,G) which are involved in (6) and (10).

Based on the control laws in (9) and assuming given a space-time discretiza-
tion S− δ t, we derive the transition system T Si := (Qi,Acti,−→i) of each agent,
where Qi is a set of states, Acti is a set of actions and −→i is a transition rela-
tion with −→i⊂ Qi × Acti ×Qi. In particular T Si is given by Qi := I , i.e., the
cells of the decomposition, Acti := I Ni+1 and the transition relation −→i defined
as follows: given li ∈ I , li = (li, l j1 , . . . , l jNi

) and l′i ∈ I , we enable the transition
(li, li, l′i) ∈−→i, if there exists a parameter wi, such that the control law ki,li(·) in (9)
guarantees that the agent will reach cell Sl′i

at δ t, from any initial condition in its
cell, based only on the fact that its neighbors belong to the corresponding cells in li.
By denoting Posti(li; li) := {l′i ∈I : (li, li, l′i) ∈−→i}, it follows that the discretiza-
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Sli

Sl′i

zi(δ t)

xi(δ t) = x

B(zi(δ t);r)r zi(t)

x̄i(t)

xi(t)

xi0

xi,G

Fig. 2 Consider any point x inside the ball with center zi(δ t). Then, the control law ki,li (·) ensures
that for each initial condition xi0 ∈ Sli , agent’s i trajectory xi(·) will reach x at time δ t. Thus, since
x ∈ Sl′i

, we obtain a transition to Sl′i
.

tion is well posed iff for each agent i∈N and cell configuration li = (li, l j1 , . . . , l jNi
)

it holds Posti(li; li) 6= /0. In particular we have the following result.

Theorem 1. Consider a cell decomposition S of Rn with diameter dmax, a time step
δ t, the parameter λ ∈ (0,1) and define L := max{3L2 + 4L1

√
Ni, i ∈N }, with L1

and L2 as given in (3) and (4). We assume that dmax ∈
(

0, (1−λ )2v2
max

4ML

]
and δ t ∈[

(1−λ )vmax−
√

(1−λ )2v2
max−4MLdmax

2ML ,
(1−λ )vmax+

√
(1−λ )2v2

max−4MLdmax
2ML

]
. Then, the space-

time discretization is well posed for (1). In particular, for each agent i∈N and cell
configuration li = (li, l j1 , . . . , l jNi

), it holds Posti(li; li) = {l ∈I : Sl ∩B(zi(δ t);r) 6=
/0}, with zi(·) denoting the corresponding reference trajectory of i and r as in (8).

2.4 Abstractions of Varying Decentralization Degree

We next present a generalization of the previous approach, where each agent’s ab-
stract model has been based on the knowledge of the discrete positions of its neigh-
bors, by allowing the agent to have this information for all members of the network
up to a certain distance in the communication graph. The latter provides an improved
estimate of the potential evolution of its neighbors and allows for more accurate dis-
crete agent models, due to the reduction of the control magnitude which is required
for the manipulation of the coupling terms. Therefore we introduce also some extra
notation. Given m≥ 1, we denote by N m

i the set of agents from which i is reachable
through a path of length m and not by a shorter one, excluding also the possibility to
reach itself through a cycle. We also define the set ¯N m

i :=
⋃m

`=1 N `
i ∪{i}, namely,

the set of all agents from which i is reachable by a path of length at most m, includ-
ing i, and call it the m-neighbor set of i (see Fig. 3).

The derivation of the discrete models is based as previously on the design of
appropriate hybrid feedback laws in place of the vi’s which enable the desired tran-
sitions. We therefore provide a modification of the control law (6) which is based
on a more accurate estimation for the evolution of agent i’s neighbors. In par-
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Ag.1

Ag.2

Ag.5

Ag.3

Ag.6

Ag.4

Ag.7

Fig. 3 This figure illustrates 7 agents of a network. The sets N m
1 , ¯N m

1 of agent 1 up to
paths of length m = 3 are: ¯N 1

1 = {1,5}, N 1
1 = {5}; ¯N 2

1 = {1,2,5,6}, N 2
1 = {2,6}; ¯N 3

1 =
{1,2,3,5,6,7}, N 3

1 = {3,7}.

