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Abstract: Coordinating multiple agents, such as mobile robots, with shared re-
sources, such as common battery charging stations, is a highly relevant but still
challenging decision problem. Traditionally, the motion and task planning of multi-
agent systems are tackled by either designing ad-hoc decision rules or employing
optimization tools. The former requires intensive manual tuning while the latter
needs a static and accurate model of the complete system. Both approaches are
prone to uncertainties in the robot motion and task execution. In this work, we pro-
pose a novel planning framework based on recent advances in deep reinforcement
learning. The framework combines a centralized safety policy that acts on direct
predictions of future resource levels and a decentralized task policy that optimizes
task completions. The safety network is trained using supervised learning without
extraneous supervision, while the task policy is trained using concurrent self-play.
The whole framework follows a hierarchical structure to avoid the exponential
blowup in the state and action space. We demonstrate significant improvements in a
practical logistic planning problem for warehouse robots, compared with heuristic
solutions, optimization tools and other reinforcement learning methods.

Keywords: Deep Reinforcement Learning, Multi-agent Systems, Motion and Task
Planning, Resource Constraints.

1 Introduction

A multi-agent system can be extremely effective for distributing heavy work load across multiple
agents. However, multi-agent systems are often more than a collection of individual agents, e.g.,
some agents are more suitable for certain tasks than others. Proper coordination and collaboration
can improve the overall performance significantly. Furthermore, these agents can also be competitive
due to the common resources (e.g., charging stations) that are essential for the agent’s operation
safety (e.g., battery level). Such hard constraints impose direct dependencies among the agents and
are particularly difficult to handle. Most multi-agent planning problems even under discrete and
deterministic settings are well-known to be NP-hard and suffer from the exponentially-increasing
state/action space along with the number of agents, see [1]. Such problems have been mostly tackled
by designing heuristic rules and manual tuning. For specific domains such as vehicle routing in [2]
and job assignments in [3], there are optimization tools which however require accurate and complete
models. Such tools are often designed to plan for a static set of tasks with fixed duration/cost, thus
not suitable for mobile robotic tasks that are prone to motion uncertainties. In recent years, machine
learning, particularly deep reinforcement learning (DRL), has shown great potentials in handling this
type of complexity and uncertainty in various domains, e.g., Atari games in [4] and robot visuomotor
control in [5]. However, the application of DRL to relevant multi-agent planning problems is still
difficult and often prone to failures as also shown in [6].

The proposed motion and task planning framework consists of two main components: a centralized
safety network and decentralized task networks. (I) The safety network oversees the whole system
and the current resource level, and predicts the resource level at future times for the chosen action.
It also provides a safety policy which the system can follow in order to ensure the resource level
remains in the safe set. It is built on the network structure proposed in [7] and trained using supervised
learning without extraneous supervision. (II) The task network takes as inputs the observations from
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each agent’s local perspective and outputs the best local action for task completion. Such networks
are trained concurrently via parallel self-plays, i.e., the agents are controlled by different seeds of
the task policies in parallel simulations of different settings. The complete framework follows a
hierarchical structure from [8] to avoid the exponential blowup in the state and action space.

The main contribution of this work is twofold: first, the proposed safety policy acts on direct
prediction of the future safety-related features, which is much more intuitive for analyzing safety
properties (compared with the traditionally used Q-values); second, learning of the task policy is
greatly accelerated by enforcing the safety check from the learned safety network, while in contrary
learning both objectives simultaneously often fails due to the difficult manual process of reward
shaping. We demonstrate significant improvements in performance over heuristic rules, optimization
tools and other RL methods via a logistic planning problem with a fleet of warehouse robots under
various operation conditions, where particularly standard RL methods fail to solve the problem at all.

2 Related Work

In the most straightforward form, a multi-agent system can be modeled as a general Markov decision
process (MDP), where the system transition is driven by the joint action of all agents and the reward
is the collective reward of all agents. However such centralized view quickly becomes impractical as
the state and action space grows exponentially with the number of agents. Thus local optimization
techniques have been proposed in combination with inter-agent communication to solve the global
problem, such as Q-value approximation for partially-observable MDPs (POMDPs) in [9], belief
nesting for interactive POMDPs in [10] and factored MDPs in [11, 12].

