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Abstract— This paper addresses the online motion planning
problem of mobile robots under complex high-level tasks. The
robot motion is modeled as an uncertain Markov Decision
Process (MDP) due to limited initial knowledge, while the task
is specified as Linear Temporal Logic (LTL) formulas. The
proposed framework enables the robot to explore and update
the system model in a Bayesian way, while simultaneously opti-
mizing the asymptotic costs of satisfying the complex temporal
task. Theoretical guarantees are provided for the synthesized
outgoing policy and safety policy. More importantly, instead
of greedy exploration under the classic ergodicity assumption,
a safe-return requirement is enforced such that the robot can
always return to home states with a high probability. The overall
methods are validated by numerical simulations.

I. INTRODUCTION

Uncertainty arises in various aspects of robot motion plan-
ning such as the model of the workspace and the outcome
of motion execution. Markov Decision Process (MDP) is a
convenient way to model such uncertain systems [1] based
on which decision making problems are solved to optimize
a given control objective. The most common objective is to
reach a set of goal states while minimizing the expected total
cost. The resulting solution is a policy that maps states to
probability distributions over the set of allowed actions [1].
Furthermore, there have been many efforts to address the
problem of synthesizing a control policy for a MDP that
satisfies high-level temporal tasks. Most common control
objectives such as reachability, surveillance, liveness and
emergency response, can be specified via temporal logic for-
mulas. There has been numerous work considering different
formal languages, such as Probabilistic Computation Tree
Logic (PCTL) and Linear Temporal Logics (LTL), see [2].
Such tasks are normally specified over regions of interest in
the state space. A verification toolbox is provided in [3] for
MDPs under certain LTL tasks. Different cost optimizations
are also considered such as maximum reachability in [4],
the minimal bottleneck cost in [2], the pareto resource
constraints in [5], the balanced satisfiability and cost in [6],
and the uncertainty over semantic maps in [7].

However, under limited information, even the underlying
MDP could be uncertain, e.g., the transition measure or the
state features is only partially-known, the above techniques
can not be applied directly. Thus, robust control policies are
synthesized offline in [8] to maximize the accumulated time-
varying rewards, in [9] to maximize the satisfiability under
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uncertain transition measures, and in [10] to improve multi-
robot team performance for dynamic workspaces. These
policies are mostly constructed offline. In contrast, online
approaches require the robot to actively explore and learn the
system model and the optimal policy simultaneously during
run time. The work in [11] introduces exploration bonus
to balance exploration and exploitation during learning. To
guarantee convergence, most existing exploration algorithms
rely on the assumption of ergodicity that any state in the
MDP is reachable from any other state under a suitable
policy [12]. Thus, any state can be safely explored and con-
sequently the system model around that state. Nonetheless,
this assumption does not hold in many practical examples
where the system would break once entering an unsafe state,
e.g., a ground vehicle falls off stairs, or enters a room via
a one-way door. Thus, safe exploration during learning has
been an active research topic, see [13]. Nonetheless, complex
temporal tasks have not been well studied within non-ergodic
systems that are partially-unknown.

To overcome these issues, this work proposes an online
planning and exploration method for robotic systems mod-
eled as uncertain MDPs. It allows the robot to gradually
improve the model and thus the asymptotic cost of the
complex task, while ensuring that it can always safely return
to a set of home states. The main contribution lies in the
novel framework for general uncertain MDPs, which can
handle complex temporal tasks and ensure real-time safety
during the learning processes.

II. PRELIMINARIES

A. Linear Temporal Logic (LTL)

The ingredients of a LTL formula are a set of atomic
propositions AP and several Boolean and temporal oper-
ators. Atomic propositions are Boolean variables that can be
either true or false. A LTL formula is specified according to
the syntax [4]: ϕ , > | p | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 Uϕ2,
where > , True, p ∈ AP , © (next), U (until) and
⊥ , ¬>. We omit the derivations of other operators like �
(always), 3 (eventually),⇒ (implication). Given any word w
over AP , it can be verified whether w satisfies the formula,
denoted by w |= ϕ. The full semantics and syntax of LTL
are omitted here, see e.g., [4].