ticular, select an ordered tuple of indices li corresponding to the cells where the
agents in i’s m-neighbor set belong, and assume without any loss of generality that
N m+1

i 6= /0. Also, choose a reference point x`,G from the cell of each agent in ¯N m
i

and consider the initial value problem (IVP) ż`(t) = f`(z`(t),z j(`)1(t), . . . ,z j(`)N`
(t)),

t ≥ 0, ` ∈ ¯N m−1
i , z`(0) = x`,G, for all ` ∈ ¯N m−1

i , with the terms z`(·), ` ∈ N m
i

defined as z`(t) := x`,G, for all t ≥ 0, ` ∈ N m
i . This IVP provides a solution of

the unforced, i.e., without free inputs subsystem formed by the m-neighbor set of
agent i. In addition, the agents are initiated from their reference points in their
cells and the neighbors precisely m hops away are considered fixed at their cor-
responding reference points for all times. In analogy to the previous section, we
will call the i-th component zi(·) of the solution to the IVP the reference tra-
jectory of i. We also compactly denote as z j(·) := (z j1(·), . . . ,z jNi

(·)) the corre-
sponding components of i’s neighbors. The key part in this modification is that
the latter provide a more accurate estimate of the neighbors’ possible evolution
over the time interval [0,δ t]. Thus, by replacing the feedback component in (6)
by ki,li,1(t,xi,x j) := fi(zi(t),z j(t))− fi(xi,x j), t ∈ [0,∞),(xi,x j) ∈ R(Ni+1)n, we can
exploit the control law in (9) to obtain analogous transition capabilities as in the
previous section. It is noted that this selection reduces the control effort which is
required to compensate for the evolution of i’s neighbors and leads to improved
discretizations. Sufficient conditions for the derivation of well posed discretizations
along the lines of Theorem 1 can be found in [4].

3 Multi-Agent Plan Synthesis

In this section, we focus on task and motion planning for a multi-agent system that
has already been abstracted as a discrete, finite, state-transition system using the
technique introduced in Sec. 2, or similar. In contrast to Sec. 4, the agents here are
dependent on each other in terms of their LTL specifications that capture potentially
collaborative tasks, whereas we assume that they can communicate in a limited way
and they are not subject to relative-distance constraints. Next to the task specifi-
cations, each agent is subject to an independent motion specification, also given
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in LTL. We tackle high computational demands associated with centralized plan-
ning via introducing a two-phase procedure that largely decouples task planning
and motion planning. Moreover, we discuss that the solution can benefit further
from utilizing receding horizon planning approach. This section thus overviews re-
sults presented in [23] and [22] and introduces their integration into a single task and
motion planning technique. An interested reader is referred to [23] and [22] for full
technical details on task and motion planning decomposition and receding horizon
planning, respectively.

3.1 Problem Formulation

Similarly as in the previous sections, we consider a team of N possibly heteroge-
neous, autonomous agents with unique identities (IDs) i ∈N = {1, . . . ,N}. How-
ever, here the agent i’s capabilities are modeled through finite transition systems
(TS)

Ti = (Si,sinit,i,Ai,→i,Πi,Li,Σi,Li,Synci),

where the set of states Si of the TS represent discrete states of the agent i (e.g., the
location of the agent in the environment that is partitioned into a finite number of
cells), and sinit,i ∈ Si is the agent i’s initial state (e.g., its initial cell). The actions
Ai abstract the agent’s low-level controllers, and a transition s α−→i s′ from s ∈ Si to
s′ ∈ Si correspond to the agent’s capability to execute the action α ∈Ai (e.g., to move
between two cells of the environment). We note that a transition duration is arbitrary
and unknown prior its execution. Atomic propositions Πi together with the labeling
function Li : Si → 2Πi are used to mark interesting properties of the system states
(e.g., a cell is safe). Labeling function Li : Act → 2Σi ∪ Ei associates each action
α ∈ Ai with a set of services of interest σ ∈ 2Σi that are provided upon its execution
(e.g., an object pick-up), or with a special silent service set Ei = {εi}, εi 6∈Σi, indicat-
ing that no service of interest is provided upon the execution of action α . Traces of
the transition system are infinite alternating sequences of states and actions that start
in the initial state and follow the transition function. Intuitivelly, they provide ab-
stractions of the agent’s long-term behaviors (e.g., the agent’s trajectories in the en-
vironment). A trace τi = si,1αi,1si,2αi,2 . . . produces words w(τi) = L(si,1)L(si,2) . . .,
and ω(τi) = L (αi,1)L (αi,2) . . . representing the sequences of state properties that
hold true, and services that are provided, respectively.