On the other hand, machine learning approaches, particularly reinforcement learning, have been
investigated for multi-agent systems see, e.g., [13, 14, 15, 16]. However, as pointed out in [6, 13],
multi-agent domains are particularly difficult for traditional RL methods such as Q-learning by [4]
and policy gradient by [17] because (a) the exponential problem size as mentioned earlier; and (b)
non-stationary environments due to actions of other agents. Many recent works adapt the traditional
methods by incorporating other agents’ policies into the decision making, e.g., other agents’ actions
and payoffs in [16], explicit parameters of other agent’s policy in [15], or policy gradients in [6, 13].
Such information exchange can be modeled either explicitly in [18] or implicitly as in [6] for
competitive games. However none of the above methods have shown their advantages within practical
planning domains as considered in this paper, where these assumptions are hard to verify.

Furthermore, another important technique to address both the exponential complexity and the non-
stationary environment is by imposing hierarchical structures on the planning algorithm see [8, 19, 20].
It has shown great potential for domains that involve long-term reasoning but under spare and delayed
rewards. For instance, intrinsic motivation is learned in [8, 20] via generating intermediate and
simpler goals, while in [21] the complex task is decomposed into smaller tasks via splitting explicitly
the reward function. We build on these results by separating the high-level task coordination and
resource allocation with the low-level navigation and task execution.

Safety is an important yet difficult aspect in learning as to avoid a set of unsafe states. It has been
traditionally handled via assigning a large penalty at unsafe states in [21], which often requires
intensive reward shaping and manual definition of unsafe states. A different approach is to separate
safety policy with task policy as shown in [22, 23]. However, the parameters in the condition to
switch from task policy to safety policy in these approaches need to be manually set. The work
in [24] and [25] propose similar safety predictor but only for a single agent with safety defined over
discrete/sparse variables. Instead in this work, we learn the safety policy via a predictive network that
also provides direct safety-related features. We build on the idea of predictive network from [7] that
replaces sparse scalar reward signal by dense multi-dimensional measurement stream.

3 Model Description

Consider a team of N agents where each agent n P N fi t1, ¨ ¨ ¨ , Nu is modeled by a conditioned
Markov decision process (MDP), denoted by Mn “ xSn, An, C–n, Rn, Tny, where Sn is the state
space, An is the action space, C–n “ xS–n, A–ny is the set of state-action pairs of other agents,
Rn : Sn ˆ An ˆ C–n Ñ R is the reward function, and Tn : Sn ˆ An ˆ C–n ˆ Sn Ñ r0, 1s
is the transition probability. Note that both the reward function and the transition function are
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Figure 1: Overall architecture with predictive safety network and local task networks.

conditioned on other agents’ states and actions. Both functions might be unknown and change over
time. The entire system evolves as an infinite sequence of state-action pairs τ “ s0a0s1a1 ¨ ¨ ¨ , where
st “ ps0, ¨ ¨ ¨ , sN q and at “ pa0, ¨ ¨ ¨ , aN q are the joint state and action of all agents at time t ě 0.
The reward obtained by agent n at time t is denoted by rn,t . For the ease of notation, we denote
by S “

Ś

nPN Sn and A “
Ś

nPN An. Furthermore, the state variable sn of each agent n P N
contains a resource variable vn P R, for which the joint resource is denoted by v “ pv0, ¨ ¨ ¨ , vN q.
The system-wide resource constraint we consider is imposed by

vt P Vsafe, @t ě 0, (1)

where Vsafe Ď RN is a static safety set of resources, and vt is the resource vector at time t ě 0.

Our goal is twofold: to synthesize (a) a centralized safety policy πs : S ˆ A Ñ r0, 1s such
that the safety constraint above holds if v0 P Vsafe; and (b) a decentralized local task policy
πp,n : SnˆC–nˆAn Ñ r0, 1s such that the expected discounted total reward Eπp,s0

 
ř

n

ř

t γ
trn,t

(

is maximized, with 0 ă γ ă 1.