B. Deterministic Rabin Automaton (DRA)

The set of words that satisfy a LTL formula ϕ over AP
can be captured through a Deterministic Rabin Automa-
ton (DRA) Aϕ [4], defined as Aϕ , (Q, 2AP , δ, q0, AccA),
where Q is a set of states; 2AP is the alphabet; δ ⊆



Q×2AP×Q is a transition relation; q0 ∈ Q is the initial state;
and AccA ⊆ 2Q×2Q is a set of accepting pairs, i.e., AccA =
{(H1

A, I
1
A), (H2

A, I
2
A), · · · , (HN

A , I
N
A )} where Hi

A, I
i
A ⊆ Q,

∀i = 1, 2, · · · , N . An infinite run q0q1q2 · · · of A is accept-
ing if there exists at least one pair (Hi

A, I
i
A) ∈ AccA such

that ∃n ≥ 0, it holds ∀m ≥ n, qm /∈ Hi
A and

∞
∃k ≥ 0, qk ∈

IiA, where
∞
∃ stands for “existing infinitely many”. Namely,

this run should intersect with Hi
A finitely many times while

with IiA infinitely many times. There are translation tools [14]
to obtain Aϕ given ϕ with complexity 22O(|ϕ| log |ϕ|)

.

III. PROBLEM FORMULATION

A. Probabilistically-labeled MDP

We extended the probabilistically-labeled MDP proposed
in our earlier work [6] to include uncertainty in robot motion
and workspace properties:

M , (X, U, D, pD, (x0, l0), AP, L, pL, cD), (1)

where X is the finite state space; U is the finite control
action space and U(x) denotes the set of actions allowed at
state x ∈ X; D , {(x, u) |x ∈ X, u ∈ U(x)} is the set
of possible state-action pairs; pD : X × U × X → [0, 1]
is the transition probability and

∑
x̌∈X pD(x, u, x̌) = 1,

∀(x, u) ∈ D; cD : D → R>0 is the cost function; AP is
a set of atomic propositions as the properties of interest;
L : X → 22AP

returns the properties held at each state;
and pL : X×2AP → [0, 1] is the associated probability. Note
that

∑
l∈L(x) pL(x, l) = 1, ∀x ∈ X;and x0 ∈ X , l0 ∈ L(x0)

are the initial states and labels.

B. Uncertainty and Bayesian Learning

However, due to limited initial knowledge, the above
MDP is uncertain. Particularly, for each pair (x, u) ∈ D,
the distribution over its post states follows the Dirichlet
distribution [15] with parameter αu

x:

pD ∼ Dirichlet(bux, α
u
x), (2)

where bux , {b0, b1, · · · , bKu
x
}, where bk is a vector of length

Ku
x with one at index k and the remaining elements are zero,
∀k = 0, · · · ,Ku

x ; αu
x , {αu

x(x̌),∀x̌ ∈ Ku
x} is a set of non-

negative scaling coefficients with αu
x(x̌) ≥ 0; also Ku

x ,
|x̌ ∈ X | pD(x, u, x̌) > 0|, and Ku

x , |Ku
x |.

Similarly, for each x ∈ X , the distribution over its labels
also follows the Dirichlet distribution with parameter αL

x :

pL ∼ Dirichlet(bLx , α
L
x ), (3)

where bLx , {b0, b1, · · · , bKL
x
} is defined similarly to bux;

αL
x , {αL

x (l),∀l ∈ L(x)} is a set of non-negative scaling
coefficients αL

x (l) ≥ 0; and KL
x , |l ∈ L(x) | pL(x, l) > 0|.

Thus, we denote the complete set of parameters that govern
the transition and labeling probability of M by:

α , {αu
x, α

L
x , ∀(x, u) ∈ D}, (4)

which is called the belief overM. In the sequel, we useMα

to denote the general class of MDPM under belief α, while
M alone stands for one sample from Mα.

Furthermore, the robot is equipped with sensors and thus
can observe the actual transitions and labels during motion.
Then, the distributions pD and pL can be updated in a
Bayesian way by following [16].