The agents can communicate, and in particular they all follow this synchroniza-
tion protocol: An agent i can send a synchronization request synci(I) to a subset
of agents {i} ⊆ I ⊆N notifying that it is ready to synchronize. Then, before pro-
ceeding with execution of any action α ∈ Acti, it waits in its current state to receive
synci′(I) from each i′ ∈ I. Assuming lossless communication and instant synchro-
nization upon receiving the needed synchronization requests, the agents can this way
enforce waiting for each other and executing actions simultaneously. We denote by
Synci = {synci(I) | {i} ⊆ I ⊆N } the set of all synchronization requests of agent i.
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Each agent i ∈N is given a specification that consists of:

• a motion specification φi, which is an LTL\X formula over Πi that captures re-
quirements on the states the agent passes through, such as safety, reachability,
persistent surveilence, and their combination. The motion specification is inter-
preted over the word w(τi); and

• a task specification ψi, which is an LTL formula over Σ =
⋃

i′∈N Σi′ that captures
requirements on services provided along the system execution. In contrast to the
motion specification, the task specification is collaborative and yields dependen-
cies between the agents. Each task specification is interpreted over the set of all
words ω(τ ′i ), i′ ∈N . In particular, agent i decides whether ψi is satisfied from
its local point of view by looking at the subsequence of non-silent services, i.e.
services of interest of ω(τi) and the services provided by the remainder of the
team at the corresponding times.

Problem 1. Consider a set of agents N = {1, . . . ,N}, each of which is modeled as
a transition system Ti = (Si,sinit,i,Ai,→i,Πi,Li,Σi,Li,Synci), and assigned a task in
the form of an LTL\X formula φi over Πi and ψi over Σ =

⋃
i′∈N Σi′ . For each i∈N

find a plan, i.e., (i) a trace τi = si,1αi,1si,2αi,2 . . . of Ti and (ii) a synchronization se-
quence γi = ri,1ri,2 . . . over Synci with the property that the set of induced behaviors
is nonempty, and both φi and ψi are satisfied from the agent i’s viewpoint.

As each LTL formula can be translated into a BA, from now on, we pose the prob-
lem equivalently with the motion specification of each agent i given as a BA Bφ

i =

(Qφ
i ,q

φ
init,i,δ

φ
i ,2

Πi ,Fφ
i ), and the task one as a BA Bψ

i = (Qψ
i ,q

ψ
init,i,δ

ψ
i ,2Σ ,Fψ

i ).

3.2 Problem Solution

Even though the agents’ motion specifications are mutually independent, each of
them is dependent on the respective agent’s task specification, which is dependent
on the task specifications of the other agents. As a result, the procedure of synthe-
sizing the desired N strategies cannot be decentralized in an obvious way. However,
one can quite easily obtain a centralized solution when viewing the problem as a
synthesis of a single team plan. A major drawback of the centralized solution is
the state space explosion, which makes it practically intractable. We aim to decen-
tralize the solution as much as possible. Namely, we aim to separate the synthesis
of service plans yielding the local satisfaction of the task specifications from the
syntheses of traces that guarantee the motion specifications. Our approach is to pre-
compute possible traces and represent them efficiently, while abstracting away the
features that are not significant for the synthesis of action plans. This abstraction
serves as a guidance for the action and synchronization planning, which, by con-
struction, allows for finding a trace complying with both the synthesized action and
synchronization plans and and the motion specification.
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3.2.1 Preprocessing the motion specifications

Consider for now a single agent i ∈ N , and its motion specification BA Bφ
i . We

slightly modify the classical construction of a product automaton of Ti and Bφ
i to

obtain a BA that represents the traces of Ti accepted by Bφ
i , and furthermore explic-

itly captures the services provided along the trace.

