
1

Supplementary File for “Geometric Task Networks:
Learning Efficient and Explainable Skill
Coordination for Object Manipulation”

Meng Guo and Mathias Bürger.

I. LEARNING OF SKILL MODEL

A. Demonstrations

For each skill, a human user performs several kinesthetic
demonstrations on the robot. Particularly, for skill a P A, the
set of objects involved is given by Oa Ď O and the set of
demonstrations is given by Da “ tD1, ¨ ¨ ¨ ,DMau, where each
demonstration Dm is a sequence of states s that consists of
the robot end-effector state r within the manifold Mr, and
object states tpo, o P Oau each within the manifold Mp, i.e.,

Dm “
“

st
‰Tm

t“1
“
“`

rt, tpt,o, o P Oau
˘‰Tm

t“1
. (1)

Via a combination of these skills, the objects can be manipu-
lated to reach a desired state.

B. Trajectory Model

1) TP-GMM: The basic idea of LfD is to fit a prescribed
skill model such as GMMs to a handful of demonstrations.
We assume we are given M demonstrations, each of which
contains Tm data points for a dataset of N “

ř

m Tm total
observations r “ trtu

N
t“1, where rt P Rd. Also, we assume

the same demonstrations are recorded from the perspective of
P different coordinate systems (given by the task parameters
such as objects of interest). One common way to obtain
such data is to transform the demonstrations from a static
global frame to frame p by rppqt “ Appq

´1

prt ´ b
ppq
q. Here,

tpbppq,AppqquPp“1 is the translation and rotation of frame
p w.r.t. the world frame. Then, a TP-GMM is described
by the model parameters tπk, tµ

ppq
k ,Σ

ppq
k u

P
p“1u

K
k“1 where K

represents the number of Gaussian components in the mixture
model, πk is the prior probability of each component, and
tµ
ppq
k ,Σ

ppq
k u

P
p“1 are the parameters of the k-th Gaussian com-

ponent within frame p. Differently from standard GMM in [1],
the mixture model above can not be learned independently for
each frame. Indeed, the mixing coefficients πk are shared by
all frames and the k-th component in frame p must map to
the corresponding k-th component in the global frame. The
Expectation-Maximization (EM) algorithm from [2] is a well-
established method to learn such models.

Once learned, the TP-GMM can be used during execu-
tion to reproduce a trajectory for the learned skill. Namely,

Bosch Center for Artificial Intelligence (BCAI), Germany. Corresponding
author: Meng.Guo2@de.bosch.com

given the observed frames tbppq,AppquPp“1, the learned TP-
GMM is converted into one single GMM with parame-
ters tπk, pµ̂k, Σ̂kqu

K
k“1, by multiplying the affine-transformed

Gaussian components across different frames, as follows

Σ̂k “

«

P
ÿ

p“1

´

Σ̂
ppq

k

¯´1
ff´1

,

µ̂k “ Σ̂k

«

P
ÿ

p“1

´

Σ̂
ppq

k

¯´1

µ̂
ppq
k

ff

,

(2)

where the parameters of the updated Gaussian at each
frame p are computed as µ̂

ppq
k “ Appqµ

ppq
k ` bppq and

Σ̂
ppq

k “ AppqΣ
ppq
k Appq

T

. While the task parameters may vary
over time, we dropped the time index for the sake of notation.
More mathematical derivations can be found in [3].

2) TP-HSMM: Hidden semi-Markov Models (HSMMs) ex-
tend standard hidden Markov Models (HMMs) by embedding
temporal information of the underlying stochastic process.
That is, while in HMM the underlying hidden process is
assumed to be Markov, i.e., the probability of transitioning
to the next state depends only on the current state, in HSMM
the state process is assumed semi-Markov. This means that
a transition to the next state depends on the current state
as well as on the elapsed time since the state was entered.
They have been successfully applied, in combination with
TP-GMMs, for robot skill encoding to learn spatio-temporal
features of the demonstrations from [4]. More specifically, a
task-parameterized HSMM (TP-HSMM) model is defined as:

Θ “

!

tahku
K
h“1, pµ

D
k , σ

D
k q, πk, tpµ

ppq
k ,Σ

ppq
k qu

P
p“1

)K

k“1
,

where ahk is the transition probability from state h to k;
pµDk , σ

D
k q describe the Gaussian distributions for the duration

of state k, i.e., the probability of staying in state k for a certain
number of consecutive steps; tπk, tµ

ppq
k ,Σ

ppq
k u

P
p“1u

K
k“1 equal

the TP-GMM introduced earlier, representing the observation
probability corresponding to state k. Note that in our HSMM
the number of states corresponds to the number of Gaussian
components in the attached TP-GMM.

Given a certain (partial) sequence of observed data points
tr`u

t
`“1, assume that the associated sequence of states in Θ

is given by st “ s1s2 ¨ ¨ ¨ st, where t is the total length.
As shown in [4], the probability of data point rt belonging

2

translate atl insert ais
TPt Success Rate TPi Success Rate

td, ru 0.08 tb1, ru 0.05
td, r, ou 0.26 tb1, r, ou 0.44
td, ou 0.37 tb1, ou 0.71
tr, ou 0.99 tr, ou 0.99

TABLE I
THE CHOICE OF TASK PARAMETERS AND ASSOCIATED SUCCESS RATE,

FOR SKILLS TRANSLATE AND INSERT USED IN THE EXPERIMENT. NOTE
THAT “r” STANDS FOR THE INITIAL POSE OF THE ROBOT ARM, “o” THE

INITIAL OBJECT POSE, “b1” THE POSE OF THE CONTAINER TO INSERT THE
OBJECT, AND “d” THE DESTINATION POSE OF THE OBJECT OF THE

TRANSITION SKILL TRANSLATE .

to state k (i.e., st “ k) is given by the forward variable
αtpkq “ ppst “ k, tr`u

t
`“1q:

αtpkq “
t´1
ÿ

τ“1

K
ÿ

h“1

αt´τ phqahkN pτ |µDk , σDk q otτ , (3)

where otτ “
śt
`“t´τ`1 N pr`|µ̂k, Σ̂kq is the emission prob-

ability and pµ̂k, Σ̂kq are derived from (2) given the task
parameters.

