
1

Geometric Task Networks: Learning Efficient and
Explainable Skill Coordination for Object

Manipulation
Meng Guo and Mathias Bürger

Abstract—Complex manipulation tasks can contain various
execution branches of primitive skills in sequence or in par-
allel under different scenarios. Manual specifications of such
branching conditions and associated skill parameters are not
only error-prone due to corner cases but also quickly untraceable
given a large number of objects and skills. On the other hand,
learning from demonstration has increasingly shown to be an
intuitive and effective way to program such skills for industrial
robots. Parameterized skill representations allow generalization
over new scenarios, which however makes the planning process
much slower thus unsuitable for online applications. In this work,
we propose a hierarchical and compositional planning framework
that learns a Geometric Task Network (GTN) from exhaustive
planners, without any manual inputs. A GTN is a goal-dependent
task graph that encapsulates both the transition relations among
skill representations and the geometric constraints underlying
these transitions. This framework has shown to improve dra-
matically the offline learning efficiency, the online performance
and the transparency of decision process, by leveraging the task-
parameterized models. We demonstrate the approach on a 7-DoF
robot arm both in simulation and on hardware solving various
manipulation tasks.

Index Terms—Robotic Manipulation, Learning from Demon-
stration, Task and Motion Planning, Industrial Automation.

I. INTRODUCTION

TRADITIONAL manufacturing and industrial practices
commonly consist of an array of robotic manipulators,

each of which repeats exactly the same trajectory at extremely
high speed. This high efficiency or throughput relies on the
fixed environment setup, i.e., every object should be located
at the precise pose and any derivation from the setup would
lead to failure. However, recent years have seen an increasing
number of applications that require both flexibility to different
setups and generalization to different tasks [1]. For instance,
goods in logistic systems often arrive within unsorted bins;
service robots need to deal with unstructured or unseen scenes;
products on the assembly line can vary in poses. Moreover,
instead of a single motion, complex manipulation tasks that
contain multiple branches of numerous intermediate skills or
sub-tasks should be done by one robot. As part of the planning
process under different scenarios, the suitable branch should be
first chosen and then executed with different parameters. Such
adaptation is essential for flexible robotic systems across vari-
ous applications. In fact, both self-adaptation and autonomous
decision making are important design principles of Industry

The authors are with Bosch Center for Artificial Intelligence (BCAI), Ger-
many. Corresponding author: Meng Guo. Meng.Guo2@de.bosch.com.

4.0 systems from [2]. On the other hand, learning from
demonstration (LfD) has increasingly shown to be an intuitive
and effective way to program industrial robots, see [3], [4]. In-
stead of simply re-playing the recorded demonstration, several
parameterized skill models have been proposed to improve the
generalization over different scenarios. Such parameterization
however makes the above-mentioned planning process harder,
due to the high-dimensional parameter space and a large
number of skills. This consequently leads to long planning
time thus unsuitable for online applications.

The most common approach to tackle the above complexity
is by: (I) limiting the possible scenarios, e.g., by fixing the
object poses, such that fewer or only one branch is plausible;
(II) manual definition of branching conditions and parameter
selection, e.g., the subspace where one skill is preferred with
certain parameters. However, the first measure would often
limit the flexibility and increase the operational cost, while
the second is prone to engineering errors when covering
all corner cases. Recent works address such problems by
task and motion planning (TAMP) that searches through both
discrete and continuous space for a path from the initial state
and the goal state, see [5], [6], [7]. Due to its exponential
complexity to the number of skills, the length of tasks, and
the dimensionality of parameter space, the classic TAMP is
applicable only to limited industrial applications with ad-hoc
heuristics. Due to the repetitive nature of industrial processes,
an intriguing question to ask is “Can we solve the problem
faster after solving it 100 times?”. Thus some recent work
proposes to learn such heuristics from expert solutions or
via reinforcement learning, see e.g., [8], [9], [10]. However,
most of these approaches require enormous amount of training
data even for relatively simple tasks. This work overcomes
the above difficulties by an efficient TAMP framework that
is tailored for parametrized skill representations learned from
demonstration, without any manual inputs.

In particular, we propose here a hierarchical and composi-
tional planning framework that learns first offline a Geometric
Task Network (GTN) from exhaustive planners, which is then
used during online execution, as shown in Fig. 1. This network
encapsulates both the transition relations among primitive
skill representations and the geometric constraints underlying
these transitions, all of which are parameterized over the
planning goal. Furthermore, we show that such network can
be efficiently combined with skills that are learned via the
LfD framework, without any additional manual supervision.
Notably, both the GTN and the primitive skills are represented

ar
X

iv
:2

10
9.

08
99

3v
1

 [
cs

.R
O

]
 1

8
Se

p
20

21

2

Learning

θa

γ1,a γT,a

Data Generation
Problems

Current State
sk

GTNG = (V,E, f)

(x̂?, û?)

Motion Control
Skills Library A

Demos

{(s0, sG)}
Solutions

Ξ = {ξ}
TAMP

Solver

Model

Learning

Offline Learning Online Execution

Next Skill

(ak,TP
?)

Opt. Params

Skill
Retrieval

a0

a1

a2

a3

a4{γe}

New Problem
(s0, sG)

Model

{γe}

Fig. 1. Illustration of the proposed framework, as described in Sec. V. The proposed GTN is first learned offline given demonstrations of primitive skills and
a TAMP solver. The learned GTN is used online to solve new problems by predicting the next skill and the optimal parameters, given real-time observations.

based on the task-parameterized Gaussian mixture models
(TP-GMMs) and hidden semi-Markov models (TP-HSMMs).
This unique combination of homogeneous representations im-
proves dramatically the data efficiency during offline learning,
reduces significantly the planning time, and ensures the real-
time adaptability and failure recovery during online execution.
We validate this approach on a 7-DoF robot arm solving
various tasks in simulation and on actual hardware.

The main contribution of this work is threefold: (I) it
extends the existing work on skill graphs to GTNs, which
operate exclusively on skills learned from demonstrations as
TP-HSMMs; (II) it proposes a novel model for the constraints
embedded in the GTNs, based on TP-GMMs. By exploiting
the geometric structure of demonstrated skills w.r.t. relevant
object frames, the GTNs can be learned and executed in an
extremely time-and-data-efficient way, without the necessity
of a simulator; (III) this task-parametrized model provides
a fully-explainable planner regarding why a skill and these
parameters are chosen, what the alternatives are, and how
confident such options are, thus yielding better transparency
with the human operators during the decision process.

II. RELATED WORK

A. Learning from Demonstration (LfD)

Compared with traditional motion planning from [11], LfD
is an intuitive way to transfer human skills to robots, see [3],
[4], [12]. Various teaching methods can be used such as
kinesthetic teaching in [3], tele-operation in [13], and visual
demonstration in [12]. Different skill models are proposed
to abstract these demonstrations: full trajectory of robot end-
effector in [4], dynamic movement primitives (DMPs) in [14],
TP-GMMs in [3], [15] which extend GMMs by incorporat-
ing observations from different perspectives (so called task
parameters), TP-HSMMs in [16], [17], and deep neural net-
works [12] that map directly observations to control inputs.
In this work, we adopt the representation as TP-HSMMs,
mainly due to two reasons: first TP-HSMMs provide an
elegant probabilistic representation of motion skills, which
extracts both temporal and spatial features from few human
teachings. In contrast, DMPs and TP-GMMs can only encode
spatial information; second, task parameterization allows the

model to generalize to new situations, see e.g., applications in
collaborative transportation [14]. This work further extends
this representation with grounded precondition and effect
models, which provides symbolic relations among the skills,
but without direct symbol generation and logic reasoning.