Definition 1 (Motion product). The motion product of a TS Ti, and a BA Bi is
a BA Pi = (Qi,qinit,i,δi,2Σi ∪ 2Ei ,Fi), where Qi = Si ×Qφ

i ; qinit,i = (sinit,i,q
φ
init,i);

((s,q),Li(α),(s′,q′)) ∈ δi if and only if s, α−→i s′, and (q,Li(s),q′) ∈ δ φ
i ; and Fi =

{(s,q) | q ∈ Fφ
i }.

We introduce a way to reduce the size of the motion product by removing all
states and transitions that are insignificant with respect to the local satisfaction of the
task specification, and hence with respect to the collaboration with others. Specifi-
cally, the significant states are only the ones that have an outgoing transition labeled
with Li(α) 6= Ei.

First, we remove all insignificant non-accepting states and their incoming and
outgoing transitions and we replace each state with a set of transitions leading di-
rectly from the state’s predecessors to its successors, i.e., we concatenate the in-
coming and the outgoing transitions. The labels of the new transitions differ: if both
labels of the concatenated incoming and outgoing transition are Ei, then the new
label will stay Ei to indicate that the transition represents a sequence of actions that
are not interesting with respect to the local satisfaction of task specifications. On the
other hand, if the label σ of the incoming transition belongs to 2Σi , we use the action
σ as the label for the new transition. Each path between two significant states in Pi
then maps onto a path between the same states in the reduced motion product and
the sequences of non-silent services read on the labels of the transitions of the two
paths are equal; and vice versa. Second, we handle the insignificant accepting states
similarly to the non-accepting ones, however, we do not remove the states whose
predecessors include a significant state in order to preserve the accepting condition.
Moreover, we remove all states from which none of the accepting states is reachable,
and we can keep only one copy of duplicate states that have analogous incomming
and outgoing edges. An example of the reduction is given in Fig. 4.

There is a correspondence between the infinite runs of Pi and the infinite runs of
the reduced motion product, which we denote by P̈i: for each run of Pi there exists a
a run of P̈i, such that the states of the latter one are a subsequence of the states of the
former one, the sequences of non-silent services read on the labels of the transitions
of the two runs are equal, and that the latter one is accepting if and only if the former
one is accepting; and vice versa. This correspondence will allow us to reconstruct a
desired run of Pi from a run of P̈i, as we will discuss in Sec. 3.2.3.



12 Meng Guo, Dimitris Boskos, Jana Tumova, and Dimos V. Dimarogonas

qi,a

qi,b

qi,e

qi,c

qi,f

. . .

qi,d

qi,g . . .

. . .

Ei

{loadi}

Ei

Ei

Ei

Ei

Ei

Ei

Ei

Ei

Ei {loadi}

{unloadi}

qi,a

qi,b

. . .

qi,d

qi,g . . .

. . .

Ei

{loadi}

EiEi

Ei

EiEi

{loadi}

{unloadi}

Fig. 4 An example of a part of a product automaton Pi (top), and the corresponding part of the
reduced product automaton P̈i (bottom).

3.2.2 Preprocessing the task specifications

The next two steps of the solution follow similar ideas as in Sec. 3.2.1: We build
a local task and motion product P̄i of the reduced motion product P̈i and the task
specification BA Bψ

i for each agent i separately, to capture the admissible traces of
i that comply both with its motion and task specification. At this stage, the other
agents’ collaboration capabilities are not included, yet. We again remove insignifi-
cant states, which are now ones that do not have an outgoing dependent transition,
i.e. a transition labeled with a non-silent service σ ∈ Σ \Σi. We thus reduce P̄i to P̂i.
Similarly as before, there is a correspondence beween the infinite runs of P̄i and the
infinite runs of P̂i: for each run of P̄i there exists a a run of P̂i, such that the states
of the latter one are a subsequence of the states of the former one, the sequences of
services read on the labels of the transitions leading from the significant states of
the two runs are equal, and that the latter one is accepting if and only if the former
one is accepting; and vice versa.

