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Abstract— This paper considers the motion control and task
planning problem of mobile robots under complex high-level
tasks and human initiatives. The assigned task is specified as
Linear Temporal Logic (LTL) formulas that consist of hard
and soft constraints. The human initiative influences the robot
autonomy in two explicit ways: with additive terms in the
continuous controller and with contingent task assignments.
We propose an online coordination scheme that encapsulates
(i) a mixed-initiative continuous controller that ensures all-time
safety despite of possible human errors, (ii) a plan adaptation
scheme that accommodates new features discovered in the
workspace and short-term tasks assigned by the operator
during run time, and (iii) an iterative inverse reinforcement
learning (IRL) algorithm that allows the robot to asymptotically
learn the human preference on the parameters during the
plan synthesis. The results are demonstrated by both realistic
human-in-the-loop simulations and experiments.

I. INTRODUCTION

Autonomous systems are becoming increasingly prevalent
in our daily life, with examples such as self-driving vehicles,
package delivery drones and household service robots [1].
Nevertheless, these autonomous systems often perform the
intended tasks under the supervision or collaboration with
human operators [2]. On the high level, the human operator
could assign tasks for the robot to execute or monitor the
task execution progress during run time. On the low level, the
operator could directly influence or even overtake the control
commands of the robot from the on-board autonomous
controller, which can be useful to guide the robot through
difficult parts of the task [2]–[4]. On the other hand, the
autonomous controller should take into account possibly
erroneous inputs from the operator and ensure that safety
constraints are never violated. Thus, addressing properly
these online interactions between the autonomous system
and the operator during the design process is essential for
the safety and efficiency of the overall system.

In this work, we consider the interactions on both lev-
els. Particularly, on the high level, the operator assigns (i)
offline a local task as LTL formulas for hard and soft task
constraints, and (ii) online temporary tasks with deadlines.
On the low level, the operator’s control inputs is fused
directly with the autonomous controller via a mixed-initiative
controller. The proposed motion and task planning scheme
ensures that the hard task constraints regarding safety are
obeyed at all time, while the soft constraints for performance
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are improved gradually as the robot is guided to explore
the workspace and more importantly, learn about the human
preference over the synthesized plan.

We rely on LTL as the formal language [5] to describe
complex high-level tasks beyond the classic point-to-point
navigation. Many recent papers can be found that combine
robot motion planning with model-checking-based task plan-
ning, e.g., a single robot under LTL motion tasks [6]–[9], a
multi-robot system under a global task [10], or a multi-robot
system under local independent [11] or dependent tasks [12],
[13]. However, none of the above addresses directly the
human initiative, neither in the continuous control nor in
the discrete planning. On the other hand, human inputs are
considered in [14] via GR(1) task formulas that require
the robot to be reactive to simple sensory signals from the
human. The high-level robot-human interaction is modeled as
a two-player Markov Decision Process (MDP) game in [15],
[16] where they take turns to influence the system evolution.
The goal is to design a shared control policy to satisfy a
LTL formula and minimize a cost function. Another recent
work [17] addresses the control problem of MDP under LTL
formulas where the autonomy strategy is blended into the
human strategy in a minimal way that also ensures safety
and performance. However, the direct interaction on the
low level is not investigated in the aforementioned work.
More importantly, an all-time involvement of the human is
required for these frameworks, while we only assume human
intervention whenever preferred by the operator itself.

Furthermore, the notion of mixed-initiative controller is
firstly proposed in [4] that combines external human inputs
with the traditional navigation controller [18], while ensuring
safety of the overall system. The work in [19], [20] proposes
a systematic way to compose multiple control initiatives us-
ing barrier functions. However, high-level complex temporal
tasks are not considered in these work.

The main contribution of this work lies in a novel human-
in-the-loop control framework that allows human interaction
on both high level as complex tasks and low level as contin-
uous inputs. We ensure all-time safety during the interaction
and accommodation of short-term contingent tasks assigned
during run time. Lastly, the proposed IRL algorithm enables
the robot to asymptotically learn and adapt to the human
operator’s preference in the plan synthesis.

The rest of the paper is organized as follows: Section II
introduces some preliminaries of LTL. Section III formulates
the problem. Main algorithmic parts are presented in Sec-
tion IV, which are integrated into the complete framework
in Section V. Numerical and experiment studies are shown
in Sections VI. We conclude in Section VII.
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II. PRELIMINARIES

A. Linear Temporal Logic (LTL)

A LTL formula over a set of atomic propositions AP
that can be evaluated as true or false is defined inductively
according to the following syntax [5]: ϕ ::= > | a | ϕ1 ∧
ϕ2 | ¬ϕ | © ϕ | ϕ1 Uϕ2, where > , True, a ∈ AP and
© (next), U (until). There are other useful operators like �
(always), 3 (eventually),⇒ (implication). The full semantics
and syntax of LTL are omitted here due to limited space, see
e.g., [5]. Syntactically co-safe LTL (sc-LTL) is a subclass of
LTL that can be fulfilled by finite satisfying prefix [21].

