Hierarchical Motion Planning under Probabilistic
Temporal Tasks and Safe-Return Constraints

Meng Guo'!, Tianjun Liao?, Junjie Wang' and Zhongkui Li'

Abstract—Safety is crucial for robotic missions within an
uncertain environment. Common safety requirements such as
collision avoidance are only state-dependent, which can be
restrictive for complex missions. In this work, we address a more
general formulation as safe-return constraints, which require the
existence of a return-policy to drive the system back to a set of
safe states with high probability. The robot motion is modeled
as a Markov Decision Process (MDP) with probabilistic labels,
which can be highly non-ergodic. The robotic task is specified as
Linear Temporal Logic (LTL) formulas over these labels, such
as surveillance and transportation. We first provide theoretical
guarantees on the re-formulation of such safe-return constraints,
and a baseline solution based on computing two complete
product automata. Furthermore, to tackle the computational
complexity, we propose a hierarchical planning algorithm that
combines the feature-based symbolic and temporal abstraction
with constrained optimization. It synthesizes simultaneously two
dependent motion policies: the outbound policy minimizes the
overall cost of satisfying the task with a high probability, while
the return policy ensures the safe-return constraints. The problem
formulation is versatile regarding the robot model, task specifica-
tions and safety constraints. The proposed hierarchical algorithm
is more efficient and can solve much larger problems than the
baseline solution, with only a slight loss of optimality. Numerical
validations include simulations and hardware experiments of a
search-and-rescue mission and a planetary exploration mission
over various system sizes.

Index Terms—Task and Motion Planning, Linear Temporal
Logic, Formal Methods, Safety, MDPs

I. INTRODUCTION

Autonomous mobile robots are often deployed in uncer-
tain and unsafe environments that are otherwise risky for
humans. For instance, an autonomous ground vehicle (AGV)
is deployed in an office for a search-and-rescue mission after
disaster: to search for injured victims and bring them to
medical stations, to shut down certain machines in differ-
ent rooms, and to report fire hazards or gas leakage; also
an autonomous rover is deployed in a rough terrain for a
planetary exploration mission: to gather specimens from areas
of interest, to assemble them into containers and store in
the storage area; and to charge often. Different from simple
navigation tasks, such tasks require not only planning on the
task-level regarding which areas to visit and actions to perform
there, but also planning on the motion-level regarding how

The authors are with the State Key Laboratory for Turbulence and Com-
plex Systems, Department of Mechanics and Engineering Science, College
of Engineering, Peking University, Beijing, China; 2the Academy of Military
Sciences, Beijing, China. This work was supported by the National Natural
Science Foundation of China under grants 62203017, T2121002, U2241214;
by the Ministry of Education under grant 2021ZYA05004; and by Beijing
Natural Science Foundation under grant JQ20025. Corresponding author:
zhongkli@pku.edu.cn.

to reach a desired area. In some cases, these tasks are long-
term meaning that they should be repeated infinitely often.
Furthermore, even though the approximate structure of the
environment is known, its exact features within the structure
can only be estimated. This has two direct consequences: first,
the robot movement within the environment become uncertain,
e.g., drifting due to different terrains, and blockage due to
debris; second, the properties relevant to the task become
uncertain, e.g., which areas contains human victims, and which
charging station is functional. In other words, uncertainty in
the environment model can cause non-determinism both in
the task planning and motion execution. A formal consider-
ation of this uncertainty when planning for general complex
tasks remains challenging. Some recent work addresses this
issue with model-based optimization [1f, [2], [3] or data-
driven online learning [4]], [5]. However, the computational
complexity remains to be the bottleneck and most validations
are performed on systems with small number of states.

On the other hand, safety is an indispensable aspect to
consider when deploying robotic systems, especially so in an
uncertain and potentially unsafe environment. Depending on
the application, robotic safety can be defined in various ways.
Safety in motion planning [6] is commonly defined as the
avoidance of a subset of the state space, namely the unsafe
regions. This has been made more general with temporal task
specifications, e.g., always stop in front of human, infinitely
often charge itself, and always travel at the right lane, see [1]],
(4, 1710, (8, [9]. These safety rules are useful and often
directly imposed as an additional requirement of the overall
task. However, there are certain types of safety requirements
that can not be expressed in this way. Safe-return constraints
require that the robot should be able to return to a set of safety
states whenever requested during the mission. Such constraints
are particularly important for non-ergodic systems where not
all states are reachable for any other states. Considering
the same example of search-and-rescue missions, the robot
should avoid one-way doors, stairs and debris where it may
get trapped in some rooms; during the planetary exploration
mission, the robot should avoid steep cliffs and valleys where
it can easily descend but hard to ascend back. In other words,
such safe-return constraints are less state-dependent but more
policy-dependent, thus more general in terms of expressiveness
and practical relevance. More importantly, these constraints
are often conflicting with the long-term task goals, e.g., the
task specifies to search and rescue victims at all time, while
the safe-return constraints require to return and stay at the
base. Consequently, they can not be added directly in the
task specification, instead a separate return policy should be



synthesized to fulfill the constraints and further restrict the
task execution. To the best of our knowledge, such safe-return
constraints have been mainly addressed in the reinforcement
learning community [[10]], [L1] to ensure safety during the
learning process. They have not been studied along with the
complex temporal tasks as in this work.

In this work, we address the motion planning problem
over MDPs with probabilistic labels, where the tasks are
given as Linear Temporal Logic (LTL) formulas. Furthermore,
we take into account a general safety requirement as safe-
return constraints, which demands the existence of a return-
policy to drive the system back to home states with a high
probability. It is first shown that the safe-return constraints
can be re-formulated as accumulated rewards given the value
function in the associated safety automaton. Then, the baseline
solution is proposed by solving two coupled linear programs
in the respective product automaton. However, this solution
quickly becomes intractable when the system size increases.
To overcome this bottleneck, a hierarchical and approximate
planning algorithm based on the combination of symbolic and
temporal abstractions with constrained optimization is pro-
posed. Two abstracted semi-MDPs and the associated motion
policies as temporal options are constructed simultaneously
for the regions whose features are relevant to the task and
safety specifications. Afterwards, two high-level task policies
are synthesized in sequence within the respective product au-
tomata between the semi-MDPs and task automata. The return
policy ensures that the safe-return constraints are fulfilled,
and the outbound policy minimizes the overall cost to satisfy
the task. It is shown that this hierarchical solution is more
efficient and can solve systems of much larger sizes, compared
with the alternative and baseline solutions, with only a slight
reduction of optimality. The results are validated rigorously
via simulations and hardware experiments of various robotic
missions with different system sizes.

The main contribution lies in three aspects: (i) the formu-
lation of a new planning problem for MDPs with labelling
features, where both the tasks and safe-return constraints are
given as complex LTL formulas; (ii) the theoretical analyses
that ensure the correctness of the problem re-formulation; (iii)
the hierarchical planning algorithm that synthesizes simultane-
ously and efficiently the outbound policy for task satisfaction
and the return policy for safety constraints.