Finally, we build the global product P of the reduced task and motion product
automata P̂1, . . . P̂N . Each accepting run of the global product P maps directly on the
accepting runs of the reduced task and motion product automata and vice versa, for
each collection of accepting runs of the reduced task and motion product automata,
there exists an accepting run of the global product P.
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3.2.3 Plan synthesis

The final step of our solution is the generation of the plan in P and its mapping onto
a trace τi of Ti and a synchronization sequence γi over Synci, for all i ∈N . Using
standard graph algorithms (see, e.g., [2]), we find an accepting run q1q2 . . . over a
word σ1σ2 . . . in P, where q j =(q̂1, j, . . . , q̂N, j,k), for all j≥ 1. For each agent i∈N ,
we can project this accepting run onto the states of P̂i, and then, due to the above
discussed correspondences between runs of the product automata, we can also find
sequences of the states in P̄i, P̈i, Pi, such that the projection from an accepting run
of Pi onto the states of Ti yield the desired trace τi (and also the desired sequence of
services σi,1σi,2 . . .). The synchronization sequence γi is constructed by setting ri, j
to be the set of agents that need to collaborate on executing the transition from si, j
to si, j+1 in order to provide the service σi, j.

3.2.4 Receding horizon approach

Although we have reduced the size of each local product automaton before con-
structing the global product P, an additional improvement can be achieved by de-
composing the infinite-horizon planning into an infinite sequence of finite-horizon
planning problem that can further significantly reduce the size of the global prod-
uct P.

In particular, following the ideas from [22], we propose to (1) partition the agents
into classes based on their dependency observed in P̂1, . . . , P̂N within a horizon H;
and then for each of the classes separately: (2) build a product automaton up to a
predefined horizon h and synthesize a plan that leads to progress in satisfaction of
the task specifications; (3) execute part of the plan till the first non-silent service is
provided and repeat steps (1), (2), (3).

The benefit of the receding horizon approach reaches beyond tackling the tractabil-
ity of multi-agent plan synthesis. It builds on event-triggered synchronization, and
hence, it is especially useful in cases where the agents travel at different speeds than
originally assumed.

3.2.5 Complexity

In the worst case, our solution meets the complexity of the centralized solution.
However, this is often not the case. Since the size of the global product is highly
dependent on the number of dependent services available in the agents’ workspace,
our solution is particularly suitable for systems with complex motion capabilities,
sparsely distributed services of interest, and occasional needs for collaboration.
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4 Decentralized Control under Local Tasks and Coupled
Constraints

In this section, we tackle the multi-agent control problem under local LTL tasks from
the bottom-up perspective. We aim for a decentralized solution while taking into ac-
count the constraints that the agents can exchange messages only if they are close
enough. Following the hierarchical approach to LTL planning, we first generate for
each agent a sequence of actions as a high-level plan that, if followed, guarantees the
accomplishment of the respective agent’s LTL task. Second, we merge and imple-
ment the syntesized plans in real-time, upon the run of the system. Namely, we intro-
duce a distributed continuous controller for the leader-follower scheme, where the
current leader guides itself and the followers towards the satisfaction of the leader’s
task. At the same time, the connectivity of the multi-agent system is maintained. By
a systematic leader re-election, we ensure that each agent’s task will be met in long
term. This section is a brief summary of the results from the conference publica-
tion [11] and an extended study of related problems can be found in [12].

4.1 Related Work

The consideration of relative-distance constraints is closely related to the connec-
tivity of the multi-agent network in robotic tasks [18]. As pointed out in [13, 24],
maintaining this connectivity is of great importance for the stability, safety and in-
tegrity of the overall team, for global objectives like rendezvous, formation and
flocking. Very often the connectivity of underlying interaction graphs is imposed
by assumption rather than treated as an extra control objective. Here, the proposed
distributed motion controller guarantees global convergence and the satisfaction of
relative-distance constraints for all time. Moreover, different from [8] where a sat-
isfying discrete plan is enough, the proposed initial plan synthesis algorithm here
minimizes a cost of a satisfying plan, along with the communication constraints.
Lastly, the same bottom-up planning problem from LTL specifications are consid-
ered in [23], where it is assumed that the agents are synchronized in their discrete
abstractions and the proposed solutions rely on construction of the synchronized
product system between the agents, or at least of its part. In contrast, in this work,
we avoid the product construction completely. Compared with [15], these coordina-
tion policies are fully-distributed and can be applied to agents with limited commu-
nication capabilities.
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4.2 Problem Formulation

In mathematical terms, we consider a team of N autonomous agents with unique
identities (IDs) i ∈N = {1, . . . ,N}. They all satisfy the single-integrator dynamics
ẋi(t) = ui(t), where xi(t), ui(t) ∈R2 are the respective state and the control input of
agent i at time t > 0. The agents are modeled as point masses without volume. Each
agent has a limited communication radius of r > 0. Namely, agent i can communi-
cate directly with agent j if ‖xi(t)−x j(t)‖ ≤ r or indirectly via a chain of connected
robots. We assume that initially all agents are connected.