B. Büchi Automaton

Given a LTL formula ϕ, there always exists a Nonde-
terministic Büchi Automaton (NBA) Aϕ that accepts all
the languages that satisfy ϕ [5]. It is defined as Aϕ =
(Q, 2AP , δ, Q0, F), where Q is a finite set of states; Q0 ⊆
Q is the set of initial states, 2AP is the set of input alphabets;
δ : Q × 2AP → 2Q is a transition relation and F ⊆ Q is a
set of accepting states. There are fast translation algorithms
[22] to obtain Aϕ. Moreover, denote by χ(qm, qn) = {` ∈
2AP | qn ∈ δ(qm, `)} the set of all input alphabets that
enable the transition from qm to qn in δ. Then the distance
between ` ∈ 2AP and χ ⊆ 2AP (χ 6= ∅) is defined by
Dist(`, χ) = 0 if ` ∈ χ and min`′∈χ |{a ∈ AP | a ∈ `, a /∈
`′}|, otherwise. Namely, it returns the minimal difference
between ` and any element in χ.

III. PROBLEM FORMULATION

A. Dynamic Workspace and Motion Abstraction

The bounded workspace where the robot is deployed is
denoted by W ⊂ R2. It consists of N > 0 regions of
interest, denoted by Π = {π1, π2, · · · , πN}, where πn ⊂
W . Furthermore, there is a set of M > 0 properties
(atomic propositions) associated with Π, denoted by AP =
{a0, a1, · · · , aM}, e.g., “this is a public area”, “this is office
room one” and “this meeting room is in use”.

The robot’s motion within the workspace is abstracted
as a labeled transition system T , (Π, →, Π0, AP, L),
where Π, AP are defined above,→⊆ Π×Π is the transition
relation that (πi, πj) ∈→ if the robot can move from
region πi to region πj without crossing other regions in Π,
Π0 ∈ Π is where the robot starts initially, L : Π→ 2AP is the
labeling function where L(πi) returns the set of properties
satisfied by πi. Since the workspace is assumed to be only
partially-known and dynamic, the labeling function and the
transition relation may change over time.

B. Mixed-initiative Controller

For the simplicity of discussion, we assume that the
robot satisfies the single-integrator dynamics, i.e., ẋ = u,
where x, u ∈ R2 are the robot position and control inputs.
For each transition (πs, πg) ∈→, the robot is controlled by
the mixed-initiative navigation controller [4] below:

u , ur(x, πs, πg) + κ(x,Π)uh(t) (1)

where ur(x, πs, πg) ∈ R2 is a given autonomous controller
that navigates the robot from region πs to πg , while staying
within W and without crossing other regions in Π; the
function κ(x,Π) ∈ [0, 1] is a smooth function to be
designed; and uh(t) ∈ R2 is the human input function, which
is uncontrollable and unknown by the robot.

Remark 1: The proposed motion and task coordination
scheme can be readily extended to robotic platforms with
other dynamics and different navigation controllers, such as
potential-field-based [4] and sampling-based [7], [23]. �

C. Robot Task Assignment

The robot is assigned by the human operator a local task
as LTL formulas over AP , which has the following structure:

ϕ , ϕhard ∧ ϕsoft ∧ ϕtemp (2)

where ϕsoft and ϕhard are “soft” and “hard” sub-formulas
that are assigned offline. Particularly, ϕhard includes safety
constraints such as collision avoidance: “avoid all obsta-
cles” or power-supply guarantees: “visit the charging station
infinitely often”; ϕsoft contains additional requirements for
performance such as surveillance: “surveil all bases infinitely
often”. Introducing soft and hard constraints is due to the
observation that the partially-known workspace might render
parts of the task infeasible initially and thus yielding the
need for them to be relaxed, while the safety-critical parts
should not be relaxed; Lastly, ϕtemp contains short-term
contingent tasks that are assigned as sc-LTL formulas online
and unknown beforehand. The structure in (2) provides
an effective way for the operator to handle both standard
operational tasks and contingent demands.

D. Control Objective

Given the abstraction model T and the task formula ϕ,
the control objective is to design function κ(·) and control
input u in (1) such that: (I) the hard constraints in ϕhard are
always satisfied, given all possible human inputs; (II) each
time a temporary task ϕtemp is assigned, it is satisfied in finite
time; and (III) the satisfaction of the soft constraints in ϕsoft
adapts to the human inputs.

IV. ALGORITHMIC COMPONENTS

In this section, we present the four algorithmic compo-
nents of the overall solution presented in Section V. Partic-
ularly, we start from constructing a parameterized product
automaton for the plan synthesis. Then we present a mixed-
initiative controller that guarantees safety and meaningful
inputs from the operator. Furthermore, we discuss a plan
adaptation algorithms for real-time updates of the workspace
model and contingent task assignment. At last, we describe
a IRL algorithm to learn about the human preference.

A. Initial Discrete Plan Synthesis

Denote by Ahard = (Q1, 2AP , δ1, Q1,0, F1) and Asoft =
(Q2, 2AP , δ2, Q2,0, F2) as the NBAs associated with ϕhard
and ϕsoft, respectively, where the notations are defined anal-
ogously as in Section II-B. Now we propose a way to
compose T , Ahard and Asoft into a product automaton.