Furthermore, the same forward variable can also be used
during reproduction to predict future steps until Tm. In this
case however, since future observations are not available,
only transition and duration information are used as explained
by [5], i.e., by setting N pr`|µ̂k, Σ̂kq “ 1 for all k and ` ą t
in (3).

θa “
!

takhu
K
h“1, pµ

D
k , σ

D
k q, tπk, tpµ

ppq
k ,Σ

ppq
k qupPTPau

)K

k“1
.

Details about TP-HSMMs and its usage as skill represen-
tation can be found in [6]. At last, the sequence of the most-
likely states s‹Tm

“ s‹1s
‹
2 ¨ ¨ ¨ s

‹
Tm

is determined by choosing
s‹t “ arg maxk αtpkq, @1 ď t ď Tm.

3) Choice of Task Parameters: The success of both learning
and reproducing skills with TP-GMMs heavily depends on a
good choice of task parameters, which the user has to provide.
As shown in Table I, different choices of task parameters can
result in significant changes in the performance. For example,
a proper choice of task parameters for the skill grasp_peg
is a coordinate frame attached to the peg and one at the initial
pose of the robot arm. This allows the learned trajectory to
have a smooth start and more importantly adapt to new poses
of the peg for successful grasping. As rule of thumb, attaching
frames to all involved objects Oa and to the robot arm initial
pose indexed by r as well as using the free task parameters
Fa for transition skills, i.e. TPa “ Oa Y Fa Y tru, covers
many cases. However, this is not always the best choice, since
some objects might produce irrelevant task parameters, which
not only increases the computation cost but can also decrease
the performance of reproduction. A problem that arises with
time-varying task parameters like an object pose is that the
TP-HSMM only encodes how the task parameter influences
the robot arm motion, but not how the robot arm motion
affects the objects pose. For example, while executing the

skill translate_object the trajectory of the robot arm
in the frame attached to the object is only a single constant
point, because the object follows every motion of the robot
arm while it is grasped. Thus, the robot arm will follow the
object during reproduction, i.e. stay where the object is, since
the trajectory generation does not know that the robot arm can
be moved freely without leaving the single point component
in the object frame. In this case, it is better to not to use the
object frame as task parameter.

In order to automate the choice of a proper set of task
parameters TPa Ď OaYFaYtru, we can validate a choice by
computing its reproduction error. For this we need a ground
truth, which is already available as human demonstrations.
Usually, the set of demonstrations Da is rather small, such
that we have to use the same set of demonstrations Da for
training and validation. This yields to the validation error:

V pTPaq “

Ma
ÿ

m“1

Tm
ÿ

t“1

∥∥Logrt
pr̂tq

∥∥ , (4)

where r̂t is the trajectory retrieved from θapTPaq for the task
parameters from demonstration Dm.

The number of involved objects for a skill is usually small,
then we can train the model for all combinations of task
parameters and validate each choice. If the number of objects
is higher, the user has to preselect some promising choices of
task parameters to reduce the computation time. The examples
in Table I for the skills translate (object “o” to destination
“d”) and insert (object “o” into box “b”) show that in both
cases it is better to not use the object frame as task parameter
due to the reasons described above. The choices of not using
the robot initial arm position “r” or the destination “d” or box
“b” are as expected to be even worse.

C. Precondition and Effect Model
The precondition of a skill refers to the relative relations

between the robot arm and the relevant objects, which should
be satisfied initially for the skill execution to be successful.
The effect of a skill refers to how the skill execution would
change the state. In this part, we describe how to learn these
models purely from the available demonstrations.

1) Task Parameterized Model: The trajectory model θa
does not incorporate how the objects or robot arm are located
w.r.t. each other when the skill execution starts and finishes.
The proposed idea is to learn task-parameterized Gaussians
(TP-Gs) for each object to fit its pose from demonstrations.
The precondition model is:

γ1,aps, pFq fi
!

pµ
ppq
1,o, Σ

ppq
1,oq, @p P TPaztou

)

oPOaYFa

,
(5)

where pF is the choice of free task parameters; Fa is the set of
free task parameters; pµppq1,o, Σ

ppq
1,oq is the Gaussian distribution

of object o’s initial pose at time 1 from the perspective of
object p’s initial pose at initial time 1. Thus it is also called
the “initial-to-initial” precondition model. Similarly, the effect
model of a skill is defined by:

γT,aps, pFq fi

!

pµ
ppq
T,o, Σ

ppq
T,oq, @p P TPa

)

oPOa

, (6)

3

where pF is the choice of free task parameters; pµppqT,o, Σ
ppq
T,oq

is the Gaussian distribution of object o’s final pose at time
T from the perspective of object p’s initial pose. Thus it
is also called the “initial-to-final” effect model. Note that
both models are computed within the object pose manifold
Mp. Low variance in the learned models indicate a consistent
geometric relation in the demonstrations, e.g., the precondition
of skill insert is that the object is grasped by arm initially,
while the effect of skill translate is that the object is put
at the destination. For example, the precondition model of
skill insert requires very low variance between the initial
poses of robot arm “r” and object “o” as they always satisfy
the grasping relation. The effect model of skill translate
requires very low variance between the final pose of object o
and the initial pose of destination d as the object is always
put on top of it.