Each robot i ∈N has a local task ϕi specified over Σi = {σih,h ∈ {1, · · · ,Mi}},
which is a set of services that robot i can provide at different regions Ri = {Rig,g ∈
{1, · · · ,Ki}}. Note that Rig = {y ∈ R2|‖y− cig‖ ≤ rig} is a circular area with the
center cig and radius rig. Furthermore, some of the services in Σi can be provided
solely by the agent i, while others require cooperation with some other agents. A ser-
vice σih is provided if the agent’s relevant service-providing action πih and the corre-
sponding cooperating agents’ actions

∧
i′∈Cih

ϖi′ih are executed at the same time, i.e.,
σih = πih∧

∧
i′∈Cih

ϖi′ih. Lastly, a LTL task ϕi is fulfilled if the sequence of services
provided by robot i satisfies ϕi. Thus the problem is to synthesize the control in-
put ui, time sequence of executed actions T A

i and the associated sequence of actions
Ai for each robot i ∈N .

4.3 Solution Outline

Our approach to the problem involves an offline and an online step. In the offline
step, we synthesize a high-level plan in the form of a sequence of services for each
of the agents. In the online step, we dynamically switch between the high-level plans
through leader election and choose the associated continuous controllers. The whole
team then follows the leader towards until its next service is provided and then a new
leader is selected.

4.3.1 Offline Discrete Plan Synthesis

Given an agent i ∈N , a set of services Σi, and an LTL formula ϕi over Σi, a high-
level plan for i can be computed via standard model-checking methods [2, 10].
Roughly, by translating ϕi into a equivalent Büchi automaton and by consecutive
analysis of the automaton, a sequence of services with the prefix-suffix format
Ωi = σi1 . . .σipi(σipi+1 . . .σisi)

ω , such that Ωi |= ϕi can be found, where σi1 can
be independent or dependent services for robot i ∈N .
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4.3.2 Dynamic Leader Selection

In this part, we describe how to elect a leader from the team in a repetitive online
procedure, such that each of the agents is elected as a leader infinitely often. In-
tuitively, each agent i ∈N is assigned a value that represents the agent’s urge to
provide the next service in its high-level plan. Using ideas from bully leader elec-
tion algorithm [9], an agent with the strongest urge is always elected as a leader
within the connectivity graph.

Particularly, let i be a fixed agent, t the current time and σi1 . . .σik a prefix of
services of the high-level plan Ωi that have been provided till t. Moreover, let τiλ
denote the time, when the latest service, i.e., σiλ = σik was provided, or τiλ = 0
in case no service prefix of Ωi has been provided, yet. Using τiλ , we could define
agent i’s urge at time t as a tuple ϒi(t) = (t− τiλ , i). Furthermore, to compare the
agents’ urges at time t, we use lexicographical ordering: ϒi(t)>ϒj(t) if and only if
(1) t− τiλ > t− τ jλ , or (2) t− τiλ = t− τ jλ , and i > j. Note that i 6= j implies that
ϒi(t) 6=ϒj(t), for all t ≥ 0. As a result, the defined ordering is a linear ordering and
at any time t, there exists exactly one agent i maximizing its urge ϒi(t). As a result,
there is always a single agent that has the highest urge within N for any given time
t. The robot with the highest urge is selected as the leader, which has the opportunity
to execute its local plan Ωi. However, due to the relative-distance constraints and the
depended services, it can not simply move there without adopting a collaborative
motion controller described below.

