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Abstract— Learning from demonstration (LfD) provides a
fast, intuitive and efficient framework to program robot skills,
which has gained growing interest both in research and indus-
trial applications. Most complex manipulation tasks are long-
term and involve a set of skill primitives. Thus it is crucial
to have a reliable coordination scheme that selects the correct
sequence of skill primitive and the correct parameters for each
skill, under various scenarios. Instead of relying on a precise
simulator, this work proposes a human-in-the-loop coordination
framework for LfD skills that: builds parameterized skill
models from kinesthetic demonstrations; constructs a geometric
task network (GTN) on-the-fly from human instructions; learns
a hierarchical control policy incrementally during execution.
This framework can reduce significantly the manual design
efforts, while improving the adaptability to new scenes. We show
on a 7-DoF robotic manipulator that the proposed approach
can teach complex industrial tasks such as bin sorting and
assembly in less than 30 minutes.

I. INTRODUCTION

Robots have been making their ways out of the closed
fences in industrial factories. Collaborative robots (cobots)
are intended for direct human interactions within a shared
space. This workspace is much more dynamic than the
precisely-arranged structures, e.g., assembly lines. Moreover,
the designated tasks are often low in repetition and high
in variance. Namely, the robots should adapt to different
tasks and different scenarios. For instance, the same service
robot might be used for cleaning, packing and transportation.
Two characteristics are essential for such use cases: (i)
the ability to quickly programme robot for different tasks;
(ii) the learned task policy should adapt automatically to
unforeseen situations. Most motion planners however require
precise modeling of the scene and the robot [1], thus difficult
to configure for non-technical end-users. Instead, learning
from demonstrations (LfD) provides an intuitive and efficient
method to program robot skills even for layman.

Moreover, instead of a single motion, complex manipula-
tion tasks often contain multiple branches of skill sequences
that share some common skills. The planning process should
generate the right sequence of skills and their parameters un-
der different scenarios. For instance, as discussed in later the
experiment, the bin-picking task involves to pick the object
differently from the box, clear it from the corners if needed,
re-orient it to reveal the barcode, and show the barcode to
the scanner. To choose the correct skill sequence is essential
for flexible robotic systems across various applications. Such
transitions among the skills and the associated conditions
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Fig. 1: Diagram of the proposed human-in-the-loop skill coordination
scheme. Once the skill primitives are demonstrated offline, the task net-
work and the associated policy are learned online given real-time human
instructions and state observations.

are often difficult and tedious to specify manually. In fact,
both self-adaptation and autonomous decision-making are
important design principles of Industry 4.0 systems [2].

Lastly, besides kinesthetic demonstrations, human opera-
tors can also provide interactive guidance during online task
execution. They are often more efficient and effective than
offline simulated data, see [3], [4]. However, the amount
of such inputs should not be excessive and only required
under appropriate indications, e.g., when the confidence of a
decision process is low. In other words, transparency during
the interaction is crucial for a human-in-the-loop system.

As shown in Fig. 1, in this work we address these issues
by proposing a human-in-the-loop coordination framework
for skills learned from demonstrations. In particular, the
backbone of the coordination framework is a geometric
task network (GTN) which consists of the primitive skills
as nodes and their transition relations as edges. Given a
manipulation task, the learned task network can decide not
only which skill to execute given the current system state, but
also the associated parameters. The proposed algorithm first
constructs the network structure, then learns the underlying
hierarchical selectors based on the geometric constraints
among the robots and the objects. Human instructions are
only required at the first few executions to improve the task
network on-the-fly. Several industrial applications are studied
on hardware to validate the performance.

Main contribution of this work is threefold: (i) a more
general task-parameterized model for skills with multiple
branches; (ii) a novel structure as geometric task networks
(GTN) for coordinating LfD skills, which is fully-explainable
regarding the underlying decisions; (iii) an online, human-
in-the-loop and interactive learning algorithm, which is ex-
tremely data-efficient and intuitive regarding the required
human instructions.