2) Evaluation of Precondition: Given a new system state
s and a choice of free task parameters pF, we can evaluate
how much the precondition of a skill is satisfied using the
learned models. In particular, we can compute the product of
the observation probability for the robot arm and each object,
or equivalently the logsum:

caps, pFq fi log

˜

K
ÿ

k“1

πkN pr | µ̂k, Σ̂kq

¸

`
ÿ

oPOaYFa

log
´

N ppo | µ̂1,o, Σ̂1,oq

¯

,

(7)

where tpµ̂k, Σ̂kqu are the combined Gaussians of initial robot
arm pose in the global frame from the learned trajectory
model θa; tpµ̂1,o, Σ̂1,oqu are the combined Gaussians of object
o’s initial pose in the global frame from the learned precon-
dition model γ1,a. The computation of these components in-
volves transforming Gaussians from local frames to the global
frame and then computing their product. No closed analytical
forms exist for general Riemannian manifolds, see [7]. Note
that the measure above is not a probability, but computation
over probability densities. It provides a continuous value
that evaluates how similar the current situation is to the
demonstrations. This measure can be already useful to: (a)
to decided whether the precondition of skill a is satisfied by
comparing with a given threshold c, i.e., cap¨q ą c; (b) to
compare different scenarios and different free task parameters.

3) Prediction of Effect: The effect includes the poses of
both robot arm and objects after executing the skill. First,
the final pose of the robot arm follows the learned trajec-
tory model θa, i.e., rT | ps0,pFq „ N

`

µ̂K , Σ̂K

˘

, where
`

µ̂K , Σ̂K

˘

is directly the K-th combined Gaussian the global
frame. Second, the final poses of all objects follow the learned
effect model γT,a, i.e., pT,o | ps0,pFq „ N

`

µ̂T,o, Σ̂T,o

˘

,
where pµ̂T,o, Σ̂T,oq is the combined Gaussian of object o
in the global frame. Thus, the estimated final state ŝT after
executing skill a is given by:

ŝT fi Ωaps0,pFq

fi

´

rT | ps0, pFq, tpT,o | ps0, pFq, o P Oau

¯

,
(8)

where the mean of the corresponding Gaussians can be directly
used as the most likely prediction. Different from the symbolic

Fig. 1. Snapshots of executions for Task-1,2,3 in Sec. II-A and Assembly
task in Sec. II-B.

representations for planning from [8], the precondition and
effect models learned in (7) and (8) are continuous and
adaptive to the actual scenario during execution.

II. DETAILS OF NUMERICAL EVALUATION

This section contains the numerical validation for the pro-
posed approach over a 7-DoF robotic manipulator, both in
simulation and on actual hardware. Various tasks are addressed
that require scene re-construction and tool-usage. The frame-
work is implemented on top of Robot Operating System (ROS)
to enable communication across planning, motion control and
perception modules.

A. 6D Scrabble in Simulation

To avoid limitations from perception, we evaluate first
various tasks in simulation where many objects are added
freely into the planning scene. Particularly, several 3D letters
are scattered on a platform along with a 7 DoF Franka
Emika Panda robot from [9] with a two-finger gripper, as
shown in Fig. 1. The alphabets are in average of size
6 cmˆ 3 cmˆ 6 cm. The platform has a height 15 cm w.r.t.
the table surface. We consider the following three progressive
manipulation tasks with increasing complexity:

Task-1 Manipulate one alphabet to reach the desired position and
orientation (i.e., pose in 6D) on the platform surface. Note
that when the initial and the goal states of the alphabet are
consistent (i.e., both standing or lying flat), it is enough
to simply rotate and translate the alphabet according to
the desired pose. However, if they are not consistent, then
a re-orientation of the alphabet from standing to lying flat
or vice versa is needed. This task is designed to show the
computational complexity of a TAMP problem even for
a simple task.

4

Skill Name Ma Ka TPa t pθa |γaq [s]

Pi_St 12 7 tA,Ru 3.6 | 2.7
Pi_Si 10 8 tA,Ru 4.2 | 3.1
Pi_Fl 8 7 tA,Ru 3.8 | 3.2

Re_St2Fl 9 8 tA,R,AGu 4.3 | 2.1
Re_Fl2St 10 8 tA,R,AGu 3.8 | 2.2
Ro_St 15 6 tA,R,AGu 4.2 | 2.7
Ro_Fl 10 6 tA,R,AGu 3.3 | 2.2
Tr_St 10 7 tA,R,AGu 4.1 | 1.9
Tr_Fl 10 7 tA,R,AGu 4.3 | 2.1
Reset 7 6 tRu 2.8 | 1.5

TABLE II
DEMONSTRATED SKILLS A, NUMBER OF DEMONSTRATIONS Ma , NUMBER
OF COMPONENTS Ka , CHOICE OF TASK PARAMETERS TPa , AND TRAINING

TIME FOR θa AND γa . THE FRAMES A,R,AG STAND FOR ALPHABET,
ROBOT AND THE ALPHABET GOAL, RESPECTIVELY.

Task-2 Repeat Task-1 but with a levitation box. In this case, the
box is used as a tool for the re-orientation, i.e., the box
is used to levitate the alphabet such that re-orientation is
possible at the platform center. This change seems subtle
but significantly increases the difficulty of the task, as the
box is not directly related to or reflected in the goal but
used as a tool to accomplish the goal.

Task-3 Repeat Task-2 but with three alphabets. In this case, the
box is used as a shared tool among all the alphabets.
As the planning goal, the alphabets can be directly lying
or standing on the platform surface or stacked on top of
each other. In the latter case, the order of manipulating
the alphabets plays an important role, e.g., the alphabet
at the bottom has to be manipulated first. Besides, how
and when the box should be used in between depends on
how many alphabets need re-orientation.

1) Primitive Skills: In this section, we give a detailed
description of the set of primitive skills used in this simulation
study that relevant to the tasks described above. As summa-
rized in Table II, there are 10 primitive skills for each alphabet
relevant to the above tasks:
‚ Pi_St and Pi_Si to pick the standing alphabet from the

top or the side while Pi_Fl to pick a flat-lying alphabet;
‚ Re_St2Fl re-orients the alphabet from standing to flat

while Re_Fl2St does the opposite;
‚ Ro_St and Ro_Fl rotate the alphabet by arbitrary yaw

angle while standing and lying flat (without changing
positions), respectively;

‚ Tr_St and Tr_Fl translate the alphabet to arbitrary
position while standing and lying flat (without changing
orientations), respectively;

‚ Reset resets the robot to default position.
Instead of kinesthetic teaching, we use existing motion plan-
ners such as RRTC [10] and manually-chosen waypoints to
generate demonstrations under various poses of the robot and
the alphabets. Demonstrations are recorded at 50 Hz, where
the state of the robot and the alphabets are fetched directly
from the simulator. The number of demonstrations for each
skill is shown in Table II.