The rest of the paper is organized as follows: Sec. |L1I) intro-
duces some preliminaries of LTL. The problem formulation is
given in Sec. Sec. [V] provides the theoretical analyses to
re-formulate the problem and therefore the baseline solution.
The hierarchical planning framework is presented in Sec.
Simulation and experiment results are shown in Sec.
Finally, Sec. [VIII] concludes with future work.

II. RELATED WORK
A. MDPs with Temporal Tasks

MDPs provide a powerful model for robots acting in an
uncertain environment. Uncertainty arises in various aspects
of the system such as the properties of the workspace and the
outcome of an action [12]]. A common objective is to reach a

set of terminal states while maximizing expected cumulative
reward. When the underlying MDP is fully-known, a variety
of algorithms can be applied to find the optimal acting policy
for the robot, such as dynamic programming [13], [14]], value
iteration and policy iteration [12]. The resulting policy maps
the current state to the set of optimal actions, deterministically
or stochastically. Otherwise, if the underlying MDP is only
partially-known, online learning algorithms [[15] can be used.
Furthermore, instead of the simple reachability task, there
have been many efforts to address the same problem, rather
to satisfy high-level temporal tasks specified in various for-
mal languages, such as Probabilistic Computation Tree Logic
(PCTL) in [16] and Linear Temporal Logics (LTL) in [1I],
[2], [L7], [18]. Such languages are intuitive and expressive
when specifying complex control tasks, such as surveillance,
transportation and emergency response, see [8]], [19], [20], [9].
Different cost optimizations are considered along with the task
satisfiability, such as maximum reachability for constrained
MDPs in [17], [18], the minimal bottleneck cost in [21],
and pareto curves under multiple temporal objectives in [22].
Verification toolboxes are provided in [23], [24] for certain
task formats. Moreover, robust control policies for a temporal
task are studied when the underlying MDP is uncertain, for
instance, [3] maximize the accumulated time-varying rewards,
[25] maximizes the satisfiability under uncertain transition
measures, and our previous work [[1] allows for infeasible tasks
to be only partially satisfied by the MDP. Lastly, some recent
work builds upon methods from reinforcement learning to
combine data-driven approach with the aforementioned model-
based planning methods. For example, the work [4] constructs
the product automaton on-the-fly while interacting with the
environment. The work [3]] instead proposes a reward shaping
method to maximize the task satisfiability without directly
learning the underlying transition model, while [26] relies
on the actor-critic methods to approximate over large set of
state-action pairs. Due to the exponential complexity and data
inefficiency, most of the work above is validated over case
studies of limited sizes. In this work, we assume the model as
a known MDP with labelling features, to focus instead on the
consideration of safe-return constraints and more importantly,
feature-based symbolic and temporal abstraction methods to
reduce the computational complexity.

B. Safety in Planning

Safety in motion planning [6] is commonly defined as
the avoidance of a subset of the state space, namely the
unsafe regions. In the literature for planning over temporal
tasks, it can be more general and specified directly as an
additional requirement in the task specification, e.g., “always
avoid obstacles”, “infinitely often visit charging station” and
“always stop in front of human”, see [L], [4]], [7], [8], [9l.
Consequently, they are treated similarly as other performance-
related tasks. The work in [27], [28] specifies a variety of
safety rules as sub-task formulas and synthesizes a minimum-
violating policy for these rules. Our earlier work [8] proposes
to separate the performance and safety requirements as soft
and hard specification, respectively. The hard specifications



have to be satisfied at all time and soft specifications can be
improved gradually during exploration. In contrast, the safety
constraints considered in this work as safe-return constraints,
which require that the robot should be able to return to a set
of safety states anytime when requested during the mission.
They are particularly important for non-ergodic systems, and
significantly different from the aforementioned definitions: (i)
whether a region is unsafe depends on the existence of a return
policy, rather on the region itself; (ii) two dependent polices,
outbound policy and return policy, should be constructed,
whereas traditionally only one policy is needed for both the
task and safety specifications [11], [7]], [8], [28]; (iii) the safe-
return constraints are often conflicting with the task goal, thus
can not be added directly to the task specification; (iv) tradi-
tional safety definitions mentioned above should be included in
task specification, rather than the safe-return constraints. Such
safe-return constraints have been shown to be useful during
reinforcement learning, e.g., [10], [[L1]. However, they have
not been studied in the context of complex temporal tasks.

C. Hierarchical Temporal and Symbolic Abstraction

Uniform discretization of a continuous high-dimensional
system often leads to complexity explosion, thus is only
applicable to toy cases. Temporal and symbolic abstraction
techniques are proposed to address this complexity issue. The
notion of options as closed-loop policies for taking actions
over a period of time is pioneered in [29], which allows for
high-level planning over the semi-MDPs for extended planning
horizons. Feature-based or symbolic abstraction [30] is another
effective way to tackle the planning problem sequentially at
different levels of granularity. For instance, it is a common
practice to plan first over regions of interest in the workspace
given the temporal task, see [8l], [L7], [L19], [20], which is
then executed by the low-level feedback motion controller to
navigate among these regions. Moreover, [31], [32] proposes
an automated abstraction algorithm for a general nonlinear sys-
tem to satisfy a LTL formula, [[7]] constructs a finite abstraction
model as uncertain MDPs for the class of switched diffusion
systems. Bi-simulation or approximation relations [33] are
widely used to represent the relation between the original
system and the abstraction. In this work, the feature-based
symbolic and temporal abstractions are combined and applied
to both the safe-return constraints and the task specifications,
which are dependent and thus constructed simultaneously.

III. PRELIMINARIES
A. Linear Temporal Logic (LTL)

The ingredients of a Linear Temporal Logic (LTL) formula
are a set of atomic propositions AP and several Boolean and
temporal operators. Atomic propositions are Boolean variables
that can be either true or false. A LTL formula is specified
according to the syntax [34]: o = T |p| w1 A2 | —p | O
© | ¢1 Upa, where T = True, p€ AP, O (next), U (until)
and 1 = —T. For brevity, we omit the derivations of other
operators like [] (always), ¢ (eventually), = (implication).
The semantics of LTL is defined over the set of infinite words
over 24F, Intuitively, p € AP is satisfied on a word w =

w(1)w(2)... if it holds at w(1), i.e., if p € w(1). Formula Q¢
holds true if ¢ is satisfied on the word suffix that begins in
the next position w(2), whereas ¢ Uyps states that 1 has to
be true until ¢ becomes true. Finally, Q¢ and [Jyp are true if
 holds on w eventually and always, respectively. Thus, given
any word over AP, it can be verified whether w satisfies the
formula, denoted by w |= ¢. The full semantics and syntax of
LTL are omitted here due to limited space, see e.g., [34].