II. RELATED WORK

A. Learning from Demonstration

Compared with traditional motion planning from [1],
learning from demonstration (LfD) is an intuitive way to
transfer human skills to robots, see [5], [6], [7]. Various
teaching methods can be used such as kinesthetic teaching
in [5], tele-operation in [8], and visual demonstration in [7].
Different skill models are proposed to abstract these demon-
strations: full trajectory of robot end-effector in [6], dynamic
movement primitives (DMPs) in [9], [10], task-parameterized
Gaussian mixture models (TP-GMMs) in [5], [11] which
extend GMMs by incorporating observations from different
perspectives (so called task parameters), task-parametrized
hidden semi-Markov models (TP-HSMMs) in [12], [13],
[14], and deep neural networks [7]. In this work, we adopt
the TP-HSMM representation to extract both temporal and
spatial features from few human teachings, while allowing
generalization over multiple task parameters.

B. Task and Motion Planning

Task planning focuses on constructing a discrete high-level
plan via abstract decision-making (e.g., via logic-reasoning
from [15]), while motion planning addresses the low-level
sensing and control problem of a dynamic system, see [1].
The area of task and motion planning (TAMP) attempts to
improve the synergies between them. The planning process
over the state graph consists of searching over both discrete
skill sequences and the continuous parameters, see [16], [17],
[18]. A conjugate view of the state graph is the so-called skill
graph, where instead the nodes are primitive skills and edges
are implicit state abstractions, see [19], [20], [21], [22]. The
work in [20] extends the hierarchical task networks (HTN)
to conjugate task graph (CTG) without any parameterization
on the skill primitives. Moreover, [22] calls such graph as
maneuver automaton, which however is manually designed
instead of learned, whereas [19] require similar structural
supervision during training. The method in [21] relies on
“change point” detection to segment these task demonstra-
tions with simple 2D models, while [23] assumes each skill
primitive is parameterized to only one object frame. In
this work, we adopt this conjugate perspective, but with an
embedded hierarchical structure of selectors. Moreover, both
the graph structure and the associated geometric constraints
are learned online, without manual specifications.

C. Human-in-the-loop Learning

Human operators can also provide interactive instructions
during online task execution, which are often more efficient
and effective than offline simulated data, see [3], [4]. Human
inputs can be of different formats such as qualitative prefer-
ences [4], directly modifying the underlying algorithms [3],
additional actions [24]. In this work, the human operators
are only queried when the decision confidence is low, and
the expected inputs are simple instructions such as the next
desired skill or branch name.

III. PRELIMINARIES

A. Multi-nomial Classification

Multi-nomial or multi-class classification is the problem
of classifying instances into one of several classes, see [25].
More precisely, consider the training data tpym, kmqu where
ym P RN is the feature vector and km P t1, ¨ ¨ ¨ ,Ku is
the set of possible classes. Our goal is to learn a classifier
f : RN Ñ t1, ¨ ¨ ¨ ,Ku that fpyq predicts the most likely
class of a new point y P RN . Various algorithms have been
proposed such as support vector machines, logistic regres-
sion, k-nearest neighbors, naive Bayes and neural networks,
see [25] for details. An extremely data-efficient yet effective
method is to use logistic regression along with the one-
vs-rest strategy, by maximizing the likelihood of correctly
classifying all training data. More specifically, the probability
of ym belonging to class km is given by

ppkm |ymq “ σpβᵀymq, (1)

where σptq “ 1{p1` e´tq is the logistic function for t P R;
β P RN is the model parameter as the weight vector.

Logistic regression is used here (instead of SVMs and
DNNs) as: (i) it requires much less training data; (ii) it offers
probabilistic measures that can be used as confidence in a
decision; (iii) the decision model is more interpretable as the
weighted combination of the feature variables.

B. Skill Model as TP-HSMM

As proposed in [5], [12], [13], the skill model θa of a
primitive skill a as the TP-HSMM is defined as:

θa “
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are the mean and covariance of the k-th Gaussian component
within frame p. Frames provide observations of the same data
but from different perspectives, the instantiation of which is
called a task parameter. An Expectation-Maximization (EM)
method from [26] is used to optimize this model.