S0

a1 a2

S1 S2 S3 S4 S5

a3 a2 a4 a5

S6 S7 S8 S9 S10

a6 a3 a4

S11 S12 S13 S14

p1 p2 p3 p4 p5

p6 p7p8 p9 p10 p11

State

Skills

Plan

Fig. 2. Illustration of the TAMP setup for the hybrid search over the state
graph.

It is worth mentioning that to avoid collision between the
robot arm and the platform surface, the robot can not pick the
alphabet from the side via the skill Pi_Si, while it is standing
in the middle of the platform surface. Rather, the skill Pi_Si
can only be executed when the alphabet is on the edge of the
platform or on top of the box. For the same reason, the robot
can not pick the alphabet from the top via the skill Pi_St,
while it is lying flat, but only by the skill Pi_Fl. Some of the
above skills can be shared across different alphabets and even
the box with minor changes such as gripper closing-width.

2) Hybrid TAMP: The TAMP as a hybrid search planner
over the state graph is illustrated in Fig. 2 and setup as follows.
Starting from the initial state s0, a graph search algorithm is
used to traverse the state space until the goal state is reached,
e.g., breadth-first search or Dijkstra or A‹ algorithm [10].
Each skill is used to drive the system to a new state, which
can be either computed by the effect model γT,a for skill
representations learned in LfD, or via simulating its execution
in the simulator for other general representations. The cost of
the associated edge can be either set uniformly, or computed
based the confidence measure proposed in [6], or even learned
in a supervised manner as from [11]. If this new state is close
enough to the goal state, it is marked as “goal”. However the
search continues as there could be multiple states close to the
goal state with different costs. After a upper bound on the
search time is reached, the shortest path from the initial state
to the set of reached goal states is returned as the desired plan:

ξ “ s0 pa0,TPa0q s1 pa1,TPa1qs2 ¨ ¨ ¨ sN , (9)

which includes not only the visited states but also the skill
and the associated skill parameters.

More importantly, the task parameters of some skills can
not be computed directly from the current state but need to be
specified. The same skill with different parameters drives the
system to different states. Thus, we uniformly sample from
the Gaussian distribution given the precondition model γ1,a of
the skill representations learned from LfD. For instances, the
task parameter associated with frame AG for skill Tr_St has
a distribution over x P r0.23, 0.39s and y P r0.33, 0.55s, for
skill Ro_St has a distribution over yaw P r´π, πs. Similar
statements hold for skills Tr_Fl and Ro_Fl. Thus, each
time these skills are used to expand the search, the associated
parameters are sampled accordingly.

Different choices of the cost function and the sampling
strategy have a great impact on the time complexity and
performance of the search method. Specifically, the uniform

5

Fig. 3. Examples of skills for Task-1 described in Sec. II-A3. Top: the learned
model for skill Pi_Fl; Bottom: the learned model for skill Tr_St.

cost function allows faster exploration but for a larger part of
the state space, while the confidence-guided search is slight
slower to compute but for a much smaller part of the state
space. Good heuristic for these aspects can boost the search
efficiency significantly. Even manual bias in the sampling
strategy can significantly reduce the number of samples and
thus reduce the search space.

3) Task-1: Learning and Execution Results: First of all,
the skill model Ma is learned for each skill, of which the
details such as the training time and the choice of frames are
given in Table II. On average, 9 demonstrations are needed for
each skill and the model is learned within 5 s. To give some
examples, the learned skill models of Pi_Fl and Tr_St are
shown in Fig. 3.

For a simple task such as Task-1, the desired behavior is
already quite complex:
‚ If the initial and goal orientations of the alphabet are the

same (i.e., both standing or lying flat), then the robot
needs to pick the alphabet with the correct pick skill,
rotate it to the desired orientation and translate it to the
desired position. More specifically,

– when the alphabet is initially standing, the desired
skill sequence is Pi_St Ñ Ro_St Ñ Tr_St Ñ
Reset
or Pi_StÑ Tr_StÑ Ro_StÑ Reset.

– when the alphabet is initially lying flat, the desired
skill sequence is Pi_Fl Ñ Ro_Fl Ñ Tr_Fl Ñ
Reset
or Pi_FlÑ Tr_FlÑ Ro_FlÑ Reset.

‚ However, if the initial and goal orientations of the al-
phabet are different (i.e., from standing to lying or vice
versa), then the robot should re-orient the alphabet from
standing to lying or vice versa. Note that since skill
Re_St2Fl requires the alphabet to be grasped from the
side and the skill Pi_Si can only be executed when the
alphabet is standing on the platform edge, the alphabet
should be translated to the edge by skill Tr_St before
the re-orientation.

– when the alphabet is initially standing and lying flat
as goal, the desired skill sequence is Pi_St Ñ

Ro_St Ñ Tr_St Ñ Reset Ñ Pi_Si Ñ

Re_St2FlÑ Ro_FlÑ Tr_FlÑ Reset
or Pi_St Ñ Tr_St Ñ Ro_St Ñ Reset Ñ

Pi_Si Ñ Re_St2Fl Ñ Ro_Fl Ñ Tr_Fl Ñ
Reset
or Pi_St Ñ Tr_St Ñ Ro_St Ñ Reset Ñ

Pi_Si Ñ Re_St2Fl Ñ Tr_Fl Ñ Ro_Fl Ñ
Reset
or Pi_St Ñ Ro_St Ñ Tr_St Ñ Reset Ñ

Pi_Si Ñ Re_St2Fl Ñ Tr_Fl Ñ Ro_Fl Ñ
Reset .