B. Task and Motion Planning

Task planning focuses on constructing a discrete high-level
plan via abstract decision-making, e.g., via logic-reasoning
from [18]. On the other hand, motion planning addresses the
low-level sensing and control problem of a dynamic system,
e.g., as reviewed in [11]. The area of task and motion planning
(TAMP) attempts to improve the synergies between them.
As illustrated in Fig. 2, the planning process over the state
graph consists of searching over both the set of discrete skill
primitives and the continuous skill parameters. One direct
challenge that arises is that state abstractions along with
geometric constraints are difficult to capture symbolically and
more so automatically, as also mentioned in [6]. A common
approach is to combine discrete logic reasoning with sampling-
based motion planners, e.g., in [6], [7], [19]. Despite the
intuitive planning process and direct interface with existing
motion planners, such approaches often suffer from the inten-
sive manual modeling effort and the exponential search space.
Different heuristics are proposed to prune the search tree thus
reduce the motion planning complexity, see [7], [20].

A conjugate view of the state graph is the so-called skill
graph as shown in Fig. 2, where instead the nodes are primitive
skills and edges are implicit state abstractions, see [9], [10],
[12], [21], [22]. Skill graphs are also used for the purpose
of TAMP in these work. In contrast, an optimal plan in the
skill graph can have cycles and repetitive segments, i.e., not
necessarily the shortest path from start node to stop node. The
work in [21] extends the hierarchical task networks (HTN)
to conjugate task graph (CTG) without any parameterization
on the skill primitives. Similar idea is used in [23] for
partial-order planning. Moreover, [22] calls such graph as
maneuver automaton, which however is manually designed
instead of learned, whereas [12] require similar structural
supervision during training. The works in [9], [10] learn such
task-level graph from complete demonstrations of the whole

3

S0

a1 a2

S1 S2 S3 S4 S5

a3 a2 a4 a5

S6 S7 S8 S9 S10

a6 a3 a4

S11 S12 S13 S14

p1 p2 p3 p4 p5

p6 p7p8 p9 p10 p11

State

Skills

Plan

STRT a2

a6

a1 a3

a4

a5STP

Skills
fe
Plan

Fig. 2. Comparison of structure between the classic state graph (left) and the proposed geometric task network GTN (right), as discussed in Sec. II-B. Note
that the corresponding plans are highlighted in red in both structures.

manipulation task and with manual specification of action
sequences during training. Similarly, the work in [12] learns
a flexible network based on Neural Programmer Interpreter
from [24] to allow generalization over new tasks. The method
in [10] relies on “change point” detection to segment these
task demonstrations with simple non-parameterized models in
2D, while [9] assumes each skill primitive is parameterized to
only one object frame. In this work, we adopt this conjugate
perspective but only require demonstrations of primitive skills
locally without any specific task in mind. The main advantage
is that such skills can be shared and re-used across different
tasks. Furthermore, compared with [9], [10], the skill rep-
resentation used here as TP-HSMMs is more general since
it incorporates temporal properties within the demonstration
and allows an arbitrary number of relevant frames. Lastly,
the constraints embedded in the proposed GTN is based on
TP-GMMs, which are extremely efficient for learning and
inferring when combined with the TP-HSMMs of the skill
model. To the best of the authors’ knowledge, this feature has
not been exploited in literature.

C. Imitation Learning
An important technique used in this work is to learn an

imitation policy from an expert solver or human, such that
this policy can be used online but with less solution time or
improved generalization. Imitation learning has been widely
used for various purposes, e.g., autonomous driving, robot
motion control [12], [25], and multi-robot coordination [8],
[26]. Most of the these work has a strong focus on learn-
ing low-level control policy from raw visual inputs, without
considering high-level tasks. Furthermore, training data can
be generated from a complete solver [8], [25], [27] or expert
demonstrations [10]. They are commonly represented by deep
neural networks (DNN) such as CNN [8], [26], GNN [25], and
VAE [28]. High-dimensional sensory inputs such as images
in [12], [26] or point clouds in [20] enable direct reasoning
over raw inputs, while direct state information such as object
poses in [25] provides easy interfaces to the existing motion
planners. Most of the work above requires large amount of
training data for the complete task, mainly due to the training
mechanism of DNN and the high-dimensional state space.
In contrast, the geometric relation among the robot and the
objects in the proposed GTNs are modeled using TP-GMMs,
which are more efficient to learn.

Furthermore, generalization to new scenarios or even new
tasks is an important aspect of imitation learning. Namely, the
learned policy should not simply replicate what was taught
during the training, rather to abstract the underlying reasoning
and methods. Such generalization can happen at different
levels, e.g., (I) at the skill-level that the execution of single
primitive skill can adapt to different scenarios such as different
robot and object poses, e.g., via end-to-end vision-guided
control [12], motion constraints for sampling planners [25],
task parameterization [16], [17] and manual classification [9].
(II) at the task-level that different instances of the same task, or
even different tasks can be solved. For instance, [12] considers
rather homogeneous tasks with uniform sequences of a small
number of primitive skills, such as sorting with “pick-and-
place”, where the generalization is w.r.t. the number of objects;
task generalization in [21] relies heavily on the initial task
network which is manually defined. In this work, we address
mainly complex manipulation tasks where the sequence of
desired skills and their parameters changes significantly under
different pairs of initial and goal states.

III. PRELIMINARIES ON TASK-PARAMETERIZED MODELS

This section presents briefly the essential background on
task-parameterized models. More details are given in the
supplementary file and see [3], [15], [16], [17].

A. TP-GMMs

A task parameterized Gaussian mixture model (TP-GMM)
is described by the following model parameters γ “

tπk, tµ
ppq
k ,Σ

ppq
k uPp“1u

K
k“1, where K represents the number of

Gaussian components in the mixture model, πk is the prior
probability of each component, and tµppqk ,Σ

ppq
k uPp“1 are the

mean and covariance of the k-th Gaussian component within
frame p. Frames provide observations of the same data but
from different perspectives, the instantiation of which is called
a task parameter. Differently from standard GMM used in [9],
the mixture model above can not be learned independently
for each frame. Given these observations, the Expectation-
Maximization (EM) method from [29] is a well-established
method to learn such models with polynomial complexity to
the state dimension and the number of components.

Afterwards, given a set of new frames tbppq,AppquPp“1,
the learned TP-GMM is converted into one single GMM

4

Fig. 3. Examples of solutions to two problems of the same task, where goal states are highlighted in red. Note that snapshots represent the intermediate
states, where the transitions are driven by the chosen skill under desired parameters. The associated skill model and reference trajectories are also shown.

with parameters tπk, pµ̂k, Σ̂kqu
K
k“1, by multiplying the affine-

transformed Gaussian components across different frames.
Note that obstacles can be explicitly added as frames in the
above model, or implicitly considered in the demonstrations.