IV. PROBLEM DESCRIPTION

Consider a multi-DoF robotic arm within a static and
known workspace, of which the end-effector has state r such
as its 6-D pose and gripper state. Also, there are multiple
objects of interest denoted by O “ to1, ¨ ¨ ¨ , oJu. Each object
is described by its state po such as its 6-D pose.

Moreover, there is a set of primitive skills that enable
the robot to manipulate these objects, denoted by A “

ta1, a2, ¨ ¨ ¨ , aHu. For each skill, a human user performs
several kinesthetic demonstrations on the robot. Particularly,
for skill a P A, the set of objects involved is given by
Oa Ď O and the set of demonstrations is given by Da “

tD1, ¨ ¨ ¨ ,DMau, where each demonstration Dm is a timed



Fig. 2: Comparison between branch selection based on the Gaussian
preconditions (left) and the proposed selector (right), for the bin-picking
skill with 5 branches (four sides and the center). Note that different colors
indicate the predicted branches at that sample point (in dots), while the
projected training data are indicated as diamonds (left).

sequence of states s P s that consists of the end-effector
state r and object states tpo, o P Oau, i.e., Dm “

“

st
‰Tm

t“1
“

“`

rt, tpt,o, o P Oau
˘‰Tm

t“1
. Via a combination of these skills,

the objects can be manipulated to reach different states.
We consider a generic manipulation task, which however

consists of many instances. Each problem instance is speci-
fied by an initial state s0 and a set of desired goal states sG.
A task is solved when the system state is changed from s0
to sG. Then the problem statement is as follows:

Problem 1: Given a new task ps0, sGq, determine (i) the
discrete sequence of skills; and (ii) the continuous robot
trajectory to execute each skill. �

We are interested in solving complex manipulation tasks
where the sequence of desired skills and the associated
trajectories change significantly within different scenarios.

V. PROPOSED SOLUTION

In this section, we present the main components of the
proposed solution: first, we introduce an extension to the
current skill model learning; then, we show how to construct
a Geometric Task Network (GTN) for a given task; lastly,
we describe how both the skill model and the task network
can be improved during online execution with human inputs.

A. Primitive Skills Learning

As illustrated in Fig. 1, there are often multiple ways of
executing the same skill under different scenarios (called
branches). For instance, there are five different ways of pick-
ing objects from a bin, i.e., approaching with different angles
depending on the distances to each boundary. Our earlier
work [13] proposed a learning algorithm for TP-HSMM with
multiple branches, and moreover a precondition model that
chooses the best branch based on the first GMMs of all
branches. However, this model requires a large number of
demos to cover the area of interest and does not generalizes
well to new scenarios. This is mainly due to the usage of
Gaussian clustering over few samples in high dimensions.
Fig. 2 shows one example of the bin-picking skill.

To overcome this limitation, we propose a branch selector
as an extension to the original TP-HSMM model θa in
Sec. III-B. Consider a skill primitive a with M demonstra-
tions and B different branches. Furthermore, each execution
trajectory or demonstration of the skill is denoted by Jm “

Fig. 3: Illustration of the computation of feature vectors vm for the edge
selector and h` for the branch selector, given skill frames Fp.

“

st
‰Tm

t“1
, which is associated with exactly one branch bm P

Ba “ t1, ¨ ¨ ¨ , Bu. Denote by Ja the set of such trajectories,
initialized to be the set of demos Da. As mentioned in
Sec. III-B, the frames associated with Jm are computed from
the initial state s0, by abstracting the coordinates of the robot
and the objects, denoted by:

pF0, F1, ¨ ¨ ¨ ,FP q, (3)

where Fp “ pbp,Apq is the coordinate of frame p P

t1, ¨ ¨ ¨ , P u; their order can be freely chosen but fixed
afterwards. Then, we can derive the feature vector:

vm “
`

F01, F12, ¨ ¨ ¨ ,FpP´1qP

˘

, (4)

where Fij “ pbij , αijq P R6 is the relative transformation
from frame Fi to frame Fj : bij P R3 is the relative pose
and αij P S3 is the relative orientation. Thus, given Ja, we
can construct the training data for the branch selector:

τ Ba “ tpvm, bmq, @Jm P Jau , (5)

where bm is the branch label of trajectory Jm; vm is the
associated feature vector. Then the branch selector, denoted
by CBa , can be learned via any multi-nomial classification
algorithms. As described in Sec. III-A, logistic regression
under the “one-vs-rest” strategy yields an effective selector
from few training samples. More comparisons are given in
Sec. VI. Afterwards, given a new scenario with state st, the
probability of choosing branch b is given by:

ρb “ CBa pst, bq, @b P Ba, (6)

where ρb P r0, 1s. Since most skills contain two or three
frames, the feature vector vm in (4) normally has dimension
6 or 12. Fig. 2 illustrates much better classification results
compared with the Gaussian preconditions [13].

B. Task Network Construction

As mentioned in Sec. I, complex manipulation tasks often
contain various sequences of skills to account for differ-
ent scenarios. A high-level abstraction of such relations is
referred as task networks [20]. A valid plan evolves by
transition from one skill to another until the task is solved.
Even though the graph structure can be sketched easily, the
conditions on these transitions are particularly difficult and
tedious to specify manually. To overcome this limitation,
we propose a novel coordination structure as geometric task
networks (GTNs) [27], where the conditions are learned from
the task execution results.



Fig. 4: The proposed network structure over primitive skills, where the
conditions for selecting edges and branches are critical for the execution.

1) Network Structure: As illustrated in Fig. 4, a GTN has
a simple structure defined by the triple G “ pV, E, fq. The
set of nodes V is a subset of the primitive skills A; the set
of edges E Ď V ˆ V contains the allowed transitions from
one skill to another; the function f : v Ñ C maps each node
to a edge selector w.r.t. all of its outgoing edges. Intuitively,
pV, Eq specifies how skills can be executed consecutively
for the given task, while function fpvq models the different
geometric constraints among the objects and the robot, for
the outgoing edges of node v. Note that fp¨q is explicitly
conditioned on both the current system state and the goal
state. Its detailed model is given in the sequel.

2) Learning from Complete Plans: Without loss of gener-
ality, a complete plan of the considered problem in Problem 1
is given by the following sequence:

ξ “ as0 a0 s1 a1 s2 ¨ ¨ ¨ sGa, (7)

where a and a are virtual “start” and “stop” skills, respec-
tively. For different initial and goal states (i.e., problems)
of the same task, the resulting plans can be different.
Denoted by Ξ “ tξu the set of complete plans for a set of
given problems. Then, for each “action-state-action” triple
pan, sn`1, an`1q within ξ, first, the pair pan, an`1q is added
to the edge set pE if not already present; second, for each
unique skill transition pan, an`1q, a set of augmented states is
collected, denoted by psanan`1

“ tpsu, where ps “ psn`1, sGq.
Furthermore, for each augmented state ps` “ pst, sGq P
psanan`1 , we derive the following feature vector:

h` “ phtG, vGq, (8)

where htG “ pH r, Ho1 , ¨ ¨ ¨ ,HoH q, where Ho “

pbo, αoq P R6 is the relative translation and rotation of
robot r and objects o1, o2, ¨ ¨ ¨ , oH P Oan , from the current
system state st to the goal state sG; vG is the feature vector
defined in (4) associated with the goal state sG. Note that h`

encapsulates features from both the relative transformation to
the goal, and the goal state itself. Its dimension is linear to
the number of objects relevant to skill an, as shown in Fig. 3.

Once all plans within Ξ are processed, the GTN G can be
constructed as follows. First, its nodes and edges are directly
derived from pE. Then, for each node a, the set of its outgoing
edges in pE is given by pEa “ tpa, a`q P pEu. Thus the function
fpaq returns the edge selector CEa over pEa. To compute this
selector, we first construct the following training data:

τ Ea “
!

ph`, eq, @ps` P pse, @e P pEa

)

, (9)

where e is the label for an edge e “ pa, a`q P pEa; h` is the
feature vector derived from (8). Then the edge selector CEa
can be learned via the multi-nomial classification algorithms
presented in Sec. III-A. Similar to (6), given a new scenario
with state st and the specified goal state sG, the probability
of choosing edge e is given by:

ρe “ CEa ppst, sGq, eq , @e P pEa, (10)

where ρe P r0, 1s. Note that ρe is trivial for skills with only
one outgoing edge.