– when the alphabet is initially lying flat and standing
as goal, the desired skill sequence is Pi_Fl Ñ

Re_Fl2St Ñ Reset Ñ Pi_St Ñ Tr_St Ñ
Ro_StÑ Reset
or Pi_Fl Ñ Re_Fl2St Ñ Reset Ñ Pi_St Ñ
Ro_StÑ Tr_StÑ Reset.

As a result, despite of its simplicity, Task-1 requires 4 possible
discrete sequences with length 4, 4, 9 or 7, of which contains
2, 2, 4 and 2 skill parameters (each as 6D poses).

We generated 200 problems of Task-1, half of which for
training and another half for validation. The problems are
generated by randomly sampling from possible poses of the
alphabets (for initial and goal poses), with a equal distribution
over the above four different cases. Then, these problems
are solved by the hybrid TAMP described in Sec. II-A2. It
took in total 7.3 h (in average 4 minutes per problem) to
generate 100 successful plans as in (9), using the exhaustive
hybrid TAMP mentioned above. As described in the learning
algorithm of GTN, the associated GTN is learned in 2.8 s with
12 nodes and 20 edges (with 28 embedded TPGMMs), as
shown in Fig. 4. Recall that the number of GMM components
on each edge depends on the number of times this edge
appears on the unique successful plans. For instance, the
edge pStart,Pi_Stq has six components as it belongs six
unique plans listed earlier, while the edge pRo_St,Tr_Stq
has four components as it belongs to four unique plans listed
earlier. The learned GTN topology shown in Fig. 4 matches
the anticipated plans well. In particular, all anticipated cases
are encapsulated in the learned GTN, e.g., all pick skills
are allowed after reset; and the combination of rotation and
translation skills to change the alphabet towards the goal state.
translation or rotation skills are used to change the alphabet
state before the reset. In addition, the embedding function fp¨q
for each edge takes in average 0.1 s to compute, which can
also be intuitively explained, e.g., the TP-GMMs associated
with the transition from Pi_St to Ro_St indicate that the
alphabet should be rotated in yaw angle to align with the
goal state (with small covariances) and the alphabet does not
need to re-oriented. It is worth mentioning that such topology
and geometric embeddings are learned automatically without
any manual tunning. Afterwards, the learned GTN is used to
solve the 100 problems in the validation set by following the
execution procedure. Given the problem definition including
the initial and goal states, the learned GTN can directly output
the best next skill and the associated skill parameter. As
a result, only the states and skills on the optimal path are

6

Fig. 4. The GTN associated with Task-1, which has 12 nodes and 20 edges
(with 28 embedded TPGMMs).

Fig. 5. Snapshots of execution of one case for Task-1 in Sec. II-A3.

explored and thus significantly reduce the planning time. One
example of the execution under the learned GTN is shown in
Fig. 5. More specifically, it took in total 10 min (in average
6 s per problem) to solve all problems in the validation set
with a success rate of 100%, resulting in a 100-fold decrease
in planning time while maintaining the same success rate as
in training data. It can be seen that not only the correct edge
is chosen but also the correct component on the embeddings
is activated along the generated plan.

4) Task-2: Learning and Execution Results: In addition to
the skills mentioned in Task-1, four new skills are demon-
strated and added to the skill set to facilitate the re-orientation
and translation of the alphabet between the platform surface
and the box top:
‚ Re_Fl2St_Bx: to re-orient the lying-flat alphabet from

the platform surface onto the top of the box and becoming
standing. This skill is different from the existing skill
Re_Fl2St as the box requires the motion to be higher
in the z-axis.

‚ Re_St2Fl_Bx: to re-orient the standing alphabet from
the platform surface onto the top of the box and becoming
lying-flat. Note this skill is different from the existing
skill Re_St2Fl.

‚ Tr_St_Bx: to translate the alphabet from the top of the
box onto the surface of the platform while being standing.
Note this skill is different from the existing skill Tr_St.

‚ Tr_Fl_Bx: to translate the alphabet from the top of the
box onto the surface of the platform while being lying-
flat. Note this skill is different from the existing skill
Tr_Fl.

‚ Pi_Bx and Tr_Bx to pick and translate box, respec-
tively. They are demonstrated in a similar way to Pi_St
and Tr_St for alphabet “R”.

The number of demonstrations and training time for these
skills are similar to their counterparts without box. The learned
skill models of Re_St2Fl_Bx and Tr_St_Bx are shown in
Fig. 6.

The desired behavior of this task is summarized below:
‚ If the initial and goal orientations of the alphabet are the

same (i.e., both standing or lying flat), then the desired
sequence is the same as specified in Sec. II-A3. Namely,

Fig. 6. Examples of additional skills for Task-2 described in Sec. II-A4.
Top: learned model for skill Re_St2Fl_Bx; Bottom: learned model for skill
Tr_St_Bx.

– when the alphabet is initially standing, the desired
skill sequence is Pi_St Ñ Ro_St Ñ Tr_St Ñ
Reset
or Pi_StÑ Tr_StÑ Ro_StÑ Reset.

– when the alphabet is initially lying flat, the desired
skill sequence is Pi_Fl Ñ Ro_Fl Ñ Tr_Fl Ñ
Reset
or Pi_FlÑ Tr_FlÑ Ro_FlÑ Reset.

‚ However, if they are different (i.e., from standing to lying-
flat or vice versa), then the robot should re-orient the al-
phabet from standing to lying-flat or vice versa, by using
the levitation box (instead of the edge of the platform).
Note that as mentioned earlier, these re-orientation skills
Re_St2Fl_Bx and Re_Fl2St_Bx allow the alphabet
to be directly re-oriented from the platform surface to the
box top without the need for re-grasping. Moreover, in
order to use the box, the box should be translated from
its original pose to around the middle of the platform to
facilitate the re-orientation (the exact pose depends on the
model of these re-orientation skills). More specifically,

– when the alphabet is initially standing and lying-
flat as the goal, the desired skill sequence is
Pi_Bx Ñ Tr_Bx Ñ Reset Ñ Pi_St Ñ

Re_St2Fl_Bx Ñ Reset Ñ Pi_Fl Ñ

Ro_Fl Ñ Tr_Fl_Bx Ñ Reset Ñ Pi_Bx Ñ
Tr_BxÑ Reset;
or Pi_Bx Ñ Tr_Bx Ñ Reset Ñ Pi_St Ñ

Re_St2Fl_Bx Ñ Reset Ñ Pi_Fl Ñ

Tr_Fl_Bx Ñ Ro_Fl Ñ Reset Ñ Pi_Bx Ñ
Tr_BxÑ Reset.