B. Complete Skill Model

As proposed in our earlier work [16], the complete skill
model of a can be learned:

Ma “ pθa, γ1,a, γT,aq, (1)

where the elements are as follows.
(I) The trajectory model θa as the task-parameterized Hid-

den semi-Markov Model (TP-HSMM) that encapsulates both
temporal and spatial property of all human demonstrations Da.
A TP-HSMM is built upon a TP-GMM from Sec. III-A above.
HSMM extends the standard HMM by embedding temporal
information of the underlying stochastic process. This means
that a transition to the next component depends on the current
component as well as on the elapsed time since it was entered.
More specifically, a TP-HSMM is defined as:

θ “

tahku
K
h“1, pµ

D
k , σ

D
k q, γk

(K

k“1
, (2)

where ahk is the transition probability from component h to k;
pµD

k , σ
D
k q describe the Gaussian duration of component k; and

γk is component k as a TP-GMM above.
(II) The precondition model γ1,a and the effect model γT,a.

Note that γ1,a are the TP-GMMs that model the system state
before executing the skill; γT,a are the TP-GMMs that model
the change of system state after executing the skill. They
are used to model the geometric relations among the robot
and all objects, e.g., where the objects are w.r.t. each other
and the end-effector. Note that they are not the first and last
component of the TP-HSMM model θ above. These models
are automatically grounded to system state, without the need
for manual definitions as in [6], [7].

All three elements in (1) are task parameterized. These task
parameters can be either determined by the system state (such
as object poses) or freely chosen. While the first case are
commonly seen in literature, the latter case is often tackled

by hand-crafted rules. However, such free task parameters are
essential for the flexible skills such as translation and rotation.
Detailed derivations are given in [16], also summarized in the
supplementary file.

IV. PROBLEM DESCRIPTION

Consider a multi-DoF robotic arm, of which the end-effector
has state r such as its 6-D pose and gripper state. We assume
that the robot operates within a static and known workspace.
Also, within the reach of the robot, there are multiple objects
of interest denoted by O “ to1, o2, ¨ ¨ ¨ , oJu. Each object is
described by its state po such as its 6-D pose.

Moreover, there is a set of primitive manipulation skills
that enable the robot to manipulate these objects, denoted
by A “ ta1, a2, ¨ ¨ ¨ , aHu. For each skill, a human user
performs several kinesthetic demonstrations on the robot.
Particularly, for skill a P A, the set of objects involved is
given by Oa Ď O and the set of demonstrations is given
by Da “ tD1, ¨ ¨ ¨ ,DMau, where each demonstration Dm is a
timed sequence of states s P S that consists of the end-effector
state r and object states tpo, o P Oau, i.e., Dm “

“

st
‰Tm

t“1
“

“`

rt, tpt,o, o P Oau
˘‰Tm

t“1
. Via a combination of these skills,

the objects can be manipulated to reach different states.
We consider a generic manipulation task, which however

consists of many problem instances. Each problem instance
is specified by an initial state s0 and a set of desired goal
states tsGu. A problem is solved when the robot successfully
modified the system state from s0 to tsGu. Two problems
belong to the same task if they can be solved by the same
set of primitive skills as introduced above. We are interested
in solving complex manipulation tasks where the sequence
of desired skills and their parameters changes significantly
for different problems. An example of solutions to different
problem instances is shown in Fig. 3.

Thus, our objective is to learn a GTN as shown in Fig. 2 for
the considered task that: given any feasible problem instance of
this task, the learned GTN generates online: (I) the sequence of
skills with the associated parameters; and (II) the associated
reference trajectory for each skill within the sequence, such
that the system reaches the goal states tsGu from s0.

5

Fig. 4. The learning process of GTN from the gathered data, as described in Sec. V-A3. Left: preliminary structure of GTN where edges are labeled by the
augmented states psanan`1 , where goal states are highlighted in red and the executed trajectory is plotted along with the learned TP-HSMMs. Middle: the
learned GTN, where edges are labeled by the geometric constraints fe as a set of TP-GMMs. Note that some skills have no free task parameters and only
tγou is learned (in yellow), while tγpu is learned in addition for skills with free parameters (in green). Right: how the learned fe is used to compute the
score ρe for each outgoing transition, given the current state sk and goal state sG.

V. PROPOSED SOLUTION

Main components of the proposed framework as depicted
in Fig. 1 are presented in this section. The offline learning of
GTNs are described in Sec. V-A, while the online execution
of learned GTNs given new tasks is described in Sec. V-B.

A. Offline Learning

This section describes first the general structure of GTNs,
then the procedure to gather training data, and lastly the
algorithms to learn the associated GTN for a certain task.

1) Structure of GTNs: As illustrated in Fig. 2, a GTN has a
relatively simple structure defined by the triple G “ pV, E, fq.
The set of nodes V is a subset of the primitive skills A; the set
of edges E Ď V ˆV contains the allowed transitions from one
skill to another; the function f : E Ñ 2γs maps each edge to
a set of TP-GMMs over the system state s. The structure of
TP-GMMs γ is defined in Sec. III. Intuitively, pV, Eq specifies
how skills can be executed consecutively for the given task,
while function fe “ fpeq models the geometric constraints
among the objects and the robot for each edge e P E, which
is explicitly conditioned on the goal state of the problem. The
detailed representation of fp¨q is given in the sequel.

2) Training Data Gathering: First, for each primitive
skill a, the skill model Ma from (1) has to be learned. Namely,
the trajectory model θa is used to retrieve the trajectory, while
the precondition and effect models γ1,a, γT,a are used to
compute the initial condition, and predict the resulting state.

Secondly, a complete TAMP over the state space is used
to generate the training data for learning GTNs. As shown in
Fig. 2, starting from the initial state s0, a graph search algo-
rithm is used to traverse the state space until the goal state is
reached, e.g., breadth-first search or Dijkstra or A‹ algorithm
see [11]. Note that any state-of-the-art TAMP planners can be
used here. In fact, the faster each problem in the training set
is solved, the less time the data gathering process takes.

At each visited state si, any skill ak P A can be executed to
drive the system to a new state sj . The associated parameters
(denoted by TPak) are either computed directly from the
current state si (e.g., object poses), or sampled uniformly (e.g.,
free task parameters) from the precondition model γ1,ak in (1).
Moreover, given these parameters, the resulting state sj is
computed as the mean of the effect model γT,ak . Note that
the same skill with different parameters drives the system

to different states. In this way, both the discrete choices of
skills and continuous choices of skill parameters are explored
during the search, yielding a hybrid method. Thus each edge is
described by the “state-action-state” triple psi, pak,TPakq, sjq,
of which the cost is computed based on the confidence
measure from [16]. Other choices are also available as shown
numerically in Sec. VI. Once one of the goal states in tsGu
is reached, a complete plan is retrieved as:

ξ “ s0 pa0,TPa0q s1 pa1,TPa1qs2 ¨ ¨ ¨ sG, (3)

of which the associated discrete plan is denoted by ξd “
a0a1 ¨ ¨ ¨ aG. The above procedure is repeated for different
initial and goal states (i.e., problems) of the same task, of
which the resulting plans are stored in a dataset, denoted by
Ξ “ tξu. Despite of being asymptotically complete, the above
planner has exponential complexity w.r.t. the number of skills,
the dimensionality of their parameters and the plan length. Last
but not least, different from most related work [12], [25], the
above planner does not rely on a simulator to evaluate the
resulting state or the associated cost after executing a skill.

Two examples are shown in Fig. 3. It can be seen that the
solutions to two problems of the same task can be completely
different, e.g., in case (a), the alphabet can be directly picked,
rotated and translated to the desired goal, while in case (b),
the alphabet should be picked, moved and re-oriented from
“standing” to “lying flat”. Notice that some skills are executed
with different parameters in different solutions, e.g., skill
rotate in case (a) and (b), or even in the same solution,
e.g., skill translate in case (b).