C. Task Specification

Moreover, there is a LTL task formula ϕ specified over the
same set of atomic propositions AP as the desired behavior
of M, following the syntax in Sec. II-A.

At stage T ≥ 0, the robot’s past path is given by XT =
x0x1 · · ·xT ∈ X(T+1), the past sequence of observed labels
is given by LT = l0l1 · · · lT ∈ (2AP )(T+1) and the past
sequence of control actions is UT = u0u1 · · ·uT ∈ U (T+1).
It should hold that pD(xt, ut, xt+1) > 0 and pL(xt, lt) >
0, ∀t ≥ 0. The complete past is then given by RT =
x0l0u0 · · ·xT lTuT . Denote by XT , LT and RT the set of
all possible past sequences of states, labels, and runs up to
stage T . We set T = ∞ for infinite sequences. Then, the
mean total cost [1] of an infinite robot run R∞ of M is
defined as Cost(R∞) , limt→∞

1
t

∑∞
t=0 cD(xt, ut), where

cD(·) is the cost of applying ut and xt from (1). A finite-
memory policy is defined as µ = µ0µ1 · · · . The control
policy at stage t ≥ 0 is given by µt : Rt×U → [0, 1], ∀t ≥ 0.
Denote by µ the set of all such finite-memory policies.

Given one sample MDP M and a policy µ, the set of all
infinite runs is denoted by Rµ

M ⊂ R∞. Then the probability
of M satisfying ϕ under µ is defined by:

SatµM , Pr
µ
M(ϕ) = PrµM

(
Rµ
M |L∞ |= ϕ

)
, (5)

where the satisfaction relation “|=” is introduced in Sec. II-
A. Namely, the satisfiability equals to the probability of
all infinite runs whose associated labels satisfy the task.
More details on the probability measure can be found in [4].
Moreover, the cost of policy µ over M is denoted by

CostµM , ER∞∈Rµ
M
{Cost(R∞)}, (6)

as the expected mean cost of all possible infinite runs.

D. Safe-return Constraints

Furthermore, to ensure safety while the robot explores the
workspace, we introduce the following definition of safety
based on [17]. Particularly, consider two finite-memory poli-
cies µo,µr ∈ µ, where µo is called the outbound policy
that drives the robot to satisfy task ϕ and µr is the return
policy that ensures the safety constraint below.

Definition 1: Given system M, an outbound policy µo is
called χr-safe at stage t ≥ 0 if there exists a return policy µr
such that the probability of system M returning to a set of
home states Xr ∈ X is lower-bounded, namely,

Safeµo,µr
M , Prµo,µr

M,(xt,lt)
(3Xr) ≥ χr, (7)

where χr > 0 is the assigned safety bound, (xt, lt) are the
robot state and label at stage t. �

Note that traditionally safety is defined as the avoidance
of a set of unsafe states, see [13], which mostly are policy-
independent and given before-hand. Despite its intuitiveness,
it has serious drawbacks in scenarios where unsafe states



Fig. 1: Illustration of the proposed framework.

can only be determined during run time, thus unknown
beforehand. In contrast, the safety measure in (7) is policy-
dependent and can cover the traditional notion.

E. Problem Statement

Problem 1: Given the class of uncertain MDPs Mα

from (1)-(3), and the task specification ϕ, our goal is to
synthesize the outbound and return polices µo,µr at each
stage t ≥ 0 that solve the constrained optimization below:

min
µo,µr∈µ

Eα{Costµo
M}

s.t. Eα{Satµo
M} ≥ χo and Eα{Safeµo,µr

M } ≥ χr,
(8)

where α is the belief from (4), and χo, χr > 0 are given
lower bounds for satisfiability and safety in (5) and (7). The
expectation over alpha before the Satµo

M and Safeµo,µr
M is due

to the uncertainty in the system model Mα. �
Main difficulty of the above problem comes from the un-

certainties in M and the consideration of complex temporal
tasks along with policy-dependent safety constraints.