Definition 1: The parameterized product automatonAp ,
(Qp, δp, Qp,0, Fp) is defined as: Qp = Π×Q1×Q2×{1, 2}
are the states with qp = 〈π, q1, q2, c〉 ∈ Qp, ∀π ∈ Π, ∀q1 ∈
Q1, ∀q2 ∈ Q2 and ∀c ∈ {1, 2}; δp : Qp × Qp → (R≥0 ∪
{∞})3 maps each transition to a column vector such that
δp(〈π, q1, q2, c〉, 〈π̌, q̌1, q̌2, č〉) = [α1, α2, α3]ᵀ, where
• α1 is the control cost for the robot to move from π to
π̌, where α1 > 0 if (π, π̌) ∈→, otherwise α1 ,∞;

• α2 is the indicator for whether a transition violates
the hard constraints. It satisfies that α2 , 0 if the
following conditions hold: (i) L(π) ∈ χ1(q1, q̌1); (ii)
χ2(q2, q̌2) 6= ∅; (iii) q1 /∈ F1 and č = c = 1; or
q2 /∈ F2 and č = c = 2; or q1 ∈ F1, c = 1 and č = 2;
or q2 ∈ F2, c = 2 and č = 1. Otherwise, α2 ,∞.

• α3 is the measure of how much a transition violates the
soft constraints, where α3 , Dist(L(π), χ2(q2, q̌2)),
where the functions Dist(·) and χ2(·) for Asoft are
defined in Section II-B.

and Qp,0 = Π0×Q1,0×Q2,0×{1}, Fp = Π×F1×Q2×{1}
are the sets of initial and accepting states, respectively. �

An accepting run of Ap is an infinite run that starts from
any initial state and intersects with the accepting states in-
finitely often. Note that the component c above to ensure that
an accepting run intersects with the accepting states of both
Ahard and Asoft infinitely often. More details can be found
in Chapter 4 of [5]. Furthermore, since the workspace T is
partially-known, we denote by T t the workspace model at
time t ≥ 0, and the associated product automaton by Atp.

To simplify the notation, given a finite run R = q0pq
1
p · · · qSp

of Ap, where qsp ∈ Qp, ∀s = 0, 1, · · · , S, we denote
by δ(R) =

∑S−1
s=0 δp(q

s
p, q

s+1
p ), where δ(R) ∈ R3 is the

accumulated cost vector δp along R. Similar definitions hold
for αk(R) ∈ R as the accumulated αk cost along R, ∀k =
1, 2, 3. We consider an accepting run of Ap with the prefix-
suffix structure: Rp , q1pq

2
p · · · qSp

(
qS+1
p qS+2

p · · · qS+Fp

)ω
,

where qjp ∈ Qp, ∀j = 1, 2, · · · , S + F , where S, F > 0.
The plan prefix Rpre

p , q1pq
2
p · · · qSp is executed only once

while the plan suffix Rsuf
p , qS+1

p qS+2
p · · · qS+Fp is repeated

infinitely often. Then the total cost of Rp is defined as:

Cβ(Rp) , [1, γ]⊗

 1
1
β

ᵀ

·
[
δ(Rpre

p )
δ(Rsuf

p )

]
, (3)

where Cβ(Rp) ≥ 0; ⊗ is the Kronector product; γ ≥ 0 is a
weighting parameter between the cost of the plan prefix and
suffix; β ≥ 0 is a weighting parameter between total control
cost of the plan and the satisfaction of the soft task ϕsoft.
Note that γ is normally constant [11] (set to 1 in this work),
while β can change according to the robot’s internal model or
the operator’s preference. For instance, as the robot has more
accurate workspace model, β can be increased to penalize
the violation of ϕsoft such that Rp satisfies ϕsoft more. Or the
operator prefers that β is decreased so that Rp satisfies ϕsoft
less and the robot reserves more power.

Given the initial values of γ and β, an initial accepting
run of Ap, denoted by R0

p, can be found that minimizes

the total cost in (3). The algorithms are based on the
nested Dijkstra’s search, which are omitted here and details
can be found in [11]. As a result, the robot’s initial plan,
denoted by τ0r , can be derived by projecting R0

p onto Π,
as a sequence of regions that the robot should reach:
τ0r = π1π2 · · ·πS

(
πS+1πS+2 · · ·πS+F

)ω
, where πj is the

projection of qjp onto Π, ∀j = 1, 2, · · · , S + F .

B. Mixed-initiative Controller Design

After the system starts, the robot executes the initial
plan τ0r by reaching the sequence of regions defined by it.
However, as described in Section III-B, the robot controller
is also influenced by the human input. In the following, we
show how to construct function κ(·) in (1) such that the hard
task ϕhard is respected at all times for all human inputs.

First, we need to find the set of product states Ot ⊂ Qp
in Atp at time t ≥ 0, such that once the robot belongs to any
state in Ot it means that ϕhard can not be satisfied any more.

Lemma 1: Assume that the robot belongs to state qp ∈ Qp
at time t > 0. Then the hard task ϕhard can not be satisfied
in the future, if Atp remains unchanged and the minimal cost
of all paths from qp to any accepting state in Fp is ∞.