C. Human-in-the-loop Policy Learning and Execution

The previous sections present the methods to learn the
extended skill model and the task network. The required
training data are execution trajectories of the skill in (3)
and complete plans of the task in (7). In this section, we
show how human instructions during run time can be used
to generate such data, and thus to learn or improve both the
skill model and the task network on-the-fly.

1) Execute and Update GTN: The GTN G is initial-
ized as empty. Consider a problem instance of the task,
namely ps0, sGq. The system starts from state sn whereas
the GTN starts from the virtual start node an “ a for n “ 0.
Then the associated edge selector CEan is used to compute the
probability ρe of each outgoing edge e P pEan based on (10).
Then, the next skill to execute is chosen as:

a‹n`1 “ argmax
eP pEan

 

ρepsn, sGq, where ρe ą ρE
(

, (11)

where ρE ą 0 is a design parameter as the lower confidence
bound. Note that if the current set of outgoing edges is empty,
i.e., pEan “ H, or the maximal probability of all edges is less
than ρE, the human operator is asked to input the preferred
next skill a‹n`1. Consequently, an additional data point is
added to the training data τ Ean , i.e.,

τ Ean Ð
`

hpsn, sGq, pan, a
‹
n`1q

˘

, (12)

where the feature vector h is computed based on (8). Thus, a
new edge pan, a‹n`1q is added to the graph topology pV,Eq
if not present, and the embedded function fp¨q is updated by
re-learning the edge selectors CEan given this new data point.

2) Execute and Update Branch Selector: Now assume
that an`1 is chosen as the next skill. Then the branch selector
CBan`1

is used to predict the probability of each branch ρb,
@b P Ban`1

Then, the most likely branch for an`1 is chosen
by:

b‹n`1 “ argmax
bPBan`1

 

ρbpsnq, where ρb ą ρB
(

, (13)

where ρB ą 0 is another parameter as the lower confidence
bound for the branch selection. Note that if no branch is
found above, then the human operator is asked to input
the preferred branch b‹n`1 for skill an`1. Consequently, an
additional data point is added to the training data τ Ban`1

, i.e.,

τ Ban`1
Ð

`

vpsnq, b
‹
n`1

˘

, (14)

where the feature vector v is computed based on (4).



Algorithm 1: HIL Coordination of LfD Skills
Input: tDa, @a P Au, human inputs ta‹n, b

‹
nu.

Output: G, tCBa u, u‹.
/* offline learning */

1 Learn θa and tCBa u, @a P A.
2 Initialize or load existing G.
/* online execution and learning */

3 while new task ps0, sGq given do
4 Set an Ð a and sn Ð s0.
5 while sn ‰ sG do
6 G, an`1 “ ExUpGtnpG, an, psn, sGq, a

‹
n`1q.

7 CBan`1
, bn`1 “ ExUpBrspCBan`1

, sn, b
‹
n`1q.

8 Compute u‹ for branch bn`1 of skill an`1.
9 Obtain new state sn`1. Set nÐ n` 1.

3) Skill Execution: Once the optimal branch b‹ is chosen
for the desired next skill a‹n`1, its trajectory can be retrieved
given the skill model θan`1

. The retrieval process consists
of two steps: First, the most-likely sequence of GMM com-
ponents within the desired branch (denoted by k‹T ) can be
computed via the modified Viterbi algorithm proposed in our
earlier work [13]. Then, a reference trajectory is generated
by an optimal controller (e.g., LQG from [28]) to track this
sequence of Gaussians in the task space. Thus this reference
trajectory is then sent to the low-level impedance controller
to compute the control signal u‹. More algorithmic details
and extension to Riemannian manifolds are given in [13].