B. Deterministic Rabin Automaton (DRA)

The set of words that satisfy a LTL formula ¢ over AP
can be captured through a Deterministic Rabin Automa-
ton (DRA) A, [34], defined as A, = (Q, 247, 6, qo, Acca),
where Q) is a set of states; 247 is the alphabet; 6 < Q x
24P % (@ is a transition relation; gy € Q is the initial state;
and Acc4 C 29 x 29 is a set of accepting pairs, i.e., Acc4 =
{(HY, 1Y), (H%, 1), -+, (HY, IY)} where HY, Iy < Q,
Vi =1,2,---, N. An infinite run goq1qs - - - of A is accepting

if there exists at least one pair (HY, I%) € Accs such
0

that 3n > 0, it holds Vm > n, ¢, ¢ Hy and 3k > 0, g5, € I,
0
where 3 stands for “existing infinitely many”. Namely, this run
should intersect with Hf4 finitely many times while with If4
infinitely many times. There are translation tools [35] to
. . . . 20 ((lellog|el)
obtain A, given ¢ with complexity 2 .

IV. PROBLEM FORMULATION

In this section, we formally define the considered system
model, the task specification, the safe-return constraints, and
the complete problem formulation.

A. Labeled MDP

In order to model different workspace properties, the def-
inition of a standard MDP [12] is extended with a labeling
function over the states, namely:

M = (X, U, D, pp, AP, L, cp, x0), (1)

where X is the finite state space; U is the finite control action
space (with a slight abuse of notation, U(x) also denotes
the set of control actions allowed at state x € X); D =
{(z,u) |z e X, ue U(x)} is the set of allowed transitions as
the possible state-action pairs; pp: X x U x X — [0, 1] is the
transition probability function for each transition in D, such
that Y. v pp(z,u,&) = 1, ¥(z,u) € D; cp: D — R
is the cost function associated with an action; AP is a set of
atomic propositions as the properties of interest; L: X — 247
returns the properties held at each state (or simply labels); and
lastly xo € X, lgp € L(zg) are the initial states and labels.
Such models can be obtained by combining the robot motion
controller with the environment model.

Remark 1. The above model can be extended to
probabilistically-labeled MDPs, as proposed in our previous
work [[1]]. It can incorporate probabilistic labels at each state,
which are useful for modeling uncertain environments. More-
over, for large-scale systems, such model M can often be
constructed algorithmically from data without much manual



inputs, by combining the workspace data and the robot motion
model, e.g., the office blueprint including walls and doors,
and the satellite depth image of mountains and valleys. More
details can be found in the simulation of Sec. |

Example 1. The robot motion for the search-and-rescue
mission is modeled as follows: X is a set of regions with
the desired granularity [6]]; U maps to the navigation function
among these regions; pp is computed based on the feasibility
of such navigation; L is the features such as different rooms
and whether there are victims. ]

B. Task Specification

Different from the simple navigation task, we take into
account a more complex task specification as LTL formulas ¢
over the same atomic propositions AP from (I) above. They
can be used to specify both temporal and spatial requirements
over the system, of which the exact syntax and properties
are given in Sec. They are general enough to specify
most high-level tasks such as surveillance, safety, service
and response. Many useful templates can be found in related
work [4]], 7], (8], [28], [36], [37], [38I.

Example 2. The task to surveil regions ri, 79,73 infinitely
often can be specified as ¢ = ((J0r1) A ((O0T2) A ((I073);
The task to pick an object from region 7; and drop it at 79 is
given by ¢ = O((pick A r1) A O(drop A r3)); The task to
provide supply at r; once a certain material is detected low is
given by ¢ =[J(low — O(supply A 71)). [ |

At stage T' > 0, the robot’s past path is given by X =
zoxy - xp € XTH1) the past sequence of observed labels is
given by Ly = lgly -+ lr € (2AP)(T+1) and the past sequence
of control actions is Ur = uguy - --ur € UTTD It should
hold that pp(mt,ut,xtﬂ) > 0 and lt = L(.’Et), Vt = 0. The
complete past is then given by Rr = xoloug - - zrlrur.
Denote by X7, Ly and Ry the set of all possible past
sequences of states, labels, and runs up to stage 7. For brevity,
X7 = Rr|x and Ly = Rr|r, denote the sequence of states
and labels associated with the run Rp. For infinite sequences,
T = o and X, Lo, Ry denote the set of all infinite
sequences of states, labels, and runs, respectively. A finite-
memory policy is defined as g = popy -+ - pr. The control
policy at stage ¢ > 0 is given by u; : Ry xU — [0, 1], V¢ = 0.
Denote by 1t the set of all such finite-memory policies. Given
a control policy p € g, the underlying system M evolves
as a Markov Chain (MC), denoted by M |u. The probability
measure on the smallest o-algebra, over all possible infinite
sequences within M| that contain Rr, is the unique mea-
sure [34): Pri (Rr) = T1}_o pp (@, ws, T41) - 1 (Reyue)s
where (R, u;) is defined as the probability of choosing
action u; given the past run R;. Then, the probability of M
satisfying ¢ under a finite-memory policy p is defined by:

Sathy = Priv(¢) = Priv(Ro € R | Ryl @), (2)

where R/, R, is the set of all infinite runs of system M
under policy p; Ry |r is the infinite sequence of labels associ-
ated with a run Ry, in R/{;; and the satisfaction relation “}="
is introduced in Sec. [[[I-A]l Namely, the satisfiability equals

to the probability of all infinite runs whose associated labels
satisfy the task. More details on the probability measure can
be found in [34]. Moreover, the cost of policy p over M is
given by the expected mean cost of these infinite runs, namely:

Costly = Ep crr {Cost(Ry)}

X . a1 3)
= Eg, crt, {tlinolo;) 7 ep(ae ur)},
where Cost(Ry) is the mean total cost [12] of an infinite run
Ry and cp(-) is the cost of applying u; and z; from ().
Given only the task, our previous work in [1] proposes an
approach to optimize the above cost by formulating two
dependent Linear Programs for the plan prefix and suffix.

Remark 2. Un-discounted cost summation is often used for
the stochastic shortest path problems [14], [39], which are
not suitable here as many general LTL tasks require liveness
property over infinite runs. |

C. Safe-Return Constraints

As discussed in Sec. [l and [[I] traditionally safety is defined
as the avoidance of unsafe states, see [[6]], which are state-
dependent and mostly pre-defined offline. Despite its intu-
itiveness, it has serious drawbacks in scenarios where safety
depends on whether the system can follow a certain strategy
to return to the safe states, or where unsafe states can only
be determined online during execution. Such safety measure
is now policy-dependent and covers the traditional notion.

Formally, we consider the safe-return requirements ¢, spec-
ified as LTL formulas with the following format:

or = oL A OO, )

where ¢! are syntactically co-safe LTL (sc-LTL) formulas
over the same propositions [34], [40]; @1 denotes the transient
requirement while ¢? = Vie 1., which contains the set of
labels L, < AP associated with a set of safe states that the
system should stay in the end. Note that sc-LTL formulas can
be satisfied by a good prefix of finite length [40]. Similar
to (2), the probability of M satisfying ¢, under a finite-
memory policy p, € @t is given by:

Sathy = Priv(o.) =Prk;(Ry € R |
LiL§ = ¢y Rylp = L1LY),

where Rﬁ is the set of infinite runs of system M under
the policy p,; one such run is denoted by R, and its projec-
tion Ry |r has the prefix-suffix format of L Lg, where L is
a finite prefix that satisfies ¢! and LY is a cyclic suffix that
satisfies 2 as defined in (@).