3) GTN Model Learning.: For each plan ξ P Ξ,
a virtual start action a is prepend to the beginning of
ξ and a virtual end action a is append to its end,
i.e., ξ “ as0pa0,TPa0qs1 ¨ ¨ ¨ paN´1,TPaN´1

qsGa, where
the plan has length N and sG is the final goal state
reached by the plan. Then, for each “action-state-action”
triple

`

pan,TPanq, sn`1, pan`1,TPan`1
q
˘

within ξ, the pair
pan, an`1q is added to the edge set pE if not already present;
and a new augmented state ps “ psn`1,TPan`1

, sGq is added
to the set of all augmented states, denoted by psanan`1

, for each
unique skill transition pan, an`1q.

Once all plans within Ξ are processed, the GTN G can be
constructed as follows. First, its vertices and edges are directly
derived from pE. Then, for each pak, a`q P pE, the function

6

Algorithm 1: Offline Learning of GTN
Input: Da, @a P A.
Output: Ξ, G “ pV,E, fq.

1 Learn Ma in (1) for each a P A.
2 forall ps0, sGq do
3 Find the complete plan ξ in (3) using an

exhaustive TAMP.
4 Add ξ to Ξ.

5 Construct pE and tpse, @e P pEu given Ξ.
6 Build pV, Eq given pE.
7 Compute fpeq by (4) given pse, @e P pE.

fpak, a`q returns a set of TP-GMMs that are computed from
psaka` “ tpsj ,TPa` , sGqu, given by:

fpak, a`q “ tγp,@p P TPa`u Y tγo,@o P Oa`u, (4)

where (I) For each task parameter p P TPa` , a TP-GMM γp

is learned by using tTPa`,pu as observations and tpsj , sGqu
as the associated frames; (II) For each object o P Oa` , a
TP-GMM γo is learned by using tsj,ou as observations and
tpsj,„o,TPa` , sGqu as the associated frames, where sj,„o are
the states of objects in Oa` other than o. The frames from sj
and sG are mapped to the same set of objects, but instantiated
with different system states. Intuitively speaking, tγpu models
how the chosen parameters are constrained w.r.t. the current
state and the goal state, while tγou models how the current
state are constrained w.r.t. the chosen parameters and the goal
state. Furthermore, the number of components for each TP-
GMM within fe is set to the number of distinctive discrete
plans from Ξ that contain this edge e P E, i.e.,

Ne “

ˇ

ˇ

ˇ

ξ P Ξ | e P ξd
(

ˇ

ˇ

ˇ
, (5)

where ξd is the associated discrete plan. This is essential to
distinguish different modes of the same edge, i.e., the same
transition can be used in different parts of the same plan
or different plans. These TP-GMMs can be learned via the
iterative EM algorithm, as described in Sec. III. Thus, the
learned fp¨q matches the training data optimally.

The above learning procedure is illustrated in Fig. 4 and
summarized in Alg. 1, which has polynomial complexity to
the state dimension and the number of skills. As mentioned in
Sec. V-A1, the representation of fp¨q and its learning process
described above are novel compared with relevant work. First,
it is parameterized explicitly w.r.t. both the current state and
the goal state. Then, it provides a partial abstraction of the
state space focused on the geometric relations, i.e., instead of
an uniform converge via DNNs as in [12], [25].

B. Online Execution

This section describes how the learned GTN can be used
during online execution to accomplish a new problem of
the same task: particularly, (I) to generate the sequence of
skills and the associated parameters; and (II) to reproduce and
execute the skill trajectories. At last, we show how failures
during execution can be handled.

Fig. 5. Examples of the transition score from (7). Given different pairs of the
initial state s0 (in blue) and the goal state sG (in red), the left figure shows
one ρaka` (normalized) for various picking skills, while the right shows one
optimal choice of TP‹ and ρaka` for different transition.

1) Optimize Skill Sequence and Parameters.: Consider that
the new given problem is to reach sG from s0. Starting from
the virtual start node a, let ak “ a and sk “ s0. For each
outgoing transition pak, a`q P E, the following two steps are
performed. (I) For each free task parameter p P TPa` , its
optimal choice for this transition is given by:

TP‹a`,p “ argmaxpa`,p

pdf
`

pa`,p |γppsk, sGq
˘(

, (6)

i.e., the mean of the corresponding Gaussian computed from
the learned γp of which the task parameters are derived
from psk, sGq as described in (4). (II) Then, the “score” of
this transition is computed by:

ρaka`psk, sGq 9 Harmonic-Mean
´

pdf
`

sk,o |γopsk,„o, TP
‹
a` , sGq

˘

, o P Oa`

(

¯

,
(7)

where Harmonic-Mean is the harmonic mean function; pdf
is the probability density function of a multivariate Gaussian
distribution; sk,o is the observation of the current state of
object o; and the corresponding Gaussian is computed from
the learned TP-GMM γo of which the task parameters are
derived from psk,„o, TP

‹
a` , sGq as described in (4); TP‹a` are

the optimal choices of parameters for skill a` from (6) above.
Note that the Harmonic-Mean function takes into account all
objects within Oa` , instead of choosing only one dominant
frame. Thus, if any object is significantly different from the
learned constraints, the overall score to that skill is low. Fig. 4
illustrates the data flow while computing ρe.

Consequently, once ρaka` is computed for all possible out-
going transitions pak, a`q P E, the next skill to execute is
chosen greedily by the computed scores, i.e.,

a‹ “ argmaxa`
tρaka`u, (8)

i.e., the transition that has the maximum score. In this way,
the GTN explores during execution only the states and skills
within the desired plan for the given task. Note that related
work such as [9], [10], [12] learns some transition scores
similar to (7), but the associated skill parameters are implicitly
abstracted from the system state only. Instead, the two-step
optimization process above allows explicit reasoning on the
choice of such parameters given the system and goal states,
as illustrated in Fig. 5.

7

Fig. 6. An example of online failure recovery in Sec. V-B3. A fault is
introduced manually at state s2,3 while picking the “lying” cap. Afterwards,
given the new state s4, the adapted plan picks the “standing” cap again.

Algorithm 2: Online Execution of GTN
Input: G “ pV,E, fq, ps0, sGq, st.
Output: tpak,TPakqu.

1 Set ak Ð a and sk Ð s0.
2 while sk ‰ sG do
3 forall pak, a`q P E do
4 Compute TP‹a` by (6) given f and psk, sGq.
5 Compute ρaka` by (7) given f , TP‹a` , psk, sGq.

6 Execute a‹ from (8) with parameters TP‹a‹ .
7 Receive new state st from perception.
8 Set sk Ð st and ak Ð a‹.

2) Skill Execution.: Once the optimal skill a‹ is chosen
along with its parameter TP‹, its trajectory can be retrieved
given the previously-learned model θa. The retrieval process
consists of two steps: First, given a partial sequence of
observed past trajectory, the most-likely future sequence of
components k‹ and their durations can be computed via
the Viterbi algorithm for classic HSMMs; Then, a reference
trajectory is generated by a control algorithm (e.g., LQG
from [30]) to track this sequence of Gaussians in the Cartesian
space, which is then sent to the motion controller to track,
e.g., in the joint space. More details are given in our earlier
work [17]. Afterwards, the system state is changed to st,
obtained from the state estimation and perception modules.
Given this new state, the same process from Sec. V-B1 is
followed to choose the next skill and its parameters. This
procedure is repeated until the goal state is reached.