4.3.3 Collaborative Controller Design

Let us first introduce the notion of agents’ connectivity graph that will allow us to
handle the constraints imposed on communication between the agents. Recall that
each agent has a limited communication radius r > 0. Moreover, let ε ∈ (0, r) be a
given constant, which plays an important role for the edge definition. In particular,
let G(t) = (N ,E(t)) denote the undirected time-varying connectivity graph formed
by the agents, where E(t) ⊆N ×N is the edge set for t ≥ 0. At time t = 0, we
set E(0) = {(i, j)|‖xi(0)− x j(0)‖ < r}.At time t > 0, (i, j) ∈ E(t) if and only if
one of the following conditions hold: (i) ‖xi(t)− x j(t)‖ ≤ r− ε , or (ii) r− ε <
‖xi(t)− x j(t)‖ ≤ r and (i, j) ∈ E(t−), where t− < t and |t− t−| → 0. Note that the
condition (ii) in the above definition guarantees that a new edge will only be added
when the distance between two unconnected agents decreases below r− ε .

Now consider the following problem: given a leader ` ∈N at time t and a goal
region R`g ∈ R`, propose a decentralized continuous controller that: (1) G(t ′) re-
mains connected for all t ′ ∈ [t, t]; (2) guarantees that all agents i ∈N reach R`g at a
finite time t < ∞. Both objectives are critical to ensure sequential satisfaction of ϕi
for each i ∈N .

Denote by xi j(t) = xi(t)− x j(t) the pairwise relative position between neighbor-
ing agents, ∀(i, j) ∈ E(t). Thus ‖xi j(t)‖2 =

(
xi(t)− x j(t)

)T (xi(t)− x j(t)
)

denotes
the corresponding distance. We propose the following continuous controller:
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ui(t) =−bi
(
xi− cig

)
− ∑

j∈Ni(t)

2r2

(r2−‖xi j‖2)2 (xi− x j), (11)

where bi ∈ {0, 1} indicates if agent i is the leader; cig ∈ R2 is the center of the
next goal region for agent i; bi and cig are derived from the leader selection scheme
earlier. It can be seen that the above controller is fully distributed as it only depends
xi and x j, ∀ j ∈Ni(t).

Given the controller (11), we can prove the following two important properties
of the complete system: Assume that G(t) is connected at t = T1 and agent `∈N is
the fixed leader for all t ≥ T1. By applying the controller in (11), the following two
statements hold:

• The graph G(t) remains connected and E(T1)⊆ E(t) for t ≥ T1.
• There exist a finite time T1 ≤ t <+∞, xi(t) ∈ R`g, ∀i ∈N .

To briefly prove the above two statements, we consider the following potential
function of the complete system:

V (t) =
1
2

N

∑
i=1

∑
j∈Ni(t)

φ(‖xi j‖)+
1
2

N

∑
i=1

bi(xi− cig)
T (xi− cig), (12)

where the potential function φ
(
‖xi j‖

)
=

‖xi j‖2
r2−‖xi j‖2 for ‖xi j‖ ∈ [0, r), and thus V (t) is

positive semi-definite. Assume that G(t) remains invariant during [t1, t2)⊆ [T1, ∞).
The time derivative of (12) during [t1, t2) is given by

V̇ (t) = −
N

∑
i=1, i 6=`

‖ ∑
j∈Ni(t)

∇xiφ(‖xi j‖)‖2

−‖(x`− c`g)+ ∑
j∈N`(t)

∇x`φ(‖x` j‖)‖2 ≤ 0. (13)

Thus V (t)≤V (0)<+∞ for t ∈ [t1, t2). It means that during [t1, t2), no existing edge
can have a length close to r, i.e., no existing edge will be lost by the definition of
an edge. On the other hand, assume a new edge (p, q) is added to the graph G(t) at
t = t2, where p, q∈N . It holds that ‖xpq(t2)‖≤ r−ε and φ(‖xpq(t2)‖) = r−ε

ε(2r−ε) <

+∞ since 0 < ε < r. Denote the set of newly-added edges at t = t2 as Ê ⊂N ×N .
Let V (t+2 ) and V (t−2 ) be the value of function from (12) before and after adding the
set of new edges to G(t) at t = t2. We get V (t+2 ) ≤ V (t−2 )+ |Ê| r−ε

ε(2r−ε) < +∞. As
a result, V (t) < +∞ for t ∈ [T1, ∞). Since one existing edge (i, j) ∈ E(t) will be
lost only if xi j(t) = r, it implies that φ(‖xi j‖)→ +∞, i.e., V (t)→ +∞ by (12). By
contradiction, we can conclude that new edges will be added but no existing edges
will be lost. This proves the first statement above.