Proof: Omitted as it is a simple inference of (3).
Thus denote by Qt ⊂ Qp the set of reachable states by

the robot at time t > 0. For each qp ∈ Qt, we perform a
Dijkstra search to compute the shortest distance from qp to
all accepting states in Fp. Lastly, Ot is given as the subset
of Qt that have an infinite cost to all accepting states, i.e.,

Ot = {qp ∈ Qt |Cβ(Rqp, qF ) =∞,∀qF ∈ Fp}, (4)

where Rqp, qF is the shortest path from qp to qF .
GivenOt above, we now design the function κ(x,Π) in (1)

such that Ot can be avoided. Consider the function:

κ(x,Π) = κ(x,Ot) ,
ρ(dt − ds)

ρ(dt − ds) + ρ(ε+ ds − dt)
(5)

where dt , min〈π,q1,q2,c〉∈Ot
‖x − π‖ is the minimum

distance between the robot and any region within Ot; ρ(s) ,
e−1/s for s > 0 and ρ(s) , 0 for s ≤ 0, and ds, ε > 0 are
design parameters as the safety distance and a small buffer.
Thus the mixed-initiative controller is given by

u , ur(x, πs, πg) + κ(x,Ot)uh(t). (6)

As discussed in [4], the function κ(·) above is 0 on the
boundary of undesired regions in Ot, and close to 1 when
the robot is away from Ot to allow for meaningful inputs
from the operator. This degree of closeness is tunable via
changing dt and ds. However, the original definition in [4]
only considers static obstacles, instead of the general set Ot.

Lemma 2: Assume that the navigation control ur is per-
pendicular to the boundary of regions in Ot and points
inwards. Then the robot can avoid Ot under the mixed-
initiative controller by (6) for all human input uh.

Proof: The proof follows from Proposition 3 of [4].
Namely, for x ∈ ∂Ot on the boundary of Ot,

ẋᵀur = ‖ur(x)‖2 + κ(x)uh(t)ᵀur(x) > 0



since κ(x) = 0 for x ∈ ∂Ot. Thus the workspace excluding
all regions in Ot is positive invariant under controller (6). In
other words, if the navigation control avoids Ot, the same
property is ensured by (6) for all human inputs.

C. Discrete Plan Adaptation

In this section, we describe how the discrete plan τ tr at
t ≥ 0 can be updated to (i) accommodate changes in the
partially-known workspace model, and (ii) fulfill contingent
tasks that are assigned by the operator during run time.

1) Updated Workspace Model: The robot can explore
new features of the workspace while executing the discrete
plan τ tr or being guided by the human operator. Thus the
motion model T t can be updated as follows: (i) the transition
relation→ is modified based on the status feedback from the
navigation controller, i.e., whether it is feasible to navigate
from region πi to πj without human inputs; (ii) the labeling
function L(π) is changed based on the feedback from the
robot’s sensing module, i.e., the properties that region π
satisfies. For example, “the corridor connecting two rooms
is blocked” or “the object of interest is no longer in one
room”. Given the updated T t, the mapping function δp of
the product automaton Atp is re-evaluated. Consequently, the
current plan τ tr might not be optimal anymore regarding the
cost in (3). Thus we consider the following problem.

Problem 1: Update τ tr such that it has the minimum cost
in (3) given the updated model T t. �

Given the set of reachable states Qt ⊂ Qp at time t >
0, for each state qp ∈ Qt, we perform a nested Dijkstra’s
search [11] to find the accepting run that starts from qp and
has the prefix-suffix structure with the minimum cost defined
in (3). Denote by Rt+(qp) this optimal run for qp ∈ Qt.
Moreover, let Rt

+ , {Rt+(qp), ∀qp ∈ Qt} collect all such
runs. Then we find among Rt

+ the accepting run with the
minimum cost, which becomes the updated run Rt+p :

Rt+p , argminRp∈Rt
+
Cβ(Rp). (7)

Thus the updated plan τ tr is given by the projection of Rt+p
onto Π. Note that the above procedure is performed whenever
the motion model T t is updated.

2) Contingent Task Fulfillment: As defined in (2), the
operator can assign contingent and short-term tasks ϕtemp
to the robot during run time. Particularly, we consider the
following “pick-up and deliver” task with deadlines, i.e.,

(ϕttemp, Tsg) , (3(πs ∧3πg), Tsg), (8)

where ϕttemp , 3(πs ∧3πg) is the temporary task assigned
at time t > 0, meaning that the robot needs to pick up some
objects at region πs and deliver them to πg (note that action
propositions are omitted here, see [12]), where πs, πg ∈ Π;
Tsg > 0 is the preferred deadline that task ϕttemp is accom-
plished. It can be verified that ϕttemp are sc-LTL formulas and
can be fulfilled in finite time. Assume that ϕttemp is satisfied
at time t′ > t then the delay is defined as tsg , t′ − Tsg .
We consider to following problem to incorporate ϕttemp.