It is worth noting that the safe-return constraint in (7) can
not be treated as an additional task of the original task ϕ,
as they are surely conflicting objectives. Thus, the methods
proposed in [5], [6] that synthesize only one policy µ to
satisfy simultaneously both tasks, can not be applied here.
In other words, it is essential to synthesize two polices: µo
for the actual task and µr for the safe-return requirement.

IV. SAFETY AND TASK POLICY SYNTHESIS

In this section, we describe the key steps to synthesize the
safety and task policies. As shown in Fig. 1, both policies
are used in the online execution described in the sequel.

A. Product Automaton and AMECs

To begin with, we construct the DRA Aϕ associated with
the LTL task formula ϕ via the translation tools [14]. Let
it be Aϕ = (Q, 2AP , δ, q0, AccA), where the notations are
defined in Sec. II-B. Then we construct a product automaton
between the model M and the DRA Aϕ.

Definition 2: The product P ,M×Aϕ is a 7-tuple:

P = (S, U, E, pE , cE , s0, AccP), (9)

where: the state S ⊆ X × 2AP × Q satisfies 〈x, l, q〉 ∈ S,
∀x ∈ X , ∀l ∈ L(x) and ∀q ∈ Q; the action set U is the
same as in (1) and U(s) = U(x), ∀s = 〈x, l, q〉 ∈ S; E =

{(s, u) | s ∈ S, u ∈ U(s)}; the transition probability pE : S×
U × S → [0, 1] is defined by

pE
(
〈x, l, q〉, u, 〈x̌, ľ, q̌〉

)
= pD(x, u, x̌) · pL(x̌, ľ) (10)

where (i) 〈x, l, q〉, 〈x̌, ľ, q̌〉 ∈ S; (ii) (x, u) ∈ D; and
(iii) q̌ = δ(q, l); the cost function cE : E → R>0 is given
by cE

(
〈x, l, q〉, u

)
= cD(x, u), ∀

(
〈x, l, q〉, u

)
∈ E. Namely,

the label l should fulfill the transition condition from q to q̌
in Aϕ; the single initial state is s0 = 〈x0, l0, q0〉 ∈ S;
the accepting pairs are defined as AccP = {(Hi

P , I
i
P), i =

1, · · · , N}, where Hi
P = {〈x, l, q〉 ∈ S | q ∈ Hi

A} and IiP =
{〈x, l, q〉 ∈ S | q ∈ IiA}, ∀i = 1, · · · , N . �

The product P computes the intersection between the
traces of M and the words of Aϕ, to find the admissible
robot behaviors that satisfy the task ϕ. It combines the
uncertainty in robot motion and the workspace model by
including both x and l in the states. For simpler notation,
let Ku

s = {š ∈ S | pE(s, u, š) > 0} and Ku
s = |Ku

s |. Note
that since M is uncertain under belief α, we denote by Pα

the general class of product automata associated with each
sample MDP withinMα. Lastly, the set of home states in P
is denoted by Sr , {s ∈ S | s = 〈x, l, q〉, x ∈ Xr}.

The accepting condition of P is the same as in Sec. II-B.
To transform this condition into equivalent graph properties,
we first compute the accepting maximum end components
(AMECs) of P associated with its accepting pairs AccP .
Denote by Ξacc = {(S′1, U ′1), (S′2, U

′
2), · · · (S′C , U ′C)} the

set of AMECs associated with AccP , where S′c ⊂ S and U ′c :
S′c → 2U , ∀c = 1, 2, · · · , C. Note that S′c1

∩ S′c2
= ∅,

∀c1, c2 = 1, · · · , C. We omit the definition and derivation
of Ξacc here, and refer the readers to Definition 10.124 of [4].

B. Safe Exploration and Policy Synthesis

In this part, we explain how to introduce exploration
bonus to encourage exploration in addition to the tasks.
More importantly, we formally prove how the safety and
satisfiability constraints under uncertain MDPs can be re-
formulated as the policy synthesis under standard MDPs.

1) Exploration Bonus: The notion of exploration bonus
has been proposed to encourage exploration during the policy
learning. Intuitively, this approach would drive the system to
try state-action pairs that have not been observed enough
times by assuming a high bonus there.