Regarding the second statement, we need to show that all agents converge
to the goal region of the leader in finite time. By (13), V̇ (t) ≤ 0 for t ≥ T1
and V̇ (t) = 0 when the following conditions hold: (i) for i 6= ` and i ∈ N , it
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holds that ∑ j∈Ni(t) hi j(xi − x j) = 0; and (ii) for the leader ` ∈ N , it holds that

(x`− c`g)+∑ j∈N`(t) hi j(x`− x j) = 0, where hi j =
2r2

(r2−‖xi j‖2)2 , ∀(i, j) ∈ E(t). Then

we can combine the above two conditions into H⊗ I2 ·x+(x− c) = 0, where H is
a N×N matrix satisfying H(i, i) = ∑ j∈Ni hi j and H(i, j) =−hi j, where i 6= j ∈N .
Note that H is positive semidefinite with a single eigenvalue at the origin, of which
the corresponding eigenvector is the unit column vector of length N. Thus the only
equilibrium is x = c, i.e., xi = c`g, ∀i ∈N . By LaSalle’s Invariance principle [14],
there exists t <+∞ that xi(t) ∈ R`g, ∀i ∈N .

4.3.4 Integrated System

The integrated system combines the leader selection scheme from Section 4.3.2 and
the continuous control scheme from Section 4.3.3, such that the discrete plan Ωi
synthesized in Section 4.3.1 can be executed. Particularly, via communicating and
comparing the urge function ϒi among all robots, one robot with the highest urge
is selected as the leader, denoted by ` ∈ N . Then robot ` finds its next goal re-
gion according to its plan Ωi as R`g. After that, all robots applies the control input
from (11) where the leader ` sets b` = 1 while the rest sets bi = 0, ∀i∈N and i 6= `.
Consequently, as proven in Section 4.3.3, there exists a finite time that all robots
are within the region R`g, where robot ` can provide action π`hand its collaborating
robots can provide the action ω`′`h, ∀`′ ∈C`h. As a result, the service σ`h is provided
at region R`g. Afterwards, the urge function of robot ` is updated and a new leader
is selected for the team. This process repeats itself indefinitely such that all robots
can fulfill its local task. Detailed algorithms can be found in [11].

4.3.5 Simulation

We simulate a system of 4 robots (R1,R2,R3,R4) with regions of interested in
a 4m× 4m workspace as shown in Fig. 5. They initially start from positions
(0.0,0.0),(1.0,0.0),(2.0,0.0),(3.0,0.0) and they all have the communication ra-
dius 1.5m. Furthermore, each robot is assigned a local service task. For instance,
the local task for robot 1 is to provide services sequentially in the circular region
(1.0,1.0,0.2) and the circular region (3.0,1.0,0.2), where the service at region
(3.0,1.0,0.2) requires collaboration from other robots. The tasks of other robots
are defined similarly. We apply the proposed control and coordination framework
as described above. The resulting trajectories of all robots are shown in Fig. 5,
which verify that all local tasks are satisfied. Moreover, the relative distances be-
tween initially-connected neighboring robots, i.e. (R1,R2),(R2,R3),(R3,R4), are
also shown in Fig. 5, all of which stay below the communication radius 1.5m at
all time. More numerical examples are given in [11].
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Fig. 5 Left: trajectories of 4 robots that satisfy their local service tasks. Right: the relative distances
of initially-connected neighboring robots.

4.4 Conclusion and Future Work

To summarize, in this section we present the decentralized control scheme of a team
of agents that are assigned local tasks expressed as LTL formulas. The solution fol-
lows the automata-theoretic approach to LTL model checking, however, it avoids the
computationally demanding construction of synchronized product system between
the agents. The decentralized coordination among the agents relies on a dynamic
leader-follower scheme, to guarantee the low-level connectivity maintenance at all
times and a progress towards the satisfaction of the leader’s task. By a systematic
leader switching, we ensure that each agent’s task will be accomplished.
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