Problem 2: Update Rtp such that ϕttemp can be fulfilled
without delay (if possible) and with minimum extra cost,
while respecting the hard constraints ϕhard. �

Assume the remaining optimal run at time t > 0 is given
by Rtp = qk0p q

k0+1
p · · · (qSp · · · qS+Fp )ω and qksp , q

kg
p ∈ Qp are

the ks-th, kg-th state of Rtp, where ks ≥ kg ≥ k0. Since Rtp is
optimal for the current T t, we search for the index ks where
the robot can deviate from Rtp to reach region πs and back,
and another index kg where the robot can deviate from Rtp
to reach πg and back. Denote by Rt+p the updated run after
incorporating πs, πg . In this way, ϕttemp is satisfied when πg is
reached after πs is reached, where t′ =

∑kg
j=k0

α1(qjp, q
j+1
p )

is the total time. Moreover, the total cost of Rtp in (3)
is changed by Cβ(Rtp) , Cβ(Rt+p ) − Cβ(Rtp). Thus we
formulate a 2-stage optimization below: first, we solve

dsg = min{kg>ks≥0} {Cβ(Rtp)}, s.t. tsg ≤ 0, (9a)

in order to find out whether it is possible to avoid delay
while satisfying ϕtemp. If no solution is found, we solve the
relaxed optimization that allows the deadline to be missed:

dsg = min{kg>ks≥0} {t
′
sg + Cβ(Rtp)}, (9b)

where dsg ≥ 0; t′sg = 0 if tsg ≤ 0 and t′sg = tsg , otherwise.
Note that Cβ(Rtp) is ∞ if ϕhard is violated by Rt+p .

Since the suffix of Rtp is repeated infinitely often, the
choice of indices ks, kg for (9) is finite. Thus (9) can be
solved as follows: starting from ks = k0, we iterate through
kg ∈ {k0 + 1, · · · , S + F} and compute the corresponding
tsg and dsg for both cases in (9). Then we increase ks
incrementally by ks = k0 + 1, iterate through kg ∈ [k0 +
2, · · · , S+F ] and compute tsg and dsg for both cases. This
procedure repeats itself until ks = S + F − 1. Then, we
find among these candidates if there is a pair k?s , k

?
g that

solves (9a). If so, they are the optimal choice of ks, kg .
Otherwise, we search for the optimal solution to (9b), of
which the solution always exists as it is unconstrained. At
last, Rt+p is derived by inserting the product states associated
with πs, πg at indices k?s , k?g of Rtp, respectively.

D. Human Preference Learning

As discussed in Section IV-B, the mixed-initiative con-
troller (6) allows the operator to interfere the robot’s trajec-
tory such that it deviates from its discrete plan τ tr , while
always obeying ϕhard. This is beneficial as the robot could
be guided to (i) explore unknown features to update its
workspace model, as described in Section IV-C.1; and (ii)
follow the trajectory that is preferred by the operator.

Particularly, as discussed in Section IV-A, the initial
run R0

p is a balanced plan between reducing the control cost
and improving the satisfaction of ϕsoft, where the weighting
parameter is β in (3). Clearly, different choices of β may
result in different R0

p. The initial plan R0
p is synthesized

under the initial value β0 ≥ 0, which however might not
be what the operator prefers. In the following, we present
how the robot could learn about the preferred β from the
operator’s inputs during run time.



Consider that at time t ≥ 0, the robot’s past trajectory is
given by ζ|t0 , π0π1 · · ·πkt . Assume now that during time
[t, t′], where t′ > t > 0, via the mixed-initiative controller
in (6), the operator guides the robot to reach a sequence of
regions that s/he prefers, which is defined by:

ζh|t
′

t , π
′
1π
′
2 · · ·π′H (10)

where π′h ∈ Π, ∀h = 1, 2 · · ·H and H ≥ 1 is the length of ζh
that can vary each time the operator acts. Afterwards, the
robot continues executing its current plan τ tr . Thus, the actual
robot trajectory until time t′ is given by ζh|t

′

0 , ζ|t0 ζh|t
′

t ,
which is the concatenation of ζ|t0 and ζh|t

′

t .
Problem 3: Given the actual robot trajectory ζh|t

′

0 , design
an algorithm to estimate the preferred value of β as β?h such
that ζh|t

′

0 corresponds to the optimal plan under β?h. �
The above problem is closely related to the inverse rein-

forcement learning (IRL) problem [24], [25], where the robot
learns about the cost functions of the system model based on
demonstration of the preferred plans. On the other hand, in
reinforcement learning [26], [27] problem, the robot learns
the optimal plan given these functions.

As mentioned in [24], most problems of IRL are ill-posed.
In our case, it means that there are more than one β?h that
render ζh|t

′

0 to be the optimal plan under β?h. In order to
improve generalization such that the robot could infer the
human preference based on the human’s past inputs (instead
of simply repeating them), our solution is based on the
maximum margin planning algorithm from [25]. The general
idea is to iteratively update β via a sub-gradient descent,
where the gradient is computed based on the difference in
cost between ζh|t

′

0 and the optimal plan under the current β.
First, we compute the set of all finite runs within At′p , de-

noted by Rt′

h , that are associated with ζh|t
′

0 . It can be derived
iteratively via a breadth-first graph search [5]. Among Rt′

h ,
we find the one with the minimal cost over α3, i.e.,

R?h , argminR∈Rt′
h
α3(R). (11)