3) Failure Recovery.: Clearly, if all chosen skills are ex-
ecuted successfully along the plan as described above, the
system state should also evolve following the learned GTN
structure. Namely, after executing skill ak, the resulting system
state sk should satisfy the constraints associated to at least one
outgoing transition from ak, i.e.,

ρaka`psk, sGq ą ρ, Dpak, a`q P E, (9)

where ρ ą 0 is a manually-chosen lower bound on the
computed transition score from (7). If the condition in (9) is
not satisfied, it indicates that the system does not evolves as

learned, and none of the following skills are plausible. After
manually checking the execution, two measures can be taken:
(I) if skill ak is executed successfully, it indicates that the
learned skill model Mak can not cover this scenario. Then
additional demonstrations can be provided that are close to
this scenario. (II) if skill ak is not executed successfully due to
uncertainties, e.g., in perception and motion. Then, the current
progress should be re-identified for the given task, as a failure
could potentially set the progress forward or backward. This
is done by evaluating the transition scores of all edges and
choose the one with the highest score, namely:

pam, anq
‹ “ argmaxamanPE

ρamanpsk, sGq
(

, (10)

which is an expensive process compared with (8). Note that if
the condition in (9) is still not satisfied by pam, anq‹, then the
system has entered a unrecoverable state and has to be reset.
An example is shown in Fig. 6.

4) Algorithmic Summary.: The components described
above are summarized in Alg. 1 for offline learning and in
Alg. 2 for online execution. Note that the only inputs required
are the demonstrations tDau and the task specifications as s0
and tsGu. The TAMP solver needed for the data generation
can be constructed as described in Sec. V-A2. During online
execution, access to the perception and control modulars are
required. More implementation details are given in Sec. VI.

Last but not least, it is worth stressing that the policy during
online execution is fully explainable, regarding: (I) why the
policy chooses certain skill and these parameters, (II) what
are the alternatives, (III) how confident such choices are,
and (IV) how to detect failures and how the system could
recover. In particular, regarding (I)-(III), (6) provides insights
on how each frame associated with current state or goal state
contributes to the choice of optimal TP‹a`,p, while (7) and (8)
indicate how each object state contributes to the confidence of
next skills. The recovery mechanism by (9) and (10) reveals
the underlying reasoning regarding (IV). This leads to better
transparency with human operators during the process.

One variation of the proposed GTN is by grouping similar
primitive skills into one general skill, e.g., by combining “pick
stand” and “pick flat” into one “pick” skill. Even though this
would result in a simpler GTN, this does not reduce the overall
complexity as the choice of sub-skills is transferred inside each
general skill. On the contrary, this would make the GTN less
transparent regarding how such choice depends on the goal.

VI. EXPERIMENTS

This section contains the numerical validation over a 7-
DoF robotic manipulator, both in simulation and on actual
hardware. The proposed approach is implemented in Python3
on top of Robot Operating System (ROS) to enable commu-
nication across planning, control and perception modules. All
benchmarks are run on a laptop with 8-core Intel Xeon CPU.
Detailed descriptions of the simulation and hardware setup,
and experiment videos can be found in the supplementary file.

A. 6D Scrabble in Simulation
To avoid limitations from perception, we consider first in

simulation three manipulation tasks with increasing complex-

8

Fig. 7. Top (from left to right): snapshots of skills Pi_St, Re_St2Fl,
Pi_Si and Ro_Fl. Bottom: the learned GTN associated Task-1, where two
different plans are highlighted (in blue and in red, shared edges in purple).

TABLE I
MODELS OF SKILLS USED IN TASK-1,2,3.

Skill Name Ma Ka TPa t pθa |γaq [s]

Pi_St 12 7 tA,Ru 3.6 | 2.7
Pi_Si 10 8 tA,Ru 4.2 | 3.1
Pi_Fl 8 7 tA,Ru 3.8 | 3.2

Re_St2Fl 9 8 tA,R,AGu 4.3 | 2.1
Re_Fl2St 10 8 tA,R,AGu 3.8 | 2.2
Ro_St 15 6 tA,R,AGu 4.2 | 2.7
Ro_Fl 10 6 tA,R,AGu 3.3 | 2.2
Tr_St 10 7 tA,R,AGu 4.1 | 1.9
Tr_Fl 10 7 tA,R,AGu 4.3 | 2.1
Reset 7 6 tRu 2.8 | 1.5

ity. Particularly, several 3D letters are scattered on a platform
along with a 7-DoF Franka arm, as shown in Fig. 7, 8, 9.

Task-1: manipulate one letter to reach the desired pose
in 6D. Note that re-orientation and rotation skills are used
to change its orientation (in pitch and in yaw). Moreover,
different picking skills are required for grasping the object at
different orientations. This is different from symmetric objects
such as blocks in [12] where only “pick-and-place” skills
are sufficient. The purpose of this task is to illustrate the
computational complexity even for a simple task.

Task-2: similar to Task-1 but with a box to levitate the
letter for re-orientation, instead of at the platform edge. Note
that this subtle difference makes this task more difficult as the
box is not directly related to the goal but used as a tool to
facilitate other subsequent skills.

Task-3: manipulate three letters with a levitation box to a
desired formation. This task shows the increased complexity
when there are more relevant objects, to emphasize the order
of manipulating different objects and using a tool in between.

Note that the state-space of tasks above is high-dimensional,
e.g., 6D pose of the end effector and all objects, which are
well-known to be difficult for classic TAMP methods.

1) Primitive Skills: For each letter, there are 10 primitive
skills relevant to the above tasks: Pi_St and Pi_Si to pick
a standing letter from the top or the side while Pi_Fl to
pick a flat-lying letter; Re_St2Fl re-orients a letter from
standing to lying (i.e., its pitch angle), while Re_Fl2St does
the opposite; Ro_St and Ro_Fl rotate a letter by arbitrary

Fig. 8. Top (from left to right): snapshots of skills Pi_Bx, Re_Fl2St (onto
the box), Tr_St and Re_St2Fl (onto the box). Bottom: the learned GTN
for Task-2, where one plan is highlighted in blue, red, and purple.

yaw angle while standing and flat, respectively; Tr_St and
Tr_Fl translate a letter to arbitrary position without changing
its orientation; Reset resets the robot. Instead of kinesthetic
teaching, a 6D mouse is used to generate demonstrations for
each skill under various configuration of the robot and the
letters, recorded at 10Hz within the simulator. As summarized
in Table I, in average 9 demonstrations are performed for
each skill, due to a large workspace and various objects. The
associated trajectory model θa is learned in 4 s with around
8 components and two or three frames, while the condition-
effect model γa is learned in 3 s.