Motivating Example: Consider a fleet of autonomous forklifts that are deployed to complete a
continuous stream of transporting tasks, e.g., to load products from one shelf and unload them to
another. These robots are battery-powered and thus need to “stay safe” by maintaining a minimum
battery level. The whole fleet shares a number of charging stations within the warehouse. The
planning objective is to maximize the task completion while keeping all robots safe.

4 Proposed Solution

In this section, we describe all components of the proposed solution as depicted Fig. 1, including the
behavior composition, the safety network and finally the task network.

4.1 Hierarchical Composition of Action Primitives

Instead of planning directly on the primitive actions or raw actuation inputs, we follow similar ideas
as proposed in [8, 19], we manually define high-level meta-actions as agent behaviors Bn. Some
behaviors are relevant to resource management (denoted by Bsafe,nq and others to task completion
(denoted by Btask,n), @n P N . The set of all agent behaviors is given by B “ YntBnu. Certainly,
the design of these behaviors would require domain knowledge. To generate high-level behaviors
autonomously as partially discussed in [8] is out of the scope of this paper. For the example above,
behaviors relevant to pick-and-drop task completion could be “navigation to pick/drop location”,
“pick” and “drop”. At the same time, to maintain battery level, relevant behaviors could be “navigation
to the charge station”, “wait to charge” and “charge”. Then an execution policy is constructed for
each behavior via preferred methods, e.g., via RL [5, 26], or classic control techniques [27, 28]. The
focus of this work is not the derivation of such primitive policies but the coordination among them.

4.2 Task-independent Predictive Safety Network

Given the behaviors described above, we construct and train a predictive safety network specifically
for the resource constraint in (1). The safety network is generic as it is trained independently of the
task specifications. Below we describe the safety policy and training method for the network in detail.
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4.2.1 Minimum-intervention Safety Policy

The network denoted by Nθ with parameter θ takes as inputs the system state st and the resource
vector vt at time t ě 0. It outputs the predicted resource vectors at the chosen future time instants:

rVθpst,vtq fi prVb0

θ , rVb1

θ , ¨ ¨ ¨ , rVbM

θ q (2)

where rVbm

θ pst,vtq “ prvt`τ0 , rvt`τ1 , ¨ ¨ ¨ , rvt`τK q are the predicted resource vectors at the chosen
time shifts tτ0, ¨ ¨ ¨ , τKu, and b0,b1, ¨ ¨ ¨ ,bM are the allowed behaviors at time t. Moreover, the
safety policy chooses the current behavior bt based on the solution to the following optimization:

min
tbPBu

 

ÿ

n

1bnPBsafe,n

(

s.t. dmin

`

rVb
θ pst,vtq, Vunsafe

˘

ą δsafe,

(3)

where the objective is to minimize the number of behaviors activated for safety (i.e., belong to
Bsafe,n), and the constraint is to ensure the minimum Euclidean distance between the predicted future
resources rVb

θ from (2) and the unsafe set Vunsafe is above the a manually-chosen robustness margin
δsafe ą 0, where Vunsafe fi RNzVsafe. We define the objective above as a measure of “intervention”
and “conservativeness” for the learned safety policy. Smaller intervention means that the safety policy
allows more freedom in executing task-related behaviors and thus less conservative. If (3) does not
have a solution, then bt is chosen among the “safest” behaviors, i.e., the behavior with the maximum
intervention. If multiple solutions exist, bt is chosen randomly among them.

As depicted in Fig. 1, in our implementation, the state st is represented as an image and thus
is processed first by layers of convolutional neural networks (CNNs), while the resource vt is
followed by a fully-connected layer. These two outputs are then concatenated as the hidden input
representation. As proposed in [29], to differentiate more different actions, this hidden input is split
into the expectation and advantage branches, which are then summed into the actual predictions. The
actual prediction for a chosen behavior bt is then simply derived by the one-hot encoding.