&)

Example 3. For the search-and-rescue mission, it crucial that
the robot can return to and stay at its base station via the
designated exit, e.g., ¢, = Qex A O[bs. |

Note that other safety constraints, such as collision avoid-
ance, charging often, and emergency response, should be
included in the task ¢ rather than safe-return constraints ¢,
as in [4l, [Z0, 8], [90, [27], [28]. More importantly, there
are now two finite-memory policies: p, called the outbound



policy that drives the robot to satisfy task ¢; and g, called
the return policy that ensures the safety constraints ¢,. Due
to the existence of the outbound policy, the satisfiability of
system M w.rt. the safe-return requirements o, in () is
modified as follows:

Safe/y Hr = Satﬁg = Prj\‘jlé(@r)

= Prﬁ,@ (R € R‘/iflg | Res|1 |= ),
where M, is the modified model with an initial state distribu-
tion generated by system M under the outbound policy g ; the

word R |y, follows the prefix-suffix format as defined in ().
Thus, the safe-return constraints are defined as follows.

(6)

Definition 1. Given system M, an outbound policy p, is
called yx.-safe if there exists a return policy p, such that the
probability of M satisfying ¢, is lower-bounded:

Safel ™ > .. )

or equivalently: given p_ and M, 3u,, s.t. Sat’:

2 Xr7
. . Mp,
where x., € [0, 1] is the given safety bound.

It is worth clarifying that the task requirement ¢ and safe-
return constraints ¢, are fundamentally different from the
multi-objective tasks considered in [18]], [23]. This is due to
the fact that in most cases there does not exist any policy p
that can satisfy ¢ and ¢, simultaneously, no matter how
their relative priorities are set. For instances, consider the
surveillance task ¢ in Example [2] and the safety constraint ¢,
in Example 3| They are mutually exclusive as ¢ requires it to
surveil several regions infinitely often, while ¢, requires the
system to return and stay at the base.

D. Problem Statement

Problem 1. Given the labeled MDP M from ([I]), the task ¢
and the safe-return requirement (., our goal is to synthesize
the outbound policy p, and the return policy p, that solve
the constrained optimization below:
min_ Cost!;
o, €L M (8)
s.t. Saths > x, and Safe! 5" > .,

where X, xr € [0, 1] are given lower bounds for satisfiability
and safety in (Z) and (7)), respectively; the overall cost Cost‘/fj[
for the task is defined in (3). [ ]

The above formulation has two implications: first, the syn-
thesis of the outbound and inbound policies are coupled. The
overall cost can not be optimized without ensuring both the
task satisfiability and the safe-return constraint; second, the
system can evolve either under the outbound policy g or the
return policy ., of which the switch is triggered by an ex-
ternal “return” request. Furthermore, the lower bounds X, X
can affect the obtained policy greatly. For a highly-uncertain
workspace, X, should be set low while x, should be high, as
no valid outbound policies exist if X, is set too high. On the
other hand, for fairly certain models, both ., x. can be set
high. More detailed discussions can be found in the numerical
studies later in Sec.

<p \
Def. 2 _ Product,
/ Eq. 7 Po
i Eq. 16

1T i
\ Def. 3 Product Eq. 15 Return

RSife Ar / Pr Policy (7r, vr)
eturn
Yr

Fig. 1. Framework of the proposed baseline solution, which includes
constructing the complete product automata P. and P,, and then solving
two sequential optimizations.

E(]. 16 Task

Policy o

Remark 3. Most related work synthesizes only one policy
to satisfy ¢ and ¢, simultaneously, see [, [4], [Z], [8l,
[36]. This is however not directly possible as discussed after
Def. [T} since the safe-constraints ¢, are conflicting with ¢
in most cases; Second, the outgoing policy p, depends on
the property of the return policy g, as in (7), thus can not
be synthesized independently. Lastly, as elaborated earlier,
only p, is activated during execution, while p, may never
be activated if not requested. In other words, ¢, serves more
as a constraint, instead of an actual task. |

V. THEORETICAL ANALYSES AND BASELINE SOLUTIONS

In this section, we first provide the theoretical analyses
on how the task and safe-return constraints in can be
re-formulated as constrained reachability problems in the re-
spective product automata. Based on these results, we propose
the baseline solution that solves two sequential optimizations
using linear programming (LP) within these product automata,
as summarized in Fig. |1} Lastly, we show that this solution
quickly becomes intractable as the system size grows.

A. Product Automaton and AMECs

As introduced in Sec. we can construct the DRA A,
associated with the task formula ¢ via the translation
tools [35]]. Denote it by A, = (Q, 247, 8, qo, Acc4), where
the detailed notations are omitted here. Then we can construct
a product automaton [34] between M and A..

Definition 2. The product P, = M x A, is a 7-tuple:
PO = (57 Ua Ev PE, CE, S0, ACCP)a (9)

where the state S € X x @ satisfies (x, ¢) € S, Vo € X
and Vq € Q; the action set U is the same as in (I)) and U(s) =
Ux), Vs = {x,qy € S; E = {(s,u)|s € S, u e U(s)}; the
transition probability pg: S x U x S — [0, 1] is defined by

PE (<x,q>, u, <5£,(j>) =pp(z, u, &), (10)

where (i) {z,q), (,¢)y € S; (ii) (z,u) € D; and (iii)) § =
d(q, L(x)). The label [ fulfills the condition from ¢ to § in A;
the cost function cg: E — R>Y is given by cg((z, ), u) =
ep(z,u), V({z, ¢, u) € E; the initial state is so = (o, qo) €
S; the accepting pairs are defined as Accp = {(Hp, Ih),i =



1,---,N}, where H> = {{x,q) € S|q € Hy} and I5 =
{{z,qpe S|qe Iy}, Vi=1,--- N. n

The product P, computes the intersection between the
traces of M and the words of A, to find the admissible
robot behaviors that satisfy the task (. Furthermore, the Rabin
accepting condition of P, is the same as in Sec. [[II-B}
To transform this condition into equivalent graph properties,
we first compute the accepting maximum end components
(AMECs) of P, associated with its accepting pairs Accp.
Denote by Z,cc = {51, U1),--- (S, UL)} the set of AMECs
associated with Accp, where S’ = S and U. : S, — 2V, Vc =
1,---,C. Simply speaking, S/ is the set of states the robot
should converge to, while U specifies the allowed actions at
each state s € .S, to remain inside S,. Note that S, NS, = O,
Yeyp,c0 = 1,--- , C. Denote by

s, (11

o

53 =

c=1

where (S.,U.) € Z4cc the union of all AMECs associated
with P,. We omit the derivation of =,.. here and refer the
readers to Definitions 10.116, 10.117 and 10.124 of [34] for
theoretical details and [41] for software implementation.