2) Results for Task-1: Starting from Task-1, Alg. 1 is
followed to learn the associated GTN. More specifically, the
training set consists of 100 problems that are generated by
randomly choosing pairs of initial and final poses for the
letter. It took in total 7 h the proposed hybrid TAMP to solve
all problems successfully in the training set. Afterwards, the
associated GTN is learned in 2.8 s of which the constraints
fe takes around 0.1 s to compute for each edge. As shown in
Fig. 7, the learned GTN has 12 nodes, 20 edges and 28 TP-
GMMs for the constraints, which encapsulates all 4 possible
plans for Task-1, which have length 4, 4, 7 or 9 and contain
2, 2, 2 and 4 skill parameters (each as 6D pose). Namely, the
desired behavior is already quite complex: if the initial and
goal pitch angle of the letter are the same (i.e., both standing
or lying), then the robot needs to pick the letter with the correct
pick skill, rotate it to the desired yaw angle and translate it to
the desired position. However, if they are different (i.e., from
standing to lying or vice versa), then re-orientation is needed.
Note that skill Re_St2Fl requires the letter to be grasped
from the side via skill Pi_Si, which is only allowed at the
platform edge to avoid close contact between the robot and
the platform. Afterwards, the learned GTN is used to solve
100 new problems for validation by Alg. 2. It takes around
0.7 s per query to GTN and 5 s per problem with a success
rate of 100%, resulting in a 100-fold decrease in planning
time compared with the TAMP solver. The derived plan and
the associated skill trajectories are tracked using the onboard
impedance controller to compute appropriate joint torques.

3) Results for Task-2: Furthermore, Task-2 has the same
task description as before but a levitation box is introduced
as a new object. This box can be used to facilitate the re-
orientation of the letter from the platform to the box top after

9

Fig. 9. Top (from left to right): snapshots of skills Pi_Fl (from the box),
Ro_St, Re_St2Fl (onto the box), and Tr_Fl. Bottom: the learned GTN
associated with Task-3, where one plan is highlighted in blue. Note the “start”
and “stop” nodes for each letter is duplicated for the ease of visualization.

TABLE II
MODEL SIZE AND COMPUTATION TIME FOR ALL TASKS.

Task Ξ tD rhs |G| tL rss tV rss tE rss

Task-1 100 7.3 (12, 20, 28) 2.8 5.8 0.7

Task-2 150 18.1 (15, 27, 32) 7.8 8.9 0.8

Task-3 500 101 (29, 53, 256) 245 19.5 1.5

Assembly 80 2.5 (12, 19, 27) 1.3 3.8 0.3

Training data size Ξ, the time to generate such data tD , the size of GTN |G|,
the learning time tL, the total solution time of the validation set (the same
size as Ξ), and the average evaluation time tE to output pa‹, TP‹q.

being grasped. Note that to increase the task difficulty, re-
orientation of the letter on the platform edge as in Task-1 is
disabled in this case, but instead on the box top. Moreover,
the box should be moved to an optimal pose beforehand to
facilitate the re-orientation, which can not be inferred directly
from the goal state (which actually indicates the box should
not be moved). The same procedure as before is followed to
learn the associated GTN. In total, 150 problems are generated
for training and solved successfully by the same TAMP solver
within 18 h. Afterwards, the associated GTN is learned in 7.8 s,
which has 15 nodes and 27 edges, as shown in Fig. 8. It
encapsulates all 4 possible plans with length 4, 4, 12 or 14 and
2, 2, 4 and 6 6D parameters. The time for generating training
data is much longer due to the larger number of skills and
higher dimension of parameter space. Note that the box is only
picked and translated when the initial and goal states are not
aligned in pitch angle, and then moved back afterwards. Then
the learned GTN is validated against a set of 150 problems,
which take in average 0.8 s per query to GTN and 8 s per
problem with a success rate of 96% (compared with 7min
per problem during the generation of training data).

4) Results for Task-3: As the most complex task, Task-
3 involves 4 objects where 3 letters should be re-arranged
according to the goal state with the box being a tool (as
in Task-2). Two aspects of the task are challenging: (I) the
sequence of manipulating these letters is critical when the

Fig. 10. Top (from left to right): snapshots of skills Pi_Fl, Dr_Fl,
Re_Fl2St (on the platform), and At_St. Bottom: the learned GTN for
Assembly-Task, where one plan is highlighted in blue for the shown problem.

letters are stacked as the goal; and (II) the box can be
shared as a tool for multiple letters. In total 500 problems
are generated for training and equally distributed for different
cases such as distributed and stacking. All problems are solved
successfully by the proposed hybrid TAMP solver, but with a
drastically longer time of around 12min per problem. This
is because in this case there are 29 potential skills and 14
6D parameters in total to sample at each state during the
search. In addition, an incorrect sequence of manipulating the
letters would yield large parts of the search graph invalid.
Given these solutions, the associated GTN is learned in 4min,
which has 29 nodes and 53 edges as shown in Fig. 9. The
learning time is also increased significantly due to fact that
there are in total 18 possible paths with maximum length 31
and 14 6D parameters. The constraint function f consists of
256 TP-GMM components in total, which is 8 times more than
Task-2. Clearly, a manual specification of all such constrains
and paths would be a tedious process, if not impossible. It
is interesting to notice that (I) when the letters are stacked
together in the goal state, the transition score to the picking
skills of different letters changes according to the order of
letters in the stack; (II) the box is used only when at least one
letter needs re-orientation, i.e., the score of picking the box
first is maximized when the yaw angle is not aligned for at
least one letter. During validation against 500 new problems,
the solution time is in average 20 s per problem and 1.5 s per
edge. However the overall success rate is 95%, where failures
often happens when the final stacking does not satisfy the
desired accuracy due to the large force applied by the robot.

B. Industrial Assembly on Hardware

To further validate the proposed framework, we consider
some steps of an industrial assembly task. The actual Franka
robotic arm is used in a workspace that consists of a feeding
and inspection platform, and an assembly station where vari-
ous pieces are assembled into a product, as shown in Fig. 10.
The platform is monitored by a Zivid camera, which provides
a 6D pose estimation with less than 1 cm accuracy. During
kinesthetic teaching, the end-effector state is fetched directly
from the state estimator. Demonstrations are recorded at 10Hz,
while the impedance controller runs at 1 kHz.

10

TABLE III
LEARNING TIME FOR EACH METHOD AND EACH TASK.

Time [s] |Ξ| Hb-lfd/mp GTN NPI MLP

Task-1 100 N/A 28 182 53

Task-2 150 N/A 32 250 70

Task-3 500 N/A 256 582 120

Assembly 80 N/A 27 84 57

Task-1 Task-2 Task-3 Assembly

101
102
103
104
105

S
ol
u
ti
o
n
T
im

e
[s
]

Gtn Hb-lfd Hb-mp
NPI MLP

Fig. 11. Comparison of the solution time during validation for all tasks,
between GTN and four baselines.

1) Task Description.: The workstation consists of an assem-
bly station, a pallet and a feeding platform, while the objects
of interest are a metallic cap and a peg (as components of
an e-bike motor). Since caps are loaded onto the platform,
subsequently (I) If the cap is defective, it should be picked
and dropped into the pallet (while lying); (II) If the cap is
non-defective, the cap should be picked and attached to the top
of the peg (while standing), which should be inserted into the
assembly station first. Similar to Task-1, the cap orientation
effects greatly the desired skill sequence.

There are in total 10 skills taught to the robot directly
via kinesthetic teaching, which are quite similar to those in
Sec. VI-A1. Additional skills include In_Pg to insert the
peg into the workstation, At_St to attach the cap onto the
peg while standing, and Dr_Fl to drop the cap while lying.
Details can be found in the supplementary file.