Definition 3: Given the pair (s, u) ∈ E in P , where s =
〈x, l, q〉 and the associated Dirichlet parameters αu

x, αL
x , the

exploration bonus of choosing action u at state s, denoted
by ξus ∈ R+, is defined by:

ξus =

0, if αu
x > αU and αL

x > αL;
gU

1 + αu
x

+
gL

1 + αL
x

, otherwise;
(11)

where αu
x ,

∑
x̌∈Ku

x
αu
x(x̌), αL

x ,
∑

x̌∈Ku
x

∑
l∈L(x̌) α

L
x̌ (l);

and gU , gL, αU , αL > 0 are pre-defined constants. �
In other words, the more a state x has been visited and an

action u is chosen at state x, the less the exploration bonus
ξus is. The MDP M is called fully explored if the first case
of (11) holds for all (s, u) ∈ E.



2) Constraints Reformulation: As proven in Theorem 1
of [17], it is in general NP-hard to decide whether there
exists a χr-safe policies for a given MDP P under belief α,
except only very limited cases. Thus, we rely on the follow-
ing two theorems to reformulate the satisfiability and safety
constraints in Problem 1.

Definition 4: Consider two variants of MDP P: the first
MDP P1 , (1 − bs,SΞ

) · P where bs,SΞ
, 1{s∈SΞ} is an

indicator function. The second MDP P2 , (1 − bs,Sr) · P ,
where bs,sr , 1{s∈Sr} is another indicator function. More-
over, their expected transition measure under α are denoted
by P1 and P2, respectively. �

Theorem 1: The probability that ϕ is satisfied under be-
lief α and policy πo at stage 0 can be lower-bounded by:

Eα{Satπo
P } ≥ Es0,πo

P1

∞∑
t=0

(
bst,SΞ

+ σα
st,ut

)
, (12)

where bst,SΞ
, P1 are defined in Def. 4 and σα

s,u ≤ 0,
∀(s, u) ∈ E is the cost correction term satisfying:

σα
s,u ,

∑
š∈Ku

s

Eα

{
min(0, pšs,u − Eα{pšs,u})

}
, (13)

where pšs,u , pE(s, u, š) from (10).
Proof: It has been shown in [3], [4] that the probability

that ϕ is satisfied under belief α equals to the probability that
the system P enters the union of AMECs, i.e., SΞ , ∪Cc=1S

′
c

with (S′c, U
′
c) ∈ Ξacc. Thus, the left-hand side of (12) can

be computed by:

Eα{Satπo
P } = EαEs0,πo

P {BSΞ
} = EαEs0,πo

P1
{
∞∑
t=0

bst,SΞ
},

where BSΞ = 1{∃t<∞,st∈SΞ}, bst,SΞ and P1 are defined in
Def. 4. Furthermore, by Lemma 3 of [17], it holds that

EαEs0,πo

P1
{
∞∑
t=0

bst,SΞ
} = Es0,πo

P1
{
∞∑
t=0

(bst,SΞ
+ σα,πo

s,u )},

where the policy-dependent correction term is given by
σα,πo
s,u ,

∑
š∈Ku

s
Eα

{
(ps,u,š − Eα{ps,u,š})Es0,πo

P1
{BSΞ

}
}
.

Since Es0,πo

P1
{BSΞ} ∈ [0, 1] holds for all πo, we can easily

show that σα,πo
s,u ≥ σα

s,u holds with σα
s,u defined in (13).

Thus, the lower bound in (12) is verified.
Theorem 2: The safety constraint under belief α for any

policy πo and πr at stage 0 can be lower-bounded by:

Eα{Safeπo,πr

P } ≥ Es0,πo

P

{
v?s1

+ σα
s0,u0

}
, (14)

where the value function v?s ∈ [0, 1] is given by:

v?s = Es,πr

P2

{ ∞∑
t=0

(
bst,Sr + (1− bst,Sr)σ

α
st,ut

)}
, (15)

where bs,Sr ,P2 are defined in Def. 4, and the correction
term σα

s,u is the defined the same as in (13).
Proof: By the definition of safety in (7), the safety

constraint in (8) under belief α can be computed by:

Eα{Safeπo,πr

P } = Eα Es0,πo

P Es1,πr

P {BSr}
≥ Es0,πo

P

{
EαEs1,πr

P {BSr}+ σα
s0,u0

}
,

(16)

where BSr , 1{∃t<∞,st∈Sr}, P and σα
s,u are defined as

before. The lower bound above is derived similarly as in
Theorem 1. Then, the inner term of (16) can be relaxed
further by applying again the same analysis (but for set Sr):

EαEs,πr

P {BSr} = EαEs,πr

P2
{
∞∑
t=0

bst,Sr}

≥ Es,πr

P2

{ ∞∑
t=0

(
bst,Sr + (1− bst,Sr)σ

α
st,ut

)}
= v?s ,

(17)

where bst,Sr , P2, P2 are defined in Def. 4. Thus, the lower-
bound of the safety constraint in (14) is verified.

Note that Theorems 1 and 2 allow us to evaluate the
satisfiability and safety constraints in a tractable way, i.e.,
by replacing the expectations over all belief of MDPs with
a single MDP that has the expected transition measure and
appropriate costs. These lower bounds would yield stricter
but tractable constraints. We now describe in the sequel how
to synthesize the control policies using these bounds.

Lastly, since the two Dirichlet distributions by pD and
pL are independent, the expectation of pE can be computed
analytically [15]. Moreover, since the marginal distribution
of a Dirichlet distribution is a beta distribution [15], the
correction term σα

s,u in (13) can be computed efficiently by
Monte-Carlo estimation over each dimension.

3) Policy Prefix Synthesis: The goal of the policy prefix
is to drive the system from initial state s0 to the set of
AMECs SΞ with minimum cost, while satisfying the safety
and satisfiability constraints. We formulate the following
constrained optimization problem:

min
πo,πr

Eπo

P1

{ ∞∑
t=0

(
cE(st, ut)− ξut

st

)}
(18a)

s.t. Es0,πo

P1

{ ∞∑
t=0

(bst,SΞ
+ σα

st,ut
)
}
≥ χo; (18b)

Es0,πo

P1

{
v?s1

+ σα
s0,u0

}
≥ χr; (18c)

where P1, σα
s,u are defined in (12)-(14). The exploration

bonus ξut
st from (11) is incorporated in the objective func-

tion (18a) to encourage exploration while minimizing the
expected total cost to reach the set of AMECs SΞ. The con-
straint (18b) ensures that the satisfiability is lower bounded
by χo; and constraint (18c) ensures that the safety is lower-
bounded by χr with value function v?s defined in (15).
The above optimization can be solved in three steps: First,
construct P2 and computes the associated value function v?s .
Given v?s , problem (18) can be formulated as linear programs
(LP) as proposed in our earlier work [6]. The LP can be
solved via any LP solver, based on which the prefix of the
outgoing policy can be derived.

Lemma 3: The optimal policy π?
pre,o derived above en-

sures both the reachability constraint Pr
π?
pre,o

M,s0
(3SΞ) ≥ χo

and the safety constraint Eα{Safeµo,µr
M } ≥ χr hold.

Proof: The proof is omitted and follows directly from
Theorems 1 and 2.



4) Policy Suffix Synthesis: Once the system reaches the
union of AMECs SΞ under the prefix policy π?

pre,o, the
system remains inside SΞ by following the action set given
by the AMECs [3]. Thus the goal of the policy suffix is to
minimize the mean total cost defined in (6) while ensuring
the safety constraint. For each AMEC (S′c, U

′
c) ∈ Ξacc, we

denote by I ′c , S′c ∩ IiP the goal states that the system
should intersect infinitely often, where (Hi

P , I
i
P) ∈ AccP

is the associated accepting pair. First, we construct a variant
MDP of P as follows.