Definition 3. Let A, be the DRA associated with the safe-
return constraints ¢,. Then the product P, = M x A, can
be constructed analogously as P, above, of which the details
are omitted here. [ |

Note that we omit the subscripts for all elements in P,
and P, above for clarity. Subscripts will be added whenever
necessary to distinguish the same elements in different product
automata. Furthermore, the control policies for the product
automata P, and P, are denoted by m, and 7., respectively.
Note that due to the deterministic nature of DRA, a policy
in the product automaton, e.g., 7, and 7., can be uniquely
mapped to a policy, e.g., p, and @, in M, and vice versa.

B. Task Satisfiability Reformulation

Given the product P, the following theorem is commonly
used in related work [1], [2], [17], [42], [18] to convert the
task satisfiability to the reachability in P,.

Theorem 1. The probability of ¢ being satisfied by M under
policy p  at stage O can be re-formulated as:

0
Satﬁj = Ego {Z bSt,Sg} )
° (=0

where 750 = (1-— b575%) Po, bs,se = Lsesey is an indicator
function; SS is defined in (11); and ., is the policy for P,
corresponding to .

(12)

Proof. 1t has been proven in [1]], [L18], [34] that once the
system M enters the union set of AMECs S3 in P, it
can remain inside and satisfy the accepting condition of P,
by following the transition conditions given by U, e.g., the
Round-robin policy [34] or the balanced policy [1]. In other
words, the probability of satisfying ¢ equals to the probability
of entering S2 at least once in P,. Note that P, has the same

structure as P,. But once the system reaches the set S2 in 730,
any further actions lead to a virtual “end” state with only self-
loop. Thus, the left-hand side of is computed by:

o
Satﬁ = ]E;Z {]l{ﬂt<oo,s,,esg}} = Eg: {Z bm,S;} ; (13)
t=0

which completes the proof. O

C. Safe-return Constraints Reformulation

The safe-return constraints in however have not been
studied before in related work. The following theorem is
essential to re-formulate such constraints.

Theorem 2. The safe-return constraints in (1) for M under
policies p, and . at stage O can be re-formulated as:

0

Safely; " = ET {Z u;(si)}, (14a)
t=0
. 0

where v} (s;) = E;“m { bs;,SE} ) (14b)
: =t

A

where 75r = (1-— bs,Sé) “Pr, bs,sz = Liseszy is an indicator
function, and SE is defined in (I); v} € [0, 1] is the value
function of 73r under policy m.; the product state of P, at
stage t is denoted by s; = {(xt,q5), of which the associated
product state in Py is given by s} = (x4, ¢} ); and 7., 7, are
the policies for P, and Py, corresponding to p,, . for M,
respectively.

Proof. The safe-return constraints can be expanded by split-
ting the evolution of system M before and after the time when
the robot is requested to return, then starts following the return
policy. Without loss of generality, denote by ¢ > 0 this time
instant. Thus, M evolves under the outbound policy g, to
satisfy ¢ between time [0, t), then under the return policy .
to satisfy ¢, from time ¢ € [t,0). Thus, the definition of
safety in can be expanded as follows:

0
Safey; " = BT {Z Satf\j{”f}7

t=0

(15)

where s; = (x4, ¢} ) is the product state of P, at stage ¢; and
Satf\ﬁt’”‘ is defined analogously to (12) as the satisfiability
of ¢, under policy g, for system M but with a modified
initial state x; at stage t. Via the same argumentation as in
Theorem [I} the probability of satisfying ¢, equals to the
probability of entering the union set SZ of P, at least once
as time approaches infinity. Then, consider that P, defined
above has the same structure as P, except that once the system
reaches SZ, any further actions lead immediately to a virtual
“end” state with only self-loop. Thus it holds that:

Sati’/‘{l‘r = E;trvﬂ'r {ﬂ{ﬂfe[t,m),s§65é}}

PR (16)
=EX™ 4D basz o = vi(s),

=t

where s; = (x4, ¢f) is the associated initial product state of P,
at stage ¢. This mapping is necessary as the states in .4, and



Algorithm 1: Baseline Solution

Input: M, (¢, Xo), (¢r, Xx)-
Output: (P, 7., v}), (Po, o).
1 Build product P, and its AMECs SL; // Def.
2 Synthesize policy 7, and its value function v} ;
// Eqg.
3 Build product P, and its AMECs S2 ;
4 Synthesize policy 7, given v} ;

// Def.
// Eq. (I8)

A, can be different; and v} is by definition the value function
of P, under policy 7. Since p, optimizes the probability of
satisfying ., it holds that its value function v;(s) € [0,1],
Vs € Sy. This completes the proof. O

Theorems [I] and [2] provide theoretical guarantees on the re-
formulation of both constraints in Problem [T} More specif-
ically, Theorem E] states that the task satisﬁabilityN can be
ensured by limiting the reachability of S2 within P, under
policy 7. Theorem [2{states that the safe-return constraint can
be evaluated as the expected rewards of P, under policy .,
where the rewards are given by the value function of P, under
the return policy 7r, by maximizing the reachability of SE.

D. Baseline Solution and Computational Complexity

Consequently, the original problem after re-formulation can
be solved by two sequential optimizations: (i) synthesize the
optimal return policy 7r, by solving the optimization:

fio)

i.e., to maximize the reachability of SZ in Pr. This amounts to
solving a standard MDP problem without constraints, e.g., via
LP. Since P, becomes a Markov Chain under policy 7., the
associated value function v} can be easily computed, e.g., via
value iteration; (ii) synthesize the optimal outbound policy =,
by solving the following constrained optimization:

max SatM = max IE~ (17)

H.ER wET

min Cost

TLETT
s.t. ET°

o0
B {Z bst,S%} = Xo»
° t=0
o0
{3 on) o,
t=0

where the relevant notations are defined in (12 and (T4). The
above problem amounts to a constrained MDP problem [43]],
[44]. As a result, a methods similar to our earlier work [[1]] can
be applied to synthesize the optimal prefix and suffix policies
of m,. Briefly speaking, a constrained LP is formulated over
the occupancy measure over all state-action pairs, such that
(i) the summation of occupancy measure entering S2 is larger
than ; (ii) the summation of occupancy measure multiplied
by the associated value function over all states is larger than
Xr; and (iii) the summation of occupancy measure multiplied
by the transition cost within S2 is minimized. The resulting
outbound policy 7, is a stochastic policy over P, while the
return policy 7r, is a stochastic policy over P.. We refer

(18)

_ IlTp o7 17, NNT,

il

Time [s]

107!
10! 102 10° 10 10°
M
M| |Pe| P Tuls] T ls]
(1e2,8¢2) (5e2,4e3) (4e3,5ed) 0.1 0.9
(5e2,4e3) (3e3,3e4) (2e4,2e5) 2.7 5.9
(2e3,2e4) (led,1e5) (6ed,6e5) 4.1 48
(7e3,7e4) (5ed,4eb) (2e5,3e6) le2 2e3
(3e4,3e5) (2e5,3e6) (9e5,8e6)  2e3 N/A
(1e5,2¢6) (7e5,8¢6)  N/A NA  NA

Fig. 2. Top: Size of product Py, P, (measured by the number of nodes and
edges); and computation time of polices ., p, where aeb £ a x 10°. Note
that 104s ~ 2.7h, whereas“N/A” indicates either insufficient memory error or
computation longer than 24 hours; Bottom: Plot of model computation time
and solution time w.r.t. the size of the underlying M.

the readers to the supplementary material for the detailed LP
formulation and policy derivation. It is worth noting that the
mean cost minimization only applies to the outgoing policy g,
not the return policy p, as formulated in (8). The above
procedure is summarized in Fig. [I] and Alg.