2) Results.: The goal states are generated based on the
whether it should be attached to the peg, or dropped into the
pallet. In total, 80 problems are generated for training and
solved successfully by the proposed TAMP solver within 2.5 h.
Afterwards, the associated GTN is learned in only 1.3 s, which
has 12 nodes, 19 edges and 27 embedded TP-GMMs, as shown
in Fig. 10. It encapsulates all 4 possible plans with length
5, 8, 3 and 7, with maximum 2 6D parameters. Namely, if the
cap is initially standing but needs to be in the pallet as the
goal, it is translated first to the platform edge then grasped
from the side; while if the cap is initially lying but needs to
be on the peg as the goal, it is firstly re-oriented to standing at
the platform edge then attached to the peg. As summarized in
Table. II, the learned GTN is validated on hardware for new
problems, which take in average 0.3 s per query to GTN and
4 s per problem with a success rate of 100% (compared with
2min per problem during data generation).

In addition, the failure recovery mechanism as described in
Sec. V-B2 is demonstrated here with two types of failures: (I)

Task-1 Task-2 Task-3 Assembly
0

0.2

0.4

0.6

0.8

1

S
u
cc
es
s
R
at
e

Gtn Hb-lfd Hb-mp
NPI MLP

Fig. 12. Success rate of each method for each task during validation.

The cap is removed and re-oriented from “lying” to “standing”
by the operator, after skill Pi_Fl is started. Consequently, the
cap is not grasped and the score of the only outgoing transition
to skill Re_Fl2St is computed as 2ˆ 10´4 , which is lower
than the pre-defined threshold 0.1. The failure condition in (9)
is satisfied and the adaptation rule in (10) is triggered. The
edge from Tr_St to Reset is chosen as the starting edge.
Afterwards, the system continues to pick and attach the cap.
(II) The skill Re_Fl2St is not executed successfully as
the cap falls back to lying on the platform. The resulting
relative transformation between the end-effector and the cap
is different from prediction. Thus the transition score to skill
Reset is computed as 1ˆ 10´3 , which is identified as a
failure by (9). Similar as before, the edge from skill Tr_St
to skill Reset is chosen as the starting edge. Afterwards, the
system repeats th procedure to pick and reorient the cap.

C. Comparison and Discussion

In this section, we compare the proposed approach against
other baselines and discuss further its imitations.

1) Baselines: We consider four baselines below:
Hb-lfd: the hybrid search planner described in Sec. V-A2

over the learned LfD skills, and using the confidence measure
from [16] to compute the cost heuristic.

Hb-mp: the hybrid search planner over the skills generated
from sampling-based motion planner RRTC (see [11]) with
the “distance to goal” as the cost heuristic. This is commonly
used when a precise simulator is available with no domain
knowledge. The simple heuristic prefers the skill that drives
the system closer to the goal state during the search.

MLP: a multilayer feedforward neural network to predicate
both the next skill and its parameters. A 3-layer structure is
trained in a supervised way, where the inputs include both the
system state and the goal state, whether the optimal choice of
next skill and the parameters are the outputs. The loss function
is the MSE between the target an the prediction.

NPI: a LSTM-based policy network similar to the Neural
Programmer Interpreter from [12]. It is proposed to train a
network which coordinates programs under different contexts.
We use one hidden layer with a memory of 5 steps. The output
and the loss function remain the same as those in MLP, but
the input is now a sequence of past system states, goal states
and the next chosen skills.

The metrics to compare are (I) the learning time; (II) the
solution time and the success rate during validation. Note

11

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Epoch

L
o
ss
/
In
a
cc
u
ra
cy

Train-MLP Loss

Train-MLP (Skill)

Train-MLP (Params)

Validate-MLP (Skill)

Validate-MLP (Params)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Epoch

L
o
ss
/
In
a
cc
u
ra
cy

Train-NPI Loss

Train-NPI (Skill)

Train-NPI (Params)

Validate-NPI (Skill)

Validate-NPI (Params)

Fig. 13. Evolution of training loss for MLP and NPI during learning for
Task-2. Note the difference between the training (dashed) and validation
(solid) inaccuracy, for predicting the next skill (in blue) measured by the
rate of incorrect choices, and the associated parameter (in red) measured by
the MSE.

0 5 10 15 20
−6

−4

−2

0

2

4

Skill Transition

P
re
d
ic
ti
on

E
rr
o
r

Skill Param

Fig. 14. Prediction error during validation of method NPI for Task-2,
regarding the choice of skill (in blue) and parameter (in red), indexed by
the unique transitions in the plan. Negative error is the number of times when
the skill choice is correct.

that the same training and validation sets are used for the
above baselines. Moreover, both NPI and MLP need to learn
directly from the solution set Ξ, thus the data generation from
Sec. V-A2 remains necessary for both methods.

2) Comparison: We notice that these four baseline planners
perform quite consistently across all four tasks. First, regarding
the first metric, Table. III summarizes the learning time for all
methods. In particular, Hb-lfd and Hb-mp do not learn from
past solutions. The learning time of GTN is much lower than
those needed for NPI and MLP for all four tasks. The stopping
criteria for both NPI and MLP is that the training loss is
below 1ˆ 10´4 or until 500 epochs. As shown in Fig. 13, the
training loss decreases steadily to zero and prediction accuracy
improves till a steady state.

Second, these four baselines are evaluated against the same
validation set. As summarized in Fig. 11, GTN shows a 100-
fold decrease in solution time to around 10 s for all tasks
compared with the search planners. Notably, Hb-mp take the
longest as it needs to query the simulator constantly to assess
system evolutions, execution outcome and cost (around 7 s
per query), while Hb-lfd is 10-times faster via the learned
condition and effect model. Furthermore, the simple heuristic
in Hb-mp is not useful, e.g., the box usage in Task-2 is not
reflected in the “distance to goal”. On the other hand, once the
parameters for MLP and NPI are learned, a direct evaluation
of the policy takes around 0.1 s for all tasks, which is slightly
faster than the evaluation of our GTN edges.

Last, the success rate during validation shows clearly the
advantages of our method, especially for determining the skill

parameters. As summarized in Fig. 12, GTN has a consistent
success rate of around 97% for all tasks. When imposing a
planning time limit as 100 times the solution time of the GTN
planner, both Hb-lfd and Hb-mp perform relatively well for
simpler tasks such Task-1 and Assembly, while suffer from
the high-dimensional search space for Task-2 and Task-3. On
the other hand, the overall success rate for NPI and MLP is
quite low (around 30% for all tasks). As shown in Fig. 13,
the testing accuracy for choosing the correct parameter is
mainly the problem, as the RNN structure in NPI can reach
90% accuracy when determining the next skill (compared to
around 70% for MLP). Furthermore, Fig. 14 shows the actual
distribution of prediction error for method NPI. It is surprising
to notice that: (I) The prediction for next skill is all correct
except one transition, i.e., transition 10 from skill STRT to skill
Pi_St. As this transition is the beginning of a plan, the NPI
network failed due to lack of past sequence and instead always
chooses the next skill Pi_Fl. (II) The prediction error for
parameters is however high for all transitions, especially when
the same transition appears in the same plan multiple times
but with different parameters. The underlying neural structure
fails to capture such multi-modal distribution.

3) Limitations: In this section, we discuss some limitations
with the proposed approach, which are also parts of our
ongoing and future work.

Physical Interaction. The effect model in (1) is used during
the graph search to predict the resulting system state after
executing a skill. Whereas it is efficient without constantly
querying a simulator, it ignores the physical interaction dur-
ing the execution. Thus, we are currently investigating how
forceful interactions can be added to the skill model [31], and
how a simulator can be requested on demand, e.g., to evaluate
a proposed plan.