Definition 5: The MDP P3 is a sub-MDP of P that only
contains the states within SΞ and only actions within U ′c(s)
are allowed, ∀(S′c, U ′c) ∈ Ξacc. �

Moreover, for each AMEC (S′c, U
′
c) ∈ Ξacc, we first

split I ′c into two virtual copies: Iin which only has incoming
transitions into I ′c and Iout that has only outgoing transitions
from I ′c. Once the system enters Iin it remains inside with
zero cost. Denote by S′d , (S′c\I ′c)∪ Iin ∪ Iout the new set
of states of P3, and Sd , S′d\Iin. Then, we consider the
following optimization problem:

min
πo,πr

Eπo

P3

{
lim
t→∞

1

t

∞∑
t=0

(
cE(st, ut)− ξut

st

)}
(19a)

s.t. Es0,πo

P3

{
v?s1

+ σα
s0,u0

}
≥ χr; (19b)

where P3 is the expected measure of the sub-MDP P3

defined above; ξus , σα
s,u and v?s are the computed in the same

way as in (18). The exploration bonus ξus is incorporated
in the objective function (19a) to encourage exploration
while minimizing the mean total cost within the AMECs
SΞ. The constraint (19b) ensures the safety. Note that the
satisfiability constraint is not incorporated as it is ensured
by the structure of the AMEC. Similar to the prefix, the
above optimization can be solved in three steps: construct
the MDP P2, formulate and solve the LP, and synthesize the
suffix of the outgoing policy.

Lemma 4: The optimal policy suffix π?
suf,o derived above

minimizes the mean total cost defined in (6) once the
system has been fully explored, i.e., ξus = 0, ∀(s, u) ∈ E.
Moreover, the system remains inside SΞ and the safety
constraint Eα{Safeµo,µr

M } ≥ χr holds.
Proof: First, the objective function in (19) is equivalent

to the mean total cost defined in (6) if the exploration bonus
is set to zero. Second, due to the definition of AMECs,
the system remains inside SΞ when the policy only chooses
actions that are allowed by U ′c. Lastly, the safety constraint
is ensured by Theorem 2.

C. Online Policy Execution and Adaptation

To solve Problem 1, both the outgoing and return poli-
cies πo , {π?

pre,o,π
?
suf,o} and πr should be mapped back

to the policy µo of M. First, the control policy µ0 is set
to π?

pre,o(s0), Afterwards, the robot observes the states and
updates its belief α, then reaches s1 ∈ S at stage one. Then,
π?
pre,o is re-synthesized but using s1 as the current state and

the updated P . The control policy µ1 is set to π?
pre,o(s1).

This procedure repeats itself until sT ∈ SΞ holds at stage T

and then we switch to the policy suffix π?
suf,o. Just like

before, this procedure is repeated until the system is stopped.
Note that whenever the agent is requested to return to the
home states, the return policy πr is activated. It is mapped
to the policy µr in a way similar to π?

pre,o.

V. CASE STUDY

In this section, we present numerical studies in simulation.
All algorithms are implemented in Python 3.9 and tested on
a laptop (3.06GHz Duo CPU and 8GB of RAM).

A. Workspace Description

A search-and-rescue ground vehicle (of size 1m× 1m) is
deployed to explore an large area of forest (of size 20m ×
20m) after a wildfire breakout. Meanwhile, it should search
for injured humans and bring them to the closest base station,
while maintaining a certain amount of water in the water
tank by visiting the water reservoirs. Note that the robot can
not visit a water reservoir with a human victim onboard.
During the whole mission, the robot should avoid: collision
into obstacles, areas of high temperature, deep valleys that
it can not escape, and high hills that it can not descend. In
particular, the properties of interest are given by: humans (h),
base stations (b), water resources (w) and obstacle/fire areas
(o). The task described above can be specified in LTL as ϕ =
(�¬o) ∧ (�(h → (¬w)Ub)) ∧ (�3b) ∧ (�3w) ∧ (�3h).
The satisfiability bound χo is set to 0.9. Note that actions
are omitted in the robot model, and refer the readers to [18].