Note that the product P, has the approximate size of |2¢=|-
| M|, of which the AMECs are computed in polynomial time.
The optimal return policy 7r, can be synthesized in polynomial
time also due to LP. Similar analysis holds also for P..
Nonetheless, for high dimensional states, large workspaces
and complex tasks considered in practice, the LPs above can
become intractable to even construct, let alone to solve. Some
examples are given below to illustrate the computation time
blow-up with increasing system size, e.g., for a moderate size
of M (around 10° edges), it takes more than 24 hours to
synthesize the outgoing policy.

Example 4. Consider the surveillance task in Example |2} the
associated DRA has 32 states, 282 edges and 1 accepting
pairs, while the DRA associated with the safe-return task
in Example [3] has 7 states, 14 edges and 1 accepting pairs.
Fig. E] summarizes how P, and P, increase in size, when the
underlying model M grows. It is apparent that the baseline
solution quickly becomes intractable as even formulating the
LPs takes hours. For MDPs with more than 105 edges, neither
the return policy nor the outbound policy can be computed
within reasonable amount of memory and time. ]

E. Alternative Baseline

Another straightforward but approximate method as an
alternative baseline to the above baseline is to build an
extended model M of the original M in by adding
another dimension, i.e., X = {(z, i),Vo € X, i € {0, 1}},



where ¢ indicates whether a return has been requested. More
specifically, when 7 = 0, the system M evolves according to
the outbound policy g ; when ¢ = 1, the system M evolves
under the return policy ... In this way, both the outbound and
return policies might be integrated into one policy as they act
on different states in M. However, since this return request is
an external signal and not controlled by the robot, an approxi-
mation would be to modify the transition probability of M as
follows: (i) pp ((x,0), u,{(Z,1)) = pp(x,u, £)-0.5, Vi € {0,1}
and V(z,u) € D; (i) pp(x,1),u,{Z,1)) = pp(z,u,),
V(z,u) € D. In other words, the system can transit non-
deterministically within level ¢ = 0 or from level i = 0
to ¢ = 1 at each time step, but not in the reversing order. Then,
via the multi-objective probabilistic model checking algorithm
proposed in [22] and available in PRISM [24], one common
policy, denoted by i, can be synthesized to satisfy both the
objectives that Prﬁ(gor) Xr for i =0 and Prﬁ( ©) = Xo
for ¢ = 1, while minimizing the rewards in (§). More details
can be found in the supplementary material.

Since the extended model M has 2|X| nodes and 3|U]|
edges, the associated product automaton, denoted by P, has
roughly the size of 3|U]| - 2lel . ole:l see [22] for the method
to construct P. The computational complexity of this alter-
native solution can be estimated as O((3|U| - 2/#I . 2le=l)Ne),
ie., at least (3Me - 2/¢:]) times the size of the constrained
optimization in (I8), with N. > 2.3 being the currently-
known best algorithm to solve a LP. In other words, this
alternative solution is at least a magnitude more expensive than
the baseline solution proposed in the section. This difference
can be even more significant if the specifications ¢, ( are
complex, see Sec. for detailed comparisons.

VI. PROPOSED HIERARCHICAL SOLUTION

To tackle the intractable complexity of the baseline solution,
the main hierarchical solution is proposed in this section. As
illustrated in Fig.[3] a two-step paradigm similar to the baseline
solution is followed. It follows the framework of semi-MDPs
and options as proposed in [29]]. The major difference is
that two feature-based symbolic and temporal abstraction of
system M as semi-MDPs are constructed for the task spec-
ification and the safe-return constraints, respectively. Given
these models, a hierarchical planning algorithm is proposed
to synthesize both the return policy and outgoing policy as
options that solve the original problem.

A. Hierarchical Planning for Safe-return Constraints

As discussed before, the safe-return policy has to be syn-
thesized first along with its value function, which is then used
to compute the outbound policy. Thus, we first describe how
the safe-return policy can be synthesized hierarchically.

1) Labeled Semi-MDPs for Safe-return Constraints: Given
the DRA A, = (Q, 247, §, qo, Acc4) associated with ¢,
we can compute the set of effective features:

0, = {0247 3¢, Ge Q, st (q,0,4) €5, ¢ # g},

which includes any label inside O, that can drive a transition
within A,, excluding self-transitions. Then, the feature-based

19)

Ao Product Task T
Task Eq. 23 ’Pé) Eq. 24  Policy
® I

Eq. 20 My ——Y & Motion
Policy e o
:Hj\'/tﬁﬁ .Eq 21

Ruturn
Policy

(75 V)

Eq. 19

Safe s I
Return . Product
¥r :
Pr

Fig. 3. Illustration of the proposed hierarchical planning framework. Com-
pared with the baseline solution in Fig. [I] two feature-based abstraction
models M, M. are constructed first for the task specification and the safe-
return constraints, respectively.

abstraction of the original MDP M for ¢, as semi-MDPs,
denoted by M, can be constructed as another labeled MDP,
namely:

ML= (XL, UL, p. p, AP, L), (20)

where X! = {zx € X|L(z) n ©, # J} < X contains
only the states that can potentially lead to a transition within
A.; AP, L are defined analogously as in (I); UL is the set
of macro actions that represent symbolically the underlying
motion policies for each transition in X p) @ X x U] x
X! — [0, 1] is the transition probability for each transition.
The derivation of p, 1, is explained below.

Problem 2. Determine U/, p/, ,, in (20), given M. [ |

For each pair of states (zy, x;) € X, x X/, the associated
macro action is symbolically denoted by (z¢, z;) € UL. As
illustrated in Fig. , the transition probability pg’ p 1s com-
puted in three steps: (i) Construct modified MDP M, (x, ;)
from M, such that state x; is the “source” state, and all
the other states in X/ (including x;) are the “sink” states.
Once the system enters any sink state it will stay there
via self-loop with probability one and cost zero; (ii) Find
the motion policy in M’ (z¢, z;) that drives the system
from z; to xz, with the maximum probability. Denote by
W, (xy, ;) this specific motion policy, which is analogous
to the options in [29]. Similar to the maximum reachability
problem discussed in before, this can be readily solved by
formulating the LP over the occupancy measures of each state-
action pair in M/ (z, x;); (iil) Given the policy p/.(zy, x;),
the underlying MDP M/ (zs, z;) becomes a Markov Chain
(MC), of which of asymptotic behavior is fully determined.
Thus, the transition probability p.. 1, (z 7, p}.(z ¢, 1), x¢) from
the source state x ¢ to any other sink state xy € X is given by
the final distribution over the sink states. Note that if the LP
above does not have a solution for the pair (zf, x;), it means
x4 cannot be reached from x;. Consequently, the transition
probability p, p, (v, py(zf, x¢),2¢) = 0 for all x, € X|.
The detailed formulation of the LP and computation of p/,
can be found in the supplementary material.