4.2.2 Task-independent Safety Training

The safety network is trained using supervised learning without extraneous supervision. In particular,
the system starts from initial state s0 and resource v0. At step t, the safety network outputs rVθpst,vtq
by (2). Note that to make the action set bt invariant to various task specifications, we replace all
task-related behaviors introduced in Sec. 4.1 by a generic behavior “perform task”, the cost and
duration of which is randomly sampled from the original set of action primitives. The acting
behavior bt is chosen based on the policy (3) above. Then the system evolves to state st`1 and
resource vt`1. This procedure is repeated until a fixed number (sufficiently larger than the prediction
horizon τK) of steps or the resource vector becomes unsafe. The set of experience is denoted by
Dsafe “ txst,vt,bt,Vty,@tu, where Vt are the recorded resources at the chosen future instances.
Then the network parameter θ is trained via minimizing the regression loss:

Lpθq “ }rVbt

θ pst,vtq ´Vt}2, (4)

where xst,vt,bt,Vty are sampled from Dsafe. More experiences are collected after more episodes
are simulated. Then mini-batches can be drawn and used to update the network periodically. Denote
by Nθ‹ the trained safety network with parameter θ‹. It is worth pointing out that the prediction
from the safety network is only valid if the associated safety policy in Eq. (3) is followed.

4.2.3 Safety Guarantee

Once the training loss has converged to a reasonable value, the safety guarantee can be inferred
from two aspects: First, if all episodes in the end of training reach the maximum length, it means
that the system under safety policy remains safe for at least the episode length, which is required
to be sufficiently larger than the prediction horizon τK . Second, if the training loss Lpθq in (4) is
sufficiently small, it means the the predicted resource vector is sufficiently close to the actual vector.
Moreover, as the constraint in (3) is satisfied always, it means that the distance between the predicted
resource vector is far away from the unsafe set, implying that the actual resource vector is also far
away from the unsafe set. More precisely, it can be shown that if the final loss with batch-size B
satisfies Lpθq ă B ˆ δsafe, the safety policy from (3) is ensured to be safe.
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Algorithm 1: Predictive Safety Network for Resource-constrained Multi-agent Systems
Input: System simulator for the whole system tMnu.
Output: Learned safety network Nθ‹ and task network Nβ‹ .

1 Construct behaviors tBnu and the associated polices from primitive actions.
2 Collect experience Dsafe “ txst,vt,bt,Vtyu under the safety policy in (3).
3 Train the estimator rVθ, yielding Nθ‹ . // Sec. 4.2
4 Collect experience Dtask “ txst, r

n
t ,b

n
t ,R

n
t yu under the task policy in (5) and the learned Nθ‹ .

5 Train the estimator rRβ, yielding Nβ‹ . // Sec. 4.3
6 for each step t do
7 Observe the current state pst, vt, rtq; choose behaviors tbnu via (5) and the learned Nβ‹ .

4.3 Safe-guarded Task Network

Beside maintaining a safe resource level, the multi-agent systems are often assigned tasks to accom-
plish, e.g., surveillance [30] and collaboration [31]. In this section, we describe the task planning
module that assigns these tasks to individual agents in an efficient manner such that more tasks can
be accomplished per unit time, under the safety constraints mentioned above.

4.3.1 Task Policy and Safe-guarded Training

Instead of a predefined set of static tasks, we consider a continuous stream of tasks that are assigned
to the whole system, e.g., according to online orders. A single task can be any sequence of the
task-relevant agent behaviors Btask,n as introduced in Sec. 4.1. Such sequence can be either directly
specified by the user or derived by external planning processes, see [32, 33].