Afterwards, the system state is changed to sn`2 with
different poses of the robot and the objects, i.e., obtained
from the state estimation and perception modules. Given this
new state, the same process is repeated to choose the next
skill and its optimal branch, until the goal state is reached.

D. Overall Algorithm

The overall procedure is summarized in Alg. 1. Namely,
during the online execution for solving new tasks, Sec. V-
C.1 is followed to execute and update the GTN, namely the
function ExUpGtnp¨q in Line 6, with possible human input
a‹n if required. Once the next skill an`1 is chosen, Sec. V-C.2
is followed to execute and update the branch selector, namely
the function ExUpBrsp¨q in Line 7, with possible human
input b‹n`1 if required. Consequently the GTN and branch
selectors are updated and improved via (12) and (14) on-the-
fly. Compared with the manual specification of the transition
and branching conditions, the required human inputs above
are more intuitive and easier to specify.

Lastly, the computation complexity of the logistic regres-
sion is Opd2q, where d is the dimension of the feature vector.
The skill model learning and the LQG control algorithm have
polynomial complexity to the robot state dimension.

VI. EXPERIMENTS

This section presents the experimental validation on a
7-DoF Franka Emika robot arm for two different indus-
trial applications: first one as a part of an assembly task,

Fig. 5: Left: workspace for the assembly task; Right: the learned final GTN
with one example plan (in blue).

Fig. 6: Left: workspace for the bin-sorting task; Right: the learned final
GTN with one example plan (in blue).

and second as a bin-sorting task. The arm is extended by
a Zivid RGBD sensor for perception and a parallel (or
suction) gripper. Additionally, kinaesthetic teaching can be
done directly by guiding the end effector manually. The
proposed framework is implemented in Python3 under the
Robot Operating System (ROS). All benchmarks are run on
a desktop with an 8-core Intel Xeon CPU. Experiment videos
can be found in the supplementary file.

A. Workspace and Task Description

The assembly task was introduced in our previous
work [13]. For brevity, we omit the detailed description here
and refer the readers there. As shown in Fig. 5, a metallic
cap is fed onto the inspection platform and depending on
the result, the robot arm should either attach the cap to
the top of a peg or drop it into a pallet. Given different
initial states of the cap (lying-flat of standing), additional
manipulation skills are needed to re-orient and translate the
cap before the normal pick and drop skills. Note that in
our earlier work [12], [13], these sequences are specified
manually before every execution.

Another application is the well-known bin picking and
sorting task. As shown in Fig. 6, the goal is to pick unknown
objects out of the bin, scan them for product info, and then
sort them accordingly. Instead of emphasizing performance
such as “pick per hour”, we are interested in addressing
several corner cases: (i) the object should be picked with
different orientations when close to the bin boundaries;
(ii) the object should be cleared out of the corners before
picking; (iii) the object should be flipped when the barcode
overlaps with the suction area; and (iv) the objects are placed
differently given the scanning results.

B. Results

1) Learned Skill Model: For the assembly application, in
total 5 primitive skills are taught, i.e., pick to pick the cap
from the platform with three branches; re orient to re-
orient the cap from lying flat to standing with two branches;
translate to translate the cap to the platform boundary
while standing; attach to attach the cap to the peg; drop
to drop the cap with two branches. Similarly, for the bin



Fig. 7: Evolution of the edge selector for node STR in the GTN for bin-
sorting in Fig. 6. There are two modes projected onto the x ´ y plane:
pick bin skill (in red) and press shift skill (in blue). Human in-
structions are requested at the samples marked in circles, while autonomous
predictions are marked in diamonds.
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Fig. 8: x-axis: number of task executions. Left-y-axis: number of human
instructions requested for GTN (G) and branch selector (B), for assembly
task Asm and bin-sorting task Bin. Right-y-axis: evolution of the lowest
confidence in the GTN execution for both tasks.

sorting application, in total 6 primitive skills are taught, i.e.,
pick bin to pick any object from bin with five branches.
scan to scan the object; press shift to press and shift
any object out of the corners with four branches; flip to
flip the object; drop bin to drop the picked object into
another bin; sort to arrange the picked object in rows.