– when the alphabet is initially lying-flat and
standing as goal, the desired skill sequence is
Pi_Bx Ñ Tr_Bx Ñ Reset Ñ Pi_Fl Ñ

Re_Fl2St_Bx Ñ Reset Ñ Pi_St Ñ

Ro_St Ñ Tr_St_Bx Ñ Reset Ñ Pi_Bx Ñ
Tr_BxÑ Reset;
or Pi_Bx Ñ Tr_Bx Ñ Reset Ñ Pi_Fl Ñ

Re_Fl2St_Bx Ñ Reset Ñ Pi_St Ñ

Tr_St_Bx Ñ Ro_St Ñ Reset Ñ Pi_Bx Ñ

7

Fig. 7. The learned GTN associated with Task-2 described in Sec. II-A4,
which has 15 nodes and 27 edges (with 32 embedded TPGMMs).

Fig. 8. Snapshots of execution for one case of Task-2 in Sec. II-A4.

Tr_BxÑ Reset.
As a result, Task-2 requires 4 possible discrete sequences with
length 4, 4, 14 or 14, of which contains 2, 2, 4 and 4 6D skill
parameters (each as 6D poses). Snapshots of the execution of
one case are shown in Fig. 8.

We generated 150 problems of Task-2 for training, 40 for
each case above. The problems are generated by randomly
sampling from possible poses of the alphabet as initial and goal
poses, with a equal distribution over the above four different
cases. Note that the initial and final positions of the box are
always at p´0.1, 0.7q, i.e., there is no benefit of moving the
box judging from the goal. Then, these problems are solved by
the hybrid TAMP described in Sec. II-A2. It took in total 18 h
(in average 6 minutes per problem) to generate 150 successful
plans as in (9), using the exhaustive hybrid TAMP mentioned
above. As described in the learning algorithm of GTN, the
associated GTN is learned in 7.8 s with 15 nodes and 27
edges (with 32 embedded TPGMMs), as shown in Fig. 7. Its
topology matches the anticipated plans described above well.
In particular, the robot can manipulate the alphabet directly
or pick and translate the box to the center of the platform
if re-orientation of the alphabet is needed. Afterwards, the
box is then picked and translated back to its original pose.
The learned GTN is used to solve another 150 problems
in the validation set by following the execution procedure.
Similar as before, starting from the initial state, the learned
GTN can directly output the best next skill and the associated
skill parameters, based on the current state and the goal state.
As a result, only the states and skills on the optimal path
are explored and thus significantly reduce the planning time.
More specifically, it took in total 15 min (in average 8.9 s
per problem) to solve all problems in the validation set with
a success rate of 96%, resulting in a 100-fold decrease in
planning time while maintaining the same success rate as the
training data.

5) Task-3: Learning and Execution Results: All skills nec-
essary for this task are already introduced in Task-2 for the
box and alphabet “R”, whereas additional skills for the new
alphabets “F” and “G” can be re-demonstrated, re-learned or
modified from those skills of “R”.

Since now there are in total 4 objects, the desired behavior
of this task is quite complex and summarized below:

‚ If the goal configuration does not require the alphabets to
be stacked, each alphabet can be manipulated to the goal
state in arbitrary order, each of which follows the same
procedure as described in Sec. II-A5 for Task-2. One
subtle difference is that the box only needs to be moved
once if more than one alphabets require re-orientation.

‚ If two or three alphabets are stacked while being lying-
flat in the goal configuration, the alphabet at the bottom
of the stack should be manipulated first, then towards the
top of the stack. This is because alphabets on the higher
level can not be stacked without the lower alphabets
being stacked first. Consider the goal configuration of all
three alphabets in one stack. There are in total 6 possible
arrangement, each leading to a different sequence of
manipulating the alphabets. For instance, if the goal stack
is “R, F, G” from bottom to top, then the sequence of
manipulation is “R” first, “F” second, and “G” last.
On top of that, given different initial orientations of the
alphabets, re-orientation with the levitation box should
be used before translation and rotation towards the goal
state. Same to the previous case, the box only needs to
be moved once if more than one alphabets require re-
orientation.
Note that the cases where the alphabets are stacked
while being standing are not considered here, due to the
frequent fall of such stacked structure.

There are in total 13 different skill sequences under 18
different cases, of which the longest plan has 27 skills and
the shortest plan has 12 skills (with 8 and 6 6D parameters,
respectively). Snapshots of the execution of one case are
shown in Fig. 10.

Due to the extremely long sequence of the solutions, the
above problem is much more difficult thus takes much longer
for the classic TAMPs to find the solution, no matter whether
they are combined with LfD skills or motion planners, For
training, 500 problems are created (40 problems for each
case above). More specifically, the solution time increases
drastically by 50-fold, as it in average takes 4 min to solve
tasks that do not require re-orientations of the alphabets,
while 8 min to solve tasks that require re-orientations of the
alphabets. In particular, there are 29 potential skills and 14
6D parameters to expand at each state of the graph search.
Moreover, an incorrect sequence of manipulating the alphabets
would yield large part of the search tree invalid, thus expensive
to explore. Given the training data, it took 4 min to learn
the associated GTN which has 29 nodes and 53 edges (with
256 embedded TPGMM components). The large number of
TPGMM components is due to the large number of all possible
unique plans as mentioned above.