The task network follows a variation of the predictive network from Sec. 4.2.1, denoted by Nβ

with parameter β. As shown in Fig. 1, even though the task network is identical for all agents,
it is applied locally to each agent with only the observable part of the global state st and the
reward vector rt as inputs and it outputs the predicted reward vectors at future times, denoted by
rRβps

n
t , rtq “ p

rRb0 , rRb1 , ¨ ¨ ¨ , rRbM q, defined similarly as in (2). Note that the action set for task
networks only contains the task behaviors. The time shifts here can be different from the the ones for
safety network. The task policy of each agent is guarded by the learned safety network as follows:

max
tbnPBnu

 

ÿ

n

rRbn

β,t

(

s.t. dmin

`

rVb
θ‹pst,vtq, Vunsafe

˘

ą δsafe,

(5)

where bn is the local behavior of agent n in the task network, b is the joint behavior in the safety
network, rVb

θ‹pst,vtq contains the predicted resources by the learned safety network, and the measure
of safety distance is defined in (3). The above constraint ensures that only the behaviors that are
predicted to be safe by the safety network can be chosen for maximizing the collective rewards by
the task network. Thus, training of the task policy is safe-guarded by the learned safety network.

We use the idea of concurrent self-play from [34] to train the task network. Namely, agents are
controlled independently in parallel simulations via different copies of the same task network. During
training, the local behaviors are chosen for each agent via (5), the whole system evolves accordingly.
Experiences for the task networks are gathered locally from the agents’ local perspectives. Then these
experiences are used to train the task networks via minimizing the prediction error, similar to (4).

4.4 Overall Framework and Discussion

The overall framework is summarized in Algorithm 1. During the training of safety network, a
ε-greedy policy should be used to allow the exploration of safety-uncertain behaviors; initial states
and resources should be randomized to cover larger part of the state space, especially the unsafe part;
the prediction horizons are critical hyper parameters to be tuned: too long shifts would introduce
large variances in the prediction while too short shifts would fail to facilitate long-time reasoning.
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Figure 2: Left two: Snapshots of simulated systems of 5 (left) and 10 (right) robots. Robots are
denoted by green circles with battery level indicated by blue bars. Charging stations are marked by
blue arrows and shelves are in black. The loading and unloading location of a transportation task are
marked in filled and checked squares. Right two: Evolution of episode length (left) and degree of
intervention (right) of the safety network for system with 5, 10, 15 robots.

5 Experiments

In this section, we evaluate the proposed solution in a practical indoor logistic systems, as described
by the motivating example earlier. All simulation results are obtained on a laptop with 8-core Intel
Xeon CPU, using Python and Tensorflow. Implementation details and simulation videos are attached
as supplementary files.

5.1 Model Description

As shown in Fig. 2, the warehouse is partitioned into rectangular cells which can be occupied by
shelves, robots or charging stations. We consider a fleet of 5, 8, 10, 15 robots with 2 charging
stations. The robots are controlled via primitive discrete actions: move into adjacent cells by action
“wait” (´0.002), “up” (´0.01), “down” (´0.01), “left” (´0.01), “right” (´0.01); “load” (´0.02) and
“unload” (´0.02) objects; and “charge” (0.02) at charging stations. The maximum battery level is set
to 1.0 and the battery decrease/increase of performing each action above is given in the respective
parentheses. Each action takes one simulation step in terms of duration. We add uncertainties to
the model by assuming (a) the robot can drift side-ways with 5% probability when moving to an
adjacent cell, and (b) the battery consumption of each action varies by a standard deviation of 10%.
Furthermore, the stream of tasks is generated online with randomly-chosen loading and unloading
locations, of which the density can be changed by the interval between when new tasks are generated.

The above primitive actions are first composed into high-level behaviors. Particularly, (a) “if any
charge station is available, go and charge there until full. Otherwise, wait at the current location” is
a resource-related behavior when a robot tries to charge. Based on it, we construct a set of N ` 1
resource-related behaviors: Bsafe “ t“n robots should try to charge”, where n “ 0, 1, ¨ ¨ ¨ , N u. and
(b) “navigate to load the object, and then navigate to unload it” is the task-related behavior when
a robot executes a plan for a transportation task. Based on it, we construct the set of task-related
behaviors: Btask “ t“robot takes the nth closest task”, where n “ 1, 2, 3 u. All behaviors above are
not preemptable, i.e., once a robot continues executing a behavior until it is finished. Note that Bsafe
grows linearly with the number of robots and Btask is local to each robot with constant size.