Due to the new branch selector proposed in Sec. V-A, the
number of demos needed is much reduced compared with our
previous work [12], [13]. In average 6 demos are performed
for each skill and the associated skill model with the branch
selector is learned in 0.2s. Afterwards, the model of each
skill is verified independently under different scenes. For
instance, the pick skill are demonstrated 2 times for each
branch, and the feature vector v has dimension 7.

2) Learned Task Network: The proposed GTN is learned
by following Alg. 1 for each application. Various problem
instances of ps0, sGq are defined in the learning process.
Human instructions are requested for the next desired skill
and branch. For instance, as shown in Fig. 5, if the cap is
standing and the goal is to drop it into the pallet, the skill
sequence is pick, translate, pick again, and finally
drop. As shown in Fig. 6, if the object is close to one corner
with the barcode on the top, the sequence is press shift,
pick bin, flip, scan, and drop into another bin.

Each time a human instruction is given, either the GTN
or the branch selector is updated via Line 6 ´ 7 in Alg. 1.
Fig. 7 shows an example how the edge selector of node
GTN evolves within the execution of the first five execu-
tions. Moreover, Fig. 8 records how many human inputs are
required for the GTN G, and the branch selectors tCBu are
updated during the whole run. Notice that the topology of
G is quickly learned while the edge and branch selectors

Methods L-time[s] S-time[s] R-skill/task H-design[min]

GTN 1.5 0.2 0.95/0.9 2
TPH 0.1 0.8 0.8/0.6 N/A
FUL 10 0.5 0.3/0.2 10
TMP N/A ą 300 0.6/0.5 N/A
MAN N/A 0.1 0.9/0.9 20

TABLE I: Comparison: learning time, solution time, success rate for each
skill and the complete task, and the total time to design human inputs, of
all baselines for the assembly task.

are improved whenever a new scene is experienced with
a low confidence score. Fig. 8 also shows how the lowest
confidences for selecting edges and branches increase with
time as the GTN is improved, where both lower bounds ρB

and ρE are set to 0.8. In the end, the success rate is close to
100% with full autonomy for both applications, where most
failures are caused by execution and perception errors. The
final learned GTNs for both are shown in Fig. 5 and 6.

C. Comparison

The proposed scheme (GTN for short) is compared to
the following baselines: (i) the vanilla TP-HSMM scheme as
stated in [5], [13] (TPH for short), i.e., in combination with
proposed GTN but without the proposed branch selector; (ii)
the full system state (FUL for short) is used as the feature
vector for the branch selector in (4) and the edge selector
in (8), i.e., instead of the relative frames; (iii) a task and
motion planner (TMP for short) that searches in simulation
over the system state space for each new task ps0, sGq; (iv)
a completely manual design of the branch and edge selection
(MAN for short), i.e., by specifying the rules for each case.

As summarized in Table I, TMP does not learn from past
solutions and requires the longest solution time. For certain
problems where the sequence has more than 4 skills, it can
not solve them in reasonable time (10 min). Moreover, TPH
performs relatively well for predicting the skill sequence,
however fails at executing the skill due to choosing the
wrong branch, especially when the scenes are different
from the demos. Notably, FUL learns not only slower but
also performs worse in predicting both the edges and the
branches, compared with GTN. The plausible explanation is
that the relative transformation in (4) and (8) is difficult
to capture with linear or even nonlinear kernels such as
RBF [25]. Last but not least, the manual rules in MAN are
much harder to design than the string inputs required by
our scheme. Particularly, for both applications, boundaries
on orientations of different objects are often transformed to
Euler angles, which however are often ill-posed; In addition,
such rules are hard to cover the complete state space and
thus some corner cases are not defined.

VII. CONCLUSION

This work proposes a human-in-the-loop coordination
framework for LfD skills that constructs and learns a geo-
metric task network on-the-fly from human instructions. The
resulting framework is data-efficient and intuitive even for
non-technical operators. Future work involves the composi-
tion of various GTNs and interactive teaching.
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