The learned GTN is shown in Fig. 9. Its structure and
embeddings correctly model the following constraints: (I) the
box is used only when at least one of the alphabets needs
re-orientation, i.e., the transition from skill Reset to skill
Pi_Bx. (II) the alphabets are manipulated based on their
levels in the goal stack, i.e., the alphabet on the bottom is ma-
nipulated first, i.e., the transitions from skill Reset to skills
Pi_St_R, Pi_St_F, Pi_St_G, Pi_Fl_R, Pi_Fl_F and
Pi_Fl_G. The learned GTN is used to solve another 520 new

8

Fig. 9. The learned GTN associated with Task-3 described in Sec. II-A5,
which has 29 nodes and 53 edges (with 256 embedded TPGMMs). Note
that for the ease of visualization, the skill Reset is duplicated across three
alphabets.

Fig. 10. Snapshots of execution for different cases of Task-3 in Sec. II-A5.

problems in the validation set. The edges of learned GTN
in average take longer to evaluate due to increase number
of components. It took in total 2.9 h (in average 20 s per
problem) and a success rate of 95%, which still results in
a more than 100-fold decrease in planning time. It is worth
mentioning that due to the large number of components within
the embeddings, it took around 1.5 s to choose each skill
along the plan, including optimizing the task parameters and
maximizing the observation probability.

B. Industrial Assembly on Hardware

Last but not least, we consider parts of an industrial assem-
bly task on hardware as shown in Fig. 12. The actual Panda
robot is used within a workspace that consists of a feeding and
inspection platform; and an assembly station where various
pieces are assembled into a product. The platform is monitored
by a Zivid 3D camera from [12], from which the collected
point-clouds are inputs to the point-pair-feature detection
algorithm see [13]. It provides a 6D pose estimation with
around 1 cm accuracy w.r.t. the global frame. Moreover, a task-
space impedance controller as proposed in [14] is used to track
Cartesian reference trajectories.

Similar to Task-2, there are two cases associated to this part
of the assembly process: Case-1: pick a non-defective metal
cap from the platform, and attach it to the top of a metal peg
on the assembly station; Case-2: pick a defective metal cap
from the platform, and drop it to a pallet. Both the cap and
the peg are components of the e-bike motor.

1) Primitive Skills: As summarized in Table III, we demon-
strated in total 10 skills relevant to the task directly via
kinesthetic teaching on the robot. The state of the end-effector
and the gripper are fetched directly from the on-board control
manager, while the poses of the objects (e.g., the cap and the
peg) are retrieved from the perception system. Demonstrations
are recorded at 50 Hz. In addition to the skills described in

Skill Name Ma Ka TPa t pθa |γaq [s]

In_Pg 8 8 tP,Ru 3.2 | 4.2
Pi_St 12 7 tC,Ru 3.6 | 2.7
Pi_Si 10 8 tC,Ru 4.2 | 3.1
Pi_Fl 8 7 tC,Ru 3.8 | 3.2

Re_Fl2St 10 8 tC,R,CGu 3.8 | 2.2
Ro_St 15 6 tC,R,CGu 4.2 | 2.7
Tr_St 10 7 tC,R,CGu 4.1 | 1.9
At_St 10 7 tC,R,CGu 4.3 | 2.1
Dr_Fl 10 6 tC,R,CGu 3.3 | 2.2
Reset 7 6 tRu 2.8 | 1.5

TABLE III
DEMONSTRATED SKILLS C, NUMBER OF DEMONSTRATIONS Ma , NUMBER
OF COMPONENTS Ka , CHOICE OF TASK PARAMETERS TPa , AND TRAINING

TIME FOR θa AND γa . REGARDING FRAMES, “C,P,R,CG” STAND FOR
THE INITIAL POSE OF CAP, THE INITIAL POSE OF PEG, THE INITIAL POSE

OF THE ROBOT ARM AND THE DESIRED CAP GOAL, RESPECTIVELY.

Task-1 of Sec. II-A1 for the alphabets, the following three
skills are added:
‚ In_Pg: to insert the peg into the workstation.
‚ At_St: to attach the cap onto the top of the peg while

standing. Due to limitations of the perception system, the
positions of the peg and the workstation are not changed
across demonstrations.

‚ Dr_Fl: to drop the cap into the container while lying-
flat. Due to limitations of the perception system, the
positions of the cap and the pallet are not changed across
demonstrations.

2) Assembly Task: Learning and Execution Results: First of
all, the skill model Ma is learned for each skill, of which the
details such as the training time and the choice of frames are
given in Table III. On average, 10 demonstrations are needed
for each skill and the model is learned within 7 s.

With these skills, the aforementioned two cases can be
addressed by the following.
‚ Case-1: If the cap is initially standing-up, the robot

should insert the peg first into the workstation. Then
it should pick up the cap and attach it onto the peg,
i.e., In_PgÑ ResetÑ Pi_StÑ At_StÑ Reset.
However, if the cap is initially lying flat, after picking
the cap, the robot should re-orient it to standing position.
Then the robot can pick it up and attach it onto the
peg. i.e., In_PgÑ ResetÑ Pi_FlÑ Re_Fl2StÑ
Reset Ñ Pi_StÑ At_StÑ Reset.

‚ Case-2: If the cap is initially lying flat, the robot should
directly pick up the cap and drop it into the container,
i.e., without inserting the peg, i.e., Pi_FlÑ Dr_FlÑ
Reset. However, if the cap initially standing-up, the
robot should rotate and translate it first to the platform
edge, and then pick it up from the side before dropping
it into the container, i.e., Pi_StÑ Ro_StÑ Tr_StÑ
ResetÑ Pi_SiÑ Dr_FlÑ Reset.

Note that the skills At_St, Dr_Fl, Ro_St and Tr_St all
have one free skill parameter as 6D pose. Clearly, the desired
skill sequence for different cases above depends on the initial

9

Fig. 11. The learned GTN associated with Assembly-Task, which has 12
nodes and 19 edges (with 27 embedded TPGMMs).