Let R?h , q1q2 · · · qH , where qh ∈ Qp, ∀h = 1, 2, · · · , H .
Denote by βk the value of β at the k-th iteration, for k ≥ 0.
Note that β0 , βt, where βt is the value of β at time t > 0.
For the k-th iteration, we find the optimal run from q1 to qH
under βk with certain margins, i.e.,

R̂?βk
, argminR∈Rq1qH

(
Cβk

(R)−M(R,R?h)
)

(12)

where Rq1qH is the set of all runs from q1 to qH in At′p ; and
M : QH ×QH → N is the margin function [25]:

M(R, R?h) = |{(qs, qt) ∈ R | (qs, qt) /∈ R?h}|, (13)

which returns the number of edges within R that however
do not belong to R?h. The margin function decreases the
total cost Cβk

(R) by the difference between R and R?h. It
can improve generalization and help address the ill-posed
nature of Problem 3. To solve (12), we first modify At′p by
reducing the α1 cost of each edge (qs, qt) ∈ R?h by one.
Then a Dijkstra shortest path search can be performed over

Algorithm 1: On-line IRL algorithm for β.

Input: Atp, ζh|t
′

0 , βt, ε
1 Initialize βk = βt for iteration k = 0;
2 while |βk+1 − βk| > ε do // Iteration k

3 Compute R?h in (11) given ζh|t
′

0 ;
4 Find R̂?βk

in (12) given βk and R?h;
5 Compute ∇βk by (14) and update βk by (15);

6 return β+
t = βk+1

the modified Ap to find the shortest run from q1 to qH that
minimizes the cost with margins in (12). Given R̂?βk

, we can
compute the sub-gradient [28] that βk should follow:

∇βk = λ · βk +
(
α3(R?h)−α3(R̂?βk

)
)
, (14)

where ∇βk ∈ R and λ > 0 is a design parameter. Thus, at
this iteration the value of βk is updated by

βk+1 = βk − θk · ∇βk, (15)

where θk > 0 is the step size or learning rate [26]. Given
the updated βk+1, the same process in (11)-(15) is repeated
until the difference |βk+1 − βk| is less than a predefined
threshold ε > 0. At last, the value of βt is updated to βk+1.
The discussion above is summarized in Alg. 1. Each time
the human operator guides the robot to reach a new sequence
of regions, the estimation of the value of βt is updated by
running Alg. 1. In the following, we show that Alg. 1 ensures
the convergence of {βk}.

Lemma 3: The sequence {βk} in Alg. 1 converges to a
fixed β?l ≥ 0 and the optimal plan under β?l is ζh|t

′

0 .
Proof: Firstly, the optimal run R?h associated with ζh|t

′

0

under β?h minimizes the balanced cost Cβ from (3), i.e.,

Cβ(R?h) ≤ Cβ(R), ∀R ∈ Rq1qH , (16)

where Rq1qH is defined in (12). Solving (16) directly can be
computationally expensive due to the large set Rq1qH . We
introduce a slack variable ξ ∈ R to relax the constraints:

minβ≥0
λ

2
β2 + ξ

s.t. Cβ(R?h)− ξ ≤ min
R∈Rq1qH

(
Cβ(R)−M(R,R?h)

)
,

(17)

where λ > 0 is the same as in (14) and the margin function
M(·) is from (13). Thus, by enforcing the slack variables to
be tight, β also minimizes the combined cost function:

λ

2
β2 + Cβ(R?h)− min

R∈Rq1qH

(
Cβ(R)−M(R,R?h)

)
, (18)

which is convex but non-differentiable. Instead, we compute
the sub-gradient [28] of (18): ∇β = λβ +

(
α3(R?h) −

α3(R̂?β)
)

and R̂?β = argminR∈Rq1qH
(Cβ(R)−M(R,R?h)),

which is equivalent to (14).
Lastly, by the strong convexity of (18) and Theorem 1

of [25], the estimation βt approaches the optimal β?l with
linear convergence rate under constant stepsize θk = θ, i.e.,



Method |Ap| β?
l NO. of Dijkstra Time[s]

Alg.1 25 13.4 8 3.8
M1 25 10.0 200 124.4
M2 25 11.7 350 337.2

Alg.1 100 16.5 12 150.8
M1 100 14.2 200 2203.5
M2 100 – 800+ 3000+

TABLE I: Comparison of computational complexity and perfor-
mance of Alg. 1 and two alternative methods in Example 1.

|βk − β?l |2 ≤ (1− θλ)k+1|β0 − β?l |2 + θ|∇β|max

λ . A detailed
analysis on this deviation can be found in [25], [28].

Remark 2: It is worth noting that the convergent value
β?l might be different from the preferred β?h, while they both
satisfy (16) with the same optimal run R?h. However, the
margin function in (17) ensures that β?l is better than or at
least equivalent to β?h in terms of the similarity between R?h
and the run with the second minimum cost by (3).

Now we show the computational efficiency of Alg. 1
compared with two straight-forward solutions: (M1) choose
the optimal β among a set of guessed values of β, denoted
by Sβ ; (M2) solve (16) directly by enumerating all runs in
Rq1qH . The first method’s accuracy relies on Sβ being large,
which however results in high computational cost. Similarly,
the second method relies on evaluating every run in Rq1qH ,
the size of which is combinatorial to the size of Atp. The
following example shows some numerical comparison.