Initial model of the forest environment (including features
such as the heat map, height map, forest density and human
distribution) is obtained from a helicopter’s aerial image that
has a resolution of 4m, which is used to construct the initial
model of M. As shown in Fig. 2, the initial model provides
very coarse information about the actual workspace, meaning
that the robot would need to explore the workspace actively.
Moreover, the robot is equipped with sensors to measure the
features mentioned above within a 6m × 6m area around
it, however with a increasing uncertainty by distance (10%
every 2m). The partitioned cells are of size 2m × 2m and
the robot can only move to the adjacent cells via actions:
forward, left, right, backward (with cost 3, 5, 5, 6). It can
ascend a hill of maximum angle 15◦ and descend a slope of
maximum 20◦. The home state is set to the robot’s initial
state and the safety bound χr is set to 0.8.

B. Simulation Results

The underlying MDP M has 400 states and 3616 edges
and the DRA Aϕ contains 21 states, 111 edges and one
accepting pair. It took 5.7s to construct the resulting prod-
uct P which has 8400 states, 75936 edges and one AMECs.
We follow the policy synthesis and execution described in
Sec. IV. When the system starts, the robot’s state is outside
the AMEC. It took 0.01s to calculate the value function
v?s via linear program [1] for the return policy. Then we
formulate and solve (18) given v?s for the prefix synthesis
in 0.02s, which contains 2840 variables and 712 constraints.
An optimal action is chosen based on plan prefix. Then the
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Fig. 2: Sample trajectories under the proposed policy (left) and
under the unsafe policy (right). Cells are marked by the features
they satisfy, while valleys, hills are marked in brown and black.

robot takes new measurements and updates M and P in
a Bayesian way, which takes in average 1.5s. This process
repeats itself until the robot reaches the set of AMECs. Then
the optimization (19) for the plan suffix is formulated (with
598 variables and 1484 constraints) and solved within 0.25s.
One sample trajectory is shown in Fig. 2, which satisfies
the assigned search and rescue task. The trajectory prefix is
marked in blue while the suffix is marked in magenta. It
can also be seen that after the exploration and learning, the
final workspace model is the same as the actual model. More
importantly, due to the enforced safety constraint, the robot
avoids during exploration the area of deep valley (in brown)
and high hills (in black). In comparison, we also simulate
the robot trajectory under the same synthesis algorithm but
removing the safety constraints. One sample trajectory is
shown in Fig. 2 where the robot remains trapped in the valley
after time 9. Thus it fails to satisfy the formula and leaves
most of the workspace unexplored.

C. Performance Evaluation

In order to further demonstrate the computational com-
plexity of the proposed approach, we run 100 Monte Carlo
simulations of the above robotic system under different sizes
of the underlying map, with similar setup of features. In
Table I, we record the average synthesis time, the task satisfi-
ability and the safety measure, which are compared with the
approach that does not consider safety during exploration.
First, it can be noticed that the proposed algorithm scales
well with workspace size (with millions of edges in the
last case). Constructing the product P takes considerable
amount of time while solving the LPs associated with (18)
and (19) are relatively fast. Second, it can be seen that both
the task satisfiability and safety measure are greatly improved
under the proposed approach. This is because in partially-
known workspaces violating the safety constraint would also
indicate the violation of assigned temporal task.

VI. SUMMARY AND FUTURE WORK

This work proposes a planning framework for robots oper-
ating in uncertain environments. The robotic task is specified
as LTL formulas. During the learning and exploration, we
enforce a safety constraint as the probability of returning to

Approach P Size Time[s] Safety Satisfy

Proposed
(8.4e3, 7.6e4) 5.7 0.03 0.87 0.92

(2.2e4, 2.1e5) 34 0.42 0.91 0.95

(1.4e5, 1.4e6) 210 7.8 0.93 0.97

Unsafe
(8.4e3, 7.6e4) 5.7 0.01 0.1 0.3

(2.2e4, 2.1e5) 30 0.31 0.2 0.25

TABLE I: Comparison of complexity and performance between the
proposed and the unsafe approach. The “Time” column is split into
the time to construct P and to synthesize πo. Note aeb , a×10b.

a set of home states during run time. The proposed approach
fulfill both the temporal task and safety constraints. Future
work includes the consideration of multi-robot systems.
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