Fig. 12. Snapshots of execution of the Assembly Task in Sec. II-B: left-two
for placement and right-two for insertion.

system state, particularly, the initial pose of the cap. For Case-
1, since the skill At_St is only taught when the cap is grasped
from the top (i.e., not from the side), a cap initially lying flat on
the platform needs to be first re-oriented to a stand-up state.
On the contrary, for Case-2, since the skill Dr_Fl is only
allowed when the cap is grasped from the side or flat (i.e., not
from the top), a cap initially standing on the platform needs
to be first translated to the edge of the platform, and then
grasped from the side. Similar to Task-1, the re-orientation
and grasping of the cap from the side are only taught at the
edge of the platform to avoid collision between the robot arm
and the platform surface.

We generated 80 problems of Assembly-task for training,
within which the two cases described above are covered
evenly. The problems are generated by randomly sampling
from possible initial poses/orientations of the cap on the
platform surface and different goal states for insertion or
dropping. Then, these problems are solved by the hybrid
TAMP described in Sec. II-A2. It took in total 2.5 h (in average
6 minutes per problem) to generate 80 successful plans as
in (9), using the exhaustive hybrid TAMP mentioned above.
As described in the learning algorithm of GTN, the associated
GTN is learned in 1.3 s with 12 nodes and 19 edges (with 27
embedded TPGMMs). The learned GTN topology as shown in
Fig. 11 matches the anticipated cases above well. For instance,
the peg will not be inserted if the goal is to drop the cap;
and the cap is re-oriented from lying flat to standing to be
inserted. Another 80 problems are created for validation, it
took in average 3.8 s to solve one problem with a success rate
of 100%, resulting in a 100-fold decrease in planning time.
Furthermore, the learned GTN is also used to control the robot
during online execution. Namely, given the goal state from
the problem definition and the initial state from perception,
the learned GTN is used to directly output the best next skill
and the associated skill parameter. Note that the generated
reference trajectory in the task space for each skill is sent to
the task-space impedance controller which runs at 1 kHz.

3) Details on Baselines: We compare our approach against
the following four baselines:

‚ (Hb-lfd): the hybrid TAMP planner combined with the
skill representations learned from LfD using the confi-
dence measure proposed in [6] as the searching heuristics.
More specifically, for each edge, the confidence measure
described in (7) is used to estimate the cost of an edge
in the TAMP search graph, i.e., the edge cost is small
when its confidence measure is high. In other words,
the tree expansion is biased towards skills that are more
confidence at the current state.

‚ (Hb-mp): the hybrid TAMP planner combined with skills
generated from sampling-based motion planner RRTC
see [10] with no heuristics. Different from (Hb-lfd), the
system evolution at each state is evaluated by executing
each skill within the simulator, by the proposed motion
planner. Moreover, the edge cost is obtained also from
the simulator as the control cost or execution time. The
simple “distance to goal” is used as the search heuristic.
Same setup as the previous planner, but now the edge
cost is fused with another measure which is simply the
Euclidean distance between the current state and the goal
state. In other words, the skill that drives the system closer
to the goal state is preferred during the search expansion.

‚ (MLP): a multilayer feedforward neural network to ap-
proximate the choice of both discrete and continuous
parameters. A 3-layer structure is used where the input
includes both the system state and the goal state, whether
the optimal choice of next skill and the parameters are
used as the output. The hidden layer has 512 tensors,
and the learning rate for the Adam optimizer is set to
1ˆ 10´3 The loss function is the MSE between the
target choice of skill and parameters and the predicted
one. A batch size of 16 is used for the training. During
evaluation, we split the error in predicting the skill
parameters and the choice of the skill.

‚ (NPI): a LSTM-based policy network similar to the
Neural Programmer Interpreter from [15]. It is proposed
to train a network to imitate a computer program, i.e.,
start or stop programs recursively given certain context.
We use one hidden layer with a memory of 5 steps. The
output and the loss function remain the same as used in
MLP, but the input is now a sequence of past system
state, goal state and the chosen skill. The hidden layer
has dimension 500, and the batch size is set to 32.

The metrics to compare are the solution time in the validation
set, and the success rate when the planning time limit is set
to 100 times the solution time of the GTN planner.

10

REFERENCES

[1] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G.
Barto, “Learning grounded finite-state representations from unstructured
demonstrations,” The International Journal of Robotics Research (IJRR),
vol. 34, no. 2, pp. 131–157, 2015.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[3] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[4] A. K. Tanwani and S. Calinon, “Learning Robot Manipulation Tasks
with Task-Parameterized Hidden Semi-Markov Model,” IEEE Robotics
and Automation Letters, pp. 1–8, 2016.

[5] S.-Z. Yu and H. Kobayashi, “A hidden semi-Markov model with missing
data and multiple observation sequences for mobility tracking,” Signal
Processing, vol. 83, no. 2, pp. 235–250, 2003.

[6] L. Schwenkel, M. Guo, and M. Bürger, “Optimizing sequences of prob-
abilistic manipulation skills learned from demonstration,” in Conference
on Robot Learning (CoRL), 2019.

[7] M. Zeestraten, “Programming by demonstration on Riemannian mani-
folds,” 2017, phD thesis.

[8] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Elsevier, 2004.

[9] E. Franka, “Panda arm,” https://www.franka.de/panda/, 2018.
[10] S. M. LaValle, Planning Algorithms. Cambridge university press, 2006.
[11] M. Spies, M. Todescato, H. Becker, P. Kesper, N. Waniek, and M. Guo,

“Bounded suboptimal search with learned heuristics for multi-agent
systems,” in AAAI Conference on Artificial Intelligence, vol. 33, 2019,
pp. 2387–2394.

[12] Ø. Skotheim, H. Schumann-Olsen et al., “Zividlabs,” Zivid 3d camera,
2020.

[13] M. Nixon and A. Aguado, Feature extraction and image processing for
computer vision. Academic Press, 2019.

[14] N. Hogan, “Impedance control: An approach to manipulation,” Journal
of dynamic systems, measurement, and control, vol. 107, no. 1, pp. 8–16,
1985.

[15] S. Reed and N. de Freitas, “Neural programmer-interpreters,” in Inter-
national Conference on Learning Representations (ICLR), 2016.