Example 1: Assume that β?h = 15 and initially β0 = 0.
We use three methods: Alg. 1, M1 and M2 above to estimate
β?h. As shown in Table I, we compare the final convergence
β?l and the computation time under varying sizes of Ap.
It can be seen that the computation time for Alg. 1 is
significantly less than M1 and M2, where for the second
case M2 fails to converge within 50min. �

V. THE INTEGRATED SYSTEM

In this section, we describe the the real-time execution of
the integrated system given the components in Section IV.
Then we discuss the computational complexity.

A. Human-in-the-loop Motion and Task Planning

The complete algorithm is shown in Alg. 2. Before the
system starts, given the initial model T 0 and the task formu-
las in (2), the initial plan τ0r is synthesized by the algorithm
from Section IV-A under the initial β0. From t = 0, the robot
executes τ0r by following the sequence of goal regions, see
Lines 1-3. Meanwhile, the operator can directly modify the
control input u(·) via (6) to change the robot’s trajectory.
Thus, the robot can explore regions that are not in its initial
plan and update the model T t as described in Section IV-
C.1. As a result, the plan τ tr is updated by (7) accordingly,
see Lines 4-5. Moreover, as described in Section IV-C.2,
the operator can assign temporary tasks with deadlines as
in (8), for which τ tr is modified by solving (9), see Lines 6-
7. Last but not least, each time the operator guides the robot
to follow a new trajectory, the parameter β is updated via

Algorithm 2: Mixed-initiative Motion and Task Planning
Input: T t, ϕhard, ϕsoft, β0, uh(t), (ϕttemp, Tsg)

1 Compute A0
p and construct initial plan τ0r under β0;

2 forall t ≥ 0 do
3 Compute ur(·) in (6) to reach next πj ∈ τ tr ;
4 if T t updated then // Model update
5 Update product Atp and plan τ tr by (7);

6 if (ϕttemp, Tsg) received then // Temp. task
7 Update plan τ tr by solving (9);

8 if ‖uh(t)‖ > 0 then // Human input
9 Compute control u(t) by (6);

10 Compute ζh|t0 by (10);
11 Learn β?l by Alg. 1 and set β+

t = β?l ;
12 Update τ tr by (7) given the learned β+

t ;

13 return u(t), τ tr , β+
t

Alg. 1 to estimate the human preference. Then, its current
plan τ tr is updated using the updated β, see Lines 8-12. The
above procedure repeats until the system is terminated.

Theorem 4: Alg. 2 above fulfills the three control ob-
jectives of Section III-D, i.e., (I) ϕhard is satisfied for all
time; (II) each ϕtemp is satisfied in finite time; and (III) the
satisfaction of ϕsoft adapts to the human inputs.

Proof: (I) Firstly, both the initial synthesis algorithm
in Section IV-A and the plan adaptation algorithm in Sec-
tion IV-C.1 ensure ϕhard is satisfied by minimizing the total
cost in (3). Then Lemma 2 ensures that ϕhard is respected
for all possible inputs from the human operator. (II) The
combined cost (9) ensures that ϕtemp is satisfied within finite
time. (III) Convergence of the learning Alg. 1 is shown in
Lemma (3). Thus, the updated plan τ tr under the learned
value of β adapts to the plan preferred by the operator.

B. Computational Complexity

The process to synthesize τ tr given Atp via Alg. 2 (in
Line 1) and the plan revision given T t (in Line 5) both
have complexity O(|Atp|2) [11]. The adaptation algorithm for
temporary tasks (in Line 7) has complexity O(|Rtp|2). Lastly,
the learning Alg. 1 (in Line 11) has complexity O(|R?h|2),
where |R?h| is the length of the optimal run from (11).

VI. CASE STUDY

In this section, we present numerical studies both in
simulation and experiment. The Robot Operation System
(ROS) is used as the simulation and experiment platform.
All algorithms are implemented in Python 2.7 and available
online [29]. All computations are carried out on a laptop
(3.06GHz Duo CPU and 8GB of RAM).

A. Simulation

1) Workspace and Robot Description: Consider the sim-
ulated office environment in Gazebo as shown in Fig. 1 with
dimension 100m × 45m, in which there are 9 regions of
interest (denoted by r0, · · · , r8) and 4 corridors (denoted



Fig. 1: Office environment in Gazebo with TIAGo robot, where the
regions of interest and allowed transitions are marked.
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Fig. 2: The robot’s trajectory in simulation case One, where the
robot’s initial plan is in blue, the human-guided part is in red, and
the updated plan is in green.

by c1, · · · , c4). The transition relations are determined by
whether there exists a collision-free path from the center of
one region to another, without crossing other regions.

We simulate the TIAGo robot from PAL robotics, of
which the navigation control ur(·) with obstacle avoidance,
localization and mapping are all based on the ROS naviga-
tion stack. The human operator monitors the robot motion
through Rviz. Moreover, the control uh(·) from the operator
can be generated from a keyboard or joystick, while the
temporary task in LTL formulas ϕtemp are specified via
ROS messages. More details can be found in the software
implementation [29] and simulation video [30].