Via the above three steps, the labeled semi-MDP M., in
can be constructed fully. Assume that the DRA A, has N



M P,r,Da /‘L/I‘

_ﬁ%&»y. : @P”
ﬁ:j7 [T 76] ;7(.,;7 [1 :é

Fig. 4. Illustration of feature-based abstraction as described in Sec.
The associated motion policy ) and the transition probability p/n p should
be computed for each pair of transition (z ¢, ) in M. Note that the ending
states under the macro action (x ¢, x¢) are non-deterministic, as shown in the
middle and right figures.

i

unique labels, and within M there are at most M regions of
interest associated with each label, then M’ has maximum
M - N nodes and less than M? - N2 edges. For large systems
with few number of interested regions, this can be significantly
less than the size of M.

2) Hierarchical Safe-Return Policy Synthesis: Given the
labeled semi-MDP M/ from (20) and the DRA A,, their
product can be computed in the same way as in Def. [2}

P& M, x Ay = (S, U, EL, P} g, 5. 9, Accy), (21)

of which the detailed notations are similarly defined as in (9)
and omitted here. Note that the transition probability p) p is
computed based on p. ;. Given P, above, the optimal safe-
return policy 7/ and the associated value function v’* can be
computed in the same way as computing 7r,. from P, which
are described in Sec. Furthermore, since . is given as
sc-LTL formulas, the safe-return constraints are satisfied once
the union set of AMECs S - above is reached.

B. Hierarchical Planning for Tasks

Similar to the return policy above, the outbound policy can
also be synthesized in a hierarchical way. Namely, a feature-
based abstraction model as semi-MDPs for the task specifica-
tion is firstly constructed, which is safety-ensured as it directly
incorporates the safe-return constraints. Second, a hierarchical
outbound policy is synthesized given the product automaton
between this abstraction model and the task automaton.

1) Safety-ensured Semi-MDPs for Tasks: Different
from M’ in (20), the abstraction model for tasks as semi-
MDPs should incorporate the safe-return constraints. First,
the set of effective features within A, is computed similarly
as (1_1_751) denoted by ©,. Then, the associated abstraction
model as semi-MDPs is given by:

ML= (X, UL, plp, AP, L., ¢, p), (22)

where the notations are defined analogously as in (20).
However, the transition probability p{, ,, and cost ¢ ,, are
computed differently to incorporate the safe-return constraints.

Problem 3. Determine p/ ,, ¢, ,, of M/, given system M
and the value function v”* of P.. ]

For each pair of states (x5, x;) € X. x X/, the associated
macro action is symbolically denoted by (zy, z;) € U..
Then, its transition probability pf, ;, is computed in a similar
procedure as p, p in Sec. namely: (i) Construct the
modified MDP M/ (z, ;) from M similar to M/ (xy, z);
(ii) Find the motion policy u,(xs, x;) as options that drives

the system M/ (z ¢, x;) from ¢ to x; with the maximum prob-
ability, while satisfying the safe-return constraint. Theorem
proves that the safe-return constraint can be re-formulated as
the accumulated rewards w.r.t. the value function v!*. Thus,
the LP for computing u, (x5, ;) is revised by adding another
constraint:

0
BNt (as.20) DTV p = X (23)
=0
where s; = (x4, ¢}) is the product state of P, derived

from 2I); v*(si) is the associated value function from (2I));
(iii) The transition probability pl , (z, u(zs, 1), ze) is
the convergent distribution of M/ (zs, x;) under pl (s, x).
Furthermore, the cost function cg p 1s determined by:

0
CgaD(zf’ ) = Eﬁé(wf»wt) Z cp(me,ue) ¢

(24)

as the expected cost of reaching x; from x; while following
the motion policy p/ (zy, x;). Note if the constrained LP for
solving p! (zy, x;) does not have a solution, it means that
x¢ can not be reached from z; while satisfying the safe-
return constraints in (23). Then, the macro transition (z ¢, ¢) is
removed from U/ with no associated transition. The detailed
formulation of the LP and derivation of p[ p, ¢, , can be
found in the supplementary material. l

Remark 4. The motion policy u!(zy, ;) above is an op-
tion that prioritizes the maximization of the probability of
reaching x; from x;, instead of minimizing the expected
cost ¢, p(-) in (24). This could result in a loss of optimality
regarding the original objective in (B). First of all, as also
mentioned in our earlier work [1]], there are often trade-
offs when co-optimizing both terms. Second, the overall task
satisfiability in (8) is not incorporated in this local semi-
MDP, rather only in the product automaton in the sequel.
Nonetheless, as shown later in the experiment, such loss is
negligible, especially in contrast to the significant reduction
in computation time. ]

Lemma 3. The semi-MDP M’ is safety-ensured. Namely, for
each transition (xy,x,) € Ul, its associated motion policy
wo(xp,x) and the return policy ', satisfy the safe-return
constraints by ().

Proof. For each transition (zf,x¢) € U, the safe-return
constraints are enforced directly by when synthesizing
the motion policy p,(xf,x;). As shown in Theorem [2] the
expected accumulative value function of all states encountered
during the execution of p/ (xy,x;) is equivalent to the safe-
return probability in (7). Thus, during the execution of any
transition within MY, once requested, the robot can always
return to the safe states with a probability larger than y., by
following the safe-return policy p’.. O

2) Hierarchical Outbound Policy Synthesis: Given the
safety-ensured semi-MDP M, its product with the DRA A,
can be computed via following Def. [3

Pl ML x A, (25)



Algorithm 2: Hierarchical Planning Algorithm

Input: M, (¢, Xo), (¢r, Xx)-
Output: (M., ), (PL,w’ v*)),

((Mé, l"’:))? (P(/J’ (ﬂ':),pre7 ﬂ':),suf))
/* Safe-return policy, Sec. */

1 Construct DRA A,;

2 Build abstraction M. and policy ' ;

3 Compute product P, in 2I) ;

4 Synthesize return policy 7., and value function v’*;
/+ Task policy, Sec. x/

5 Construct DRA A,;

6 Build abstraction M/ and policy p., given v)*;

7 Compute product P/ in (23));

8 Synthesize outbound policy (7, ., 7, ..¢)

of which the detailed notations are similarly defined as in (9)
and omitted here. Note that its cost function follows from (24).
Now, the objective is to find the optimal outbound policy over
P! for the original planning problem.