Sub-task Modules. It can be seen from the learned GTNs
that often several skills can be grouped into sub-graphs that
accomplish a sub-task of the complete task, e.g., the complete
GTN of Task-3 is composed by three sub-GTNs (one for
each object), which is again very similar to the GTN learned
for Task-1. It would be beneficial to recognize such sub-task
modules in existing GTNs, which can be then composed into
new GTNs during the learning process.

Generalization and GTN Completion. The learned GTN
can only produce plans that are contained in the training set.
This can limit its ability to improve over existing solutions
or generalize to new tasks, e.g., to different number and
types of objects. The learned GTNs can be improved, e.g, via
reinforcement learning by allowing deviations from the target
policy and evaluating the outcome.

VII. CONCLUSIONS

A planning framework is proposed for coordinating ma-
nipulation skills that are learned from demonstrations. The
learned policy is encoded as a GTN that encapsulates both
the transition relations among skills and their underlying
geometric constraints. It has shown a significant decrease in
solution time and a much improved success rate, without
any manual specification. Future work includes the structural

12

composition of GTNs, the online choice of pre-trained GTNs,
and the generalization to new tasks.

ACKNOWLEDGMENT

The authors would like to thank Li-Yuan Hsu from Univer-
sity of Freiburg for his help on the setup of the simulation
environment, during his internship at BCAI.

REFERENCES

[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[2] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie
4.0 scenarios,” in Hawaii International Conference on System Sciences
(HICSS), 2016, pp. 3928–3937.

[3] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[4] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” Foundations and
Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[5] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the now,”
in AAAI Conference on Artificial Intelligence, 2010.

[6] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE International conference on
robotics and automation (ICRA), 2014, pp. 639–646.

[7] M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning,” in
Robotics: Science and Systems (R:SS), June 2018.

[8] M. Spies, M. Todescato, H. Becker, P. Kesper, N. Waniek, and M. Guo,
“Bounded suboptimal search with learned heuristics for multi-agent
systems,” in AAAI Conference on Artificial Intelligence, vol. 33, 2019,
pp. 2387–2394.

[9] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G.
Barto, “Learning grounded finite-state representations from unstructured
demonstrations,” The International Journal of Robotics Research (IJRR),
vol. 34, no. 2, pp. 131–157, 2015.

[10] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-
ing from demonstration by constructing skill trees,” The International
Journal of Robotics Research (IJRR), vol. 31, no. 3, pp. 360–375, 2012.

[11] S. M. LaValle, Planning Algorithms. Cambridge university press, 2006.
[12] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,

and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 8565–8574.

[13] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in International Conference on Machine Learning
(ICML), 2004, p. 1.

[14] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras, “Learn-
ing physical collaborative robot behaviors from human demonstrations,”
IEEE Transactions on Robotics (TRO), vol. 32, no. 3, pp. 513–527,
2016.

[15] M. Zeestraten, “Programming by demonstration on Riemannian mani-
folds,” 2017, phD thesis.

[16] L. Schwenkel, M. Guo, and M. Bürger, “Optimizing sequences of prob-
abilistic manipulation skills learned from demonstration,” in Conference
on Robot Learning (CoRL), 2019.

[17] L. Rozo, M. Guo, A. G. Kupcsik, M. Todescato, P. Schillinger, M. Gift-
thaler, M. Ochs, M. Spies, N. Waniek, P. Kesper, and M. Bürger,
“Learning and sequencing of object-centric manipulation skills for
industrial tasks,” in IEEE/RSJ International Conference on Intelligient
Robots and Systems (IROS), 2020.

[18] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing
temporal planning domains,” Journal of Artificial Intelligence Research,
vol. 20, pp. 61–124, 2003.

[19] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning
compositional models of robot skills for task and motion planning,” The
International Journal of Robotics Research, vol. 40, no. 6-7, pp. 866–
894, 2021.

[20] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” Journal of Artificial Intelligence Research, vol. 61, pp. 215–
289, 2018.

[21] B. Hayes and B. Scassellati, “Autonomously constructing hierarchical
task networks for planning and human-robot collaboration,” in IEEE
International Conference on Robotics and Automation (ICRA), 2016,
pp. 5469–5476.

[22] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Transactions
on Robotics (TRO), vol. 21, no. 6, pp. 1077–1091, 2005.

[23] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-chaining partial-
order planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 20, no. 1, 2010.

[24] S. Reed and N. de Freitas, “Neural programmer-interpreters,” in Inter-
national Conference on Learning Representations (ICLR), 2016.

[25] B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to
guide task and motion planning using score-space representation,” The
International Journal of Robotics Research (IJRR), vol. 38, no. 7, pp.
793–812, 2019.

[26] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration
networks,” in Advances in Neural Information Processing Systems
(NIPS), 2016, pp. 2154–2162.

[27] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters, “To-
wards learning hierarchical skills for multi-phase manipulation tasks,”
in IEE International Conference on Robotics and Automation (ICRA),
2015, pp. 1503–1510.

[28] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and
P. Sermanet, “Learning latent plans from play,” Conference on Robot
Learning (CoRL), 2019.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[30] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manip-
ulators. Springer Science & Business Media, 2012.

[31] A. T. Le, M. Guo, N. van Duijkeren, L. Rozo, R. Krug, A. G. Kupcsik,
and M. Bürger, “Learning forceful manipulation skills from multi-
modal human demonstrations,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021.

Meng Guo received the M.Sc. degree (2011) in
system, control, and robotics and the Ph.D. degree
(2016) in electrical engineering from KTH Royal
Institute of Technology, Sweden. He was a Postdoc-
toral Associate with the Department of Mechanical
Engineering and Materials Science, Duke University,
USA. He is currently a senior research scientist on
Reinforcement Learning and Planning at the Bosch
Center for Artificial Intelligence (BCAI), Germany.
His main research interests include task and motion
planning for robotic systems.

Mathias Bürger received his Diploma degree
(2009) and his Ph.D. degree (2013) in Engineering
Cybernetics from the University of Stuttgart. He
received the 2014 European Ph.D. Award on Control
for Complex and Heterogeneous Systems. He is
currently head of a research group on Reinforcement
Learning and Planning at the Bosch Center for
Artificial Intelligence (BCAI). His research interest
are within the intersection of Artificial Intelligence
and Robotics.

	I Introduction
	II Related Work
	II-A Learning from Demonstration (LfD)
	II-B Task and Motion Planning
	II-C Imitation Learning

	III Preliminaries on Task-Parameterized Models
	III-A TP-GMMs
	III-B Complete Skill Model

	IV Problem Description
	V Proposed Solution
	V-A Offline Learning
	V-A1 Structure of GTNs
	V-A2 Training Data Gathering
	V-A3 GTN Model Learning.

	V-B Online Execution
	V-B1 Optimize Skill Sequence and Parameters.
	V-B2 Skill Execution.
	V-B3 Failure Recovery.
	V-B4 Algorithmic Summary.

	VI Experiments
	VI-A 6D Scrabble in Simulation
	VI-A1 Primitive Skills
	VI-A2 Results for Task-1
	VI-A3 Results for Task-2
	VI-A4 Results for Task-3

	VI-B Industrial Assembly on Hardware
	VI-B1 Task Description.
	VI-B2 Results.

	VI-C Comparison and Discussion
	VI-C1 Baselines
	VI-C2 Comparison
	VI-C3 Limitations

	VII Conclusions
	References
	Biographies
	Meng Guo
	Mathias Bürger