As input to the safety network, the system state is encoded by an image with 4 channels (robot ids,
charging station, shelves, robot battery levels), and the resource vector is the stack of battery level of
all robots and additionally the remaining changing level for each charging station. Thus the resource
vector has dimension N ` 2. The prediction horizon is set to r5, 10, 20, 40, 80s, while the set of
actions Bsafe defined above has size N ` 1. The expectation and advantage branches are passed
through individual fully connected layer of size Nact ˆNτ ˆ dimpvtq “ OpN2q. We use 5 workers
to gather experience in parallel simulations for the master network and the batch size is set to 500. On
the other hand, input to the task network is encoded with 4 channels (the robot under consideration,
other robots, task distributions, shelves). The prediction horizon is set to r2, 4, 10, 20s for all robots.
The local reward vector as input has dimension N as the accumulated rewards. The set of actions is
defined above by Btask with size 3. During the concurrent self-play, each robot is controlled by one
randomly-chosen worker and the gathered local experiences is saved in the same buffer. The batch
size now is set to 300. More implementation details are given in the supplementary file.
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Figure 3: For all subplots, X-axis: number of training episodes for task networks, and Y-axis: number
of accomplished tasks, under different system sizes: 5, 8, 10 and 15 robots (left to right).

5.2 Training Results

The training results of safety networks for system with 5, 10, 15 robots are illustrated in Fig. 2. To
have a reasonable start, we always bootstrap the safety policy with the base policy that any robot
should be either charging or waiting to charge if its battery is less than N{p10 ¨ Ncq ´ 0.1. The
maximum episode length is set to 2000, which is significantly longer than the prediction horizon.
In general, it takes longer for the safety policy to converge with larger number of agents, such that
all robots are safe throughout the episode. Specifically, the training of safety networks took around
0.5, 2, 5 hours for system with 5, 10, 15 robots, respectively. On the other hand, it also shows that
the degree of intervention converges without further increase during training due to the optimization
objective in (3). Furthermore, we change the safety margin δsafe in the constraint of (3) from 0.1
to 0.15 and 0.18 for the system of 10 robots. The learning curves for these cases are also shown in
Fig. 2, denoted by 10´ p0.15q and 10´ p0.18q. It shows that with larger safety margin, the safety
policy converges faster and the system reaches the maximum length earlier, which however leads
to an increased degree of intervention. This illustrates well the trade-off between accelerating the
learning of the safety policy and reducing its conservativeness.

The learned safety networks above are used during the training the task networks, as described in
Sec. 4.3.1. Due to the safety constraint enforced by the safety network, almost all episodes can reach
the maximum length, which greatly increase the amount of relevant experiences that can be gathered
for a certain amount of episodes. As shown in Fig. 3, our approach denoted by the predictive safety
network (PSN) converges quite fast under system sizes of 5, 8, 10, 15 robots with great performances.
Note that we do not modify the warehouse layout such as the location of shelves and charging stations
during training or testing of both safety and task networks.

5.3 Alternative Methods

For the purpose of benchmarking, we implemented alternative planning methods to our approach
(PSN) for the considered problem: two state-of-the-art deep RL methods for discrete actions: DQN [4]
and HQN [8], the widely-used Google OR tools GOR for combinatorial optimization [3] , and three
heuristic planners: (a) Earliest deadline first (EDF). The robot with the least battery will charge
whenever a charging station is available. (b) Just in time (JIT). Any robot with battery less than 0.3
will try to charge, i.e., either go to charge or wait to charge. (c) EDF+JIT. It combines the above two
heuristics and the battery lower-bound is tuned such that all robots remain safe within the episode.