2) Case One: The hard task for delivery is given
by ϕ1,hard =

(
�3(r0 ∧ 3(r7 ∧ 3r8))

)
∧
(
�3(r2 ∧ 3(r3 ∨

r6))
)
∧
(
�¬r5

)
, i.e., to transfer objects from r0 to r7 (then

r8) and from r2 to r3 (or r6), while avoiding r5 for all
time. The soft task is ϕ1,soft = (�¬c4), i.e., to avoid c4 if
possible. It took 0.2s to compute the parameterized product
automaton, which has 312 states and 1716 transitions. The
parameter β is initially set to a large value 30, thus the
initial plan satisfies both the soft and hard tasks but with
a large cost due to the long traveling distance, as shown in
Fig. 2. During [700s, 950s], the operator drives the robot to
go through corridor c4 and reach r8, which violates the soft
task ϕ1,soft. As a result, β is updated by Alg. 1 and the final
value is 16.35 after 20 iterations with ε = 0.2, as shown
in Fig. 5. Namely, the robot has learned that the operator
allows more violation of the soft task to reduce the total cost.
The resulting updated plan is shown in Fig. 2. Moreover,
to demonstrate the ensured safety in Lemma 2, the human
operator drives the robot towards r5 during [1250s, 1350s],
which is not allowed by ϕhard. The weighting function κ(·)
in the mixed controller (6) approaches 0. Thus the robot still
follows its updated plan and avoids r5. The mixed control
inputs during these periods are shown in Fig. 3.

3) Case Two: The hard task for surveillance is given
by ϕ2,hard = (�3r2) ∧ (�3r3) ∧ (�3r8), i.e., to surveil
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Fig. 3: The mixed control for linear velocity during two time
periods when the human control (in red) is active.
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Fig. 4: The robot’s trajectory in simulation case Two. The robot’s
trajectory while performing the temporary task is in magenta.

regions r2, r3 and r8 infinitely often. The soft task for extra
performance is ϕ2,soft = �3

(
r4 → (¬r5U3r6)

)
, i.e., to

collect goods from region r4 and drop it at r6 (without
crossing r5 before that). Moreover, the workspace model in
this case is different from the initial model that the corridor
c2 has been blocked. By following Alg. 2, it took 0.17s
to compute the product automaton, which has 418 states
and 3360 transitions. Initially, β = 0 meaning that the
initial plan τ0r only satisfies ϕ2,hard while ϕ2,soft is fully
relaxed. During [150s, 250s], the operator drives the robot
to sense that the corridor c2 has been blocked. As a result,
the discrete plan τ0r is updated such that the robot chooses
to reach r8 from r2 via c1, as shown in Fig. 4. Afterwards,
during [1100s, 1200s], the operator drives the robot to r4
after reaching r2, which satisfies part of ϕ2,soft. As a result, β
is increased by Alg. 1 to 11.3 after 12 iterations with ε = 0.1,
as shown in Fig. 5. Namely, the robot has learned that the
soft task should be satisfied more. Lastly, at time 2100s, the
operator assigns a temporary task ϕtemp = 3(r1∧3r7) with
a deadline 2700s, i.e., to deliver an object from r1 to r7.
This temporary task is incorporated into τ tr and is fulfilled
at 2400s, which is shown in Fig. 4.

B. Experiment

The experiment setup involves a TurtleBot within the
office environment at Automatic Control Lab, KTH. Details
are omitted here due to limited space, which are given in the
the software implementation [29] and experiment video [30].

1) Workspace and Task Specification: The office environ-
ment consists of three office rooms (r1, r2, r3) and one
corridor r0, as shown in Fig. 6. The robot’s task specification
is similar to case study Two above, i.e., the hard task is given
by ϕhard = �3r0∧�3r1 (to surveil regions r0 and r1) while
the soft task is ϕsoft = �3r2 ∧�3r3 (to surveil regions r2
and r3). The TurtleBot is controlled via ROS navigation stack
and behaves similarly to the TIAGo robot in Section VI-A.

2) Experiment Results: Since β is initially set to 0, the
robot only surveils r0 and r1 for the hard task, as shown in
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Fig. 5: Evolution of the learned value of β in simulation case One
(left) and case Two (right).

Fig. 6: The human-in-the-loop experiment setup, where the robot is
controlled by both its autonomous controller and the human inputs.

Fig. 7. From t = 59s, the operator starts driving the robot
towards r2 and back to r0 until t = 137s. As a result, the
estimated βt is updated by Alg. 1 given the robot’s past
trajectory. The final convergence value is 1.58 with ε = 0.01
after 15 iterations. Then updated plan is shown in Fig. 7
which intersects with not only regions r0 and r1 for the hard
task, but also regions r2 and r3 for the soft task. Notice that
the operator only needs to interfere the robot’s motion for a
small fraction of the operation time.

VII. SUMMARY AND FUTURE WORK

In this paper, we present a human-in-the-loop task and
motion planning strategy for mobile robots with mixed-
initiative control. The proposed coordination scheme ensures
the satisfaction of high-level LTL tasks given the human
initiative both through continuous control inputs and discrete
task assignments. Future work includes consideration of
multi-robot systems.
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