The DQN follows the vanilla implementation [35] with double Q network and multiple workers
gathering experience. The HQN uses the same set of high-level behaviors as defined above but learns
the safety policy and the task policy simultaneously. Regarding the GOR tools, we use particularly
the Constrained Programming solver (CP-SAT), which is shown to be much faster than classic mixed
integer programming (MIP). Different from the classic Job Shop problem, we need to optimize
both the start and duration of each agent behavior while satisfying the limited charging stations.
To mitigate motion uncertainties and the continuous stream of tasks, we adopt a receding horizon
approach [36] that replans periodically, i.e., an optimal plan including the sequence and duration
of the behaviors is computed for each robot within a chosen time horizon, which is then updated
periodically at a chosen frequency. Lastly, these three heuristic rules defined above are relatively easy
to implement and invariant to the team size.
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Methods EDF JIT EDF+JIT DQN HQN PSN GOR

(5)Task 273 229 253 5 50 252 213
(5)Length 1000 917 1000 101 128 1000 1000

(10)Task 98 97 305 6 58 453 65
(10)Length 146 228 970 100 120 1000 950

(15)Task 161 153 124 4 65 382 47
(15)Length 142 226 968 100 117 992 720
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Figure 4: Left table: task performance and length of different methods during test time. Right figure:
X-axis: time steps, and Y-axis: robot IDs, for the 10-robot system under the proposed PSN. Robot
behaviors are “wait to charge” (red), “go to charge/charge” (blue) and “task completion” (green).

5.4 Comparison in Performance

Performance is defined as the number of tasks accomplished within one episode. The performance
of the above methods are evaluated under the following scenarios of increasing difficulty: a fleet
of 5, 8, 10, 15 robots and always 2 charging stations. During training, each episode lasts for 1000
steps and is terminated once any robot is out of battery. The performance results during training
are summarized in Fig. 3 and during test time in Fig. 4. As expected, the DQN method performs
extremely poor for all scenarios due to the exponential size in the action space, e.g., for 10 robots, it
has 280 Million possible actions and size of network reaches 2GB. The HQN method struggles to
find the balance between accomplishing more tasks and staying safe, particularly due to the delayed
penalty of “not charging" and in contrast the instant reward of accomplishing a task.

Regarding GOR, for all system sizes, we set the planing horizon to 300 time steps and frequency to
30 steps. The solution time increases significantly: 0.2 seconds for 5 robots, 3.5 hours for 10 robots
and more than 20 hours for 15 robots. We limit the planning time to 5 minutes for all cases during
test. It can be seen that for 5 robots the performances between GOR and PSN are close, but GOR falls
behind when the planning time is limited that only sub-optimal or even infeasible plans are found
for systems with 10, 15 robots. The feasibility of an updated plan is not ensured due to the close
dependency between behaviors within and outside the planning horizon. Similarly, these heuristic
rules perform very well in the 5-robot case as the robots can simply charge whenever they want, i.e.,
2 robots per charging station. However, for the cases with 10 or 15 robots, both EDF and JIT fail to
keep all robots safe while the performance of EDF+JIT drops dramatically as the lower threshold has
to be set very high to keep all robots safe, i.e., 0.6 for 10 robots and 0.9 for 15 robots. One example
of the actual high-level schedule for the 10-robot case is shown in Fig. 4. It can be seen that under
the PSN method, the robots anticipate well beforehand to charge or wait for charge, which validates
the advantage of future predictions from the safety network.

5.5 Generalization to Different Tasks
Table 1: Performance under different
task specifications during test time.

Task Density 5-robot 10-robot

Sparse-16 147 (0.58) 246 (0.55)
Normal-8 252 (1.0) 453 (1.0)
Dense-4 290 (1.15) 510 (1.13)

Lastly, we show that the same learned safety network can
be applied to the training of different tasks, e.g., different
distribution density: sparse, normal and dense, where task
interval is set to 16, 8, 4 time steps. Table 1 shows the
results during test: the performance improves accordingly
(e.g., almost doubled) when the density is doubled from
‘sparse‘ to ‘normal‘. However, the performance lags behind
from ‘normal‘ to ‘dense‘ because the system is close to the maximum number of tasks it can handle.

6 Conlusion and Future Work

In this work, we present the planning framework for resource-constrained multi-agent systems, which
uses a predictive safety network to ensure the resource constraints and task networks to maximize the
performance. Future work involves generalization across workspaces and dependent tasks.
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