Problem 4. Determine the policy w/ for P’ such that the
long-term cost in (@) is minimized and the task satisfiability
in (2) is lowered bounded. [ ]

Notice that different from P,, the product P/ above inherits
the safety property from the abstraction model M/, as proved
in Lemma [3} Consequently, the safe-return constraints are not
imposed as an additional requirement when synthesizing the
outbound policy /. Since task ¢ is given as general LTL
formulas, 7, now consists of two parts: the prefix m .
that is executed once, and the suffix 7w/ _ . that is executed
infinite times. Without the additional safe-return constraints,
the framework proposed in our earlier work [1] can be
used directly to synthesize m. For brevity, Alg. 1 in [1] is
encapsulated as the following constrained optimization:

Costp; ™" (262)

.
min
! /
{Tro,pre7ﬂ-o,suf

st Saty;™° >y, (26b)

where the prefix policy wg,pre ensures that the union of

AMECs SZ),E is reached with a probability larger than x.,
while the suffix policy w/ _ . ensures that the system stays
inside S = and the discounted cost in (§) is minimized. In the
end, both policies are optimized together to find the best pair
of initial state and accepting state. The detailed LP formulation
and policy derivation are given in the supplementary material.

C. Algorithmic Summary and Online Execution

The complete hierarchical planning algorithm is summa-
rized in Alg. |2 and illustrated in Fig.|3] Namely, it consists of
two main parts: Lines 1 — 4 to construct the semi-MDP M,
and product P/, and learn the safe-return policy =’ and
the associated value function v’*; Lines 5 — 8 to construct
the semi-MDP M and product P/, and learn the outbound
policy 7/. As shown in Fig.[5| the outbound policy is executed
hierarchically as discussed in the sequel. The safe-return policy
is activated only if the robot is requested to return.

(@, I

(mbprerThaut) o
Planning

o+ T
/ * / *
s Th+1 a0 €y,
1 Ret; O 38 k+1
__________ TrELN l.___kﬂ

’ Requested ,
L
u,I- Tk, 0+1 Hr Iulo Tk 0+1 Ho
Safe-return

Lt Task T
Execution A Execution & :

Motion
Planning

Fig. 5. Tllustration of the online execution of the hierarchical outbound
policy (7’ ! ), and the hierarchical safe-return policy (7v’., ! ) if requested.

During online execution, the outbound policy is executed
hierarchically as follows: Starting from the initial state sgk
and k£ = 0, the prefix policy ﬂ'gvpre is activated to determine
the next action (xy,z},,) € Ul. Once xj_ , is given, the
option uf, . (xx, 2}, ) is activated to determine the next
motion (.%‘k,ajkyg) € U, where Tke € X but Tk,e ¢ Xé.
The step ¢ is increased until one of the sink states in X is
reached, which is denoted by )1 and not necessarily xj,_
due to non-determinism. Given the actual next state zx.1,
the outbound policy =, . is activated again to determine
the next action (241,2}_,) € U.. This process repeats itself
until the set S/ = of P, is reached. Afterwards, the outbound
policy switches to the suffix policy 7rg7suf, while the return
policy 7/, remains the same. Last but not least, whenever the
robot is requested to return, the safe-return policy is executed
hierarchically in an analogous way as above, which however
terminates after the system reaches the set S .

Theorem 4. The safe-return policy w'. and the outbound
policy ©', fulfill the constraints in B) as imposed by Problem
and minimizes the long-term cost in (26a)).

Proof. First, it is proven in Lemma [3| that the semi-MDP M/,
is safety-ensured. In other words, during the execution of any
transition within M/, once requested the robot can always
return to the safe states with a probability larger than x.,
by following the safe-return option g’.. Thus, the outbound
policy . derived by solving (26) for P! always satisfies
the safe-return constraints. Second, as proven in Theorem 6
of our earlier work [I]], the optimization in (26) guarantees
the task satisfiability by co-optimizing the prefix and suffix
of the outbound policy 7. In particular, it shows that the
prefix policy 7f, ... ensures that the union of AMECs S/ -
is reached with a probability larger than x., while the suffix
policy 7(, .- ensures that the system stays inside S7, = and the
long-term discounted cost is minimized. Lastly, as mentioned
in Remark [4] the transition cost ¢/, ,, within M/ might not be
equivalent to the minimum cost for each transition. As a result,
the discounted cost in (26a) is an approximation of the original
cost in (B). The exact gap between them is not quantified in
this work and remains part of our ongoing research. O

Remark 5. It is worth pointing out the algorithmic differences
between the baseline method in Alg. [I| and the proposed
hierarchical approach in Alg. 2] As shown in Fig. [I] and
Fig. 3] the baseline method directly synthesizes first the return
policy 7, and then the outbound policy 7, over the original
system M, while the proposed approach constructs first the
symbolic and temporal abstractions M’, M/ as semi-MDPs
and their associated polices as options. Theses semi-MDPs



are then used as the respective system model for synthesizing
the high-level task policy and return policy. This hierarchical
approach allows planning at different spatial and temporal
levels over different system models, i.e., instead of a common
model as in the baseline method. ]

VII. SIMULATION AND EXPERIMENT STUDY

In this section, we present two case studies to validate the
proposed framework: the search-and-rescue mission in office
environment after a disaster; and the planetary exploration
mission similar to the DLR SpaceBot Camp [45]. All algo-
rithms are implemented in Python3 and the main LP solver is
the Google Linear Optimization Solver “Glop™, see [46]. All
computations are carried out on a laptop (3.06GHz Duo CPU
and 12GB of RAM). Detailed robot model and workspace
descriptions can be found in the supplementary material.

A. Study One: Search-and-Rescue Mission

For the first numerical study, we consider the deployment
of a UGV into an office environment for a search-and-rescue
mission after a disaster.

1) Workspace and Task Description: As shown in Fig. [6]
a search-and-rescue UGV of size 1m x 0.5m is deployed
to explore one floor of an office building, approximately of
size 170m x 80m. The system model M is estimated by
the floor plan and the robot mobility. More specifically, the
states are given by a full discretization of the floor plan in
2D (with different granularity as described later); transition
probabilities and costs are estimated by a simulated robot
navigation model, e.g., to the adjacent regions via 4-way
movements with orientation constraints. Note that the robot
can drift side-ways while moving or overshoot while rotating,
yielding a probabilistic model; and the states are labeled by
the corresponding rooms, while features such as victims or
hazards are estimated manually. For instance, the probability
of having label human (hm) in offices is 0.9, whereas 0.1 in
storage rooms (st ). We refer the readers to the supplementary
material for detailed construction of M. It is worth noting
that given the workspace blueprint (including walls, doors
and stairs) and the robot motion model, the model M can be
constructed algorithmically without manual inputs. Moreover,
there are two potential risks during the mission: first, the robot
may be trapped in certain rooms due to one-way doors or some
exits being blocked by debris; second, the robot may descend
any stairs but not ascend too steep stairs.

More specifically, the search-and-rescue tasks include: (i)
turn off switches at the maintenance room (mt); (ii) visit
storage rooms (st) to check for fire hazards and gas leakage;
(iii) search office rooms (of) for injured victims (hm) and
bring them to the closest medical station (md). The locations
of these labels are shown in Fig. [6] They are specified as the
following LTL formulas:

o= Ost A (0 \/ZELmtg)
A (DO(\/M of; A hm)) A (O(hm — (—hm)Umd)),

where I and L are the sets of offices and maintenance rooms,
respectively; the actions to perform at respective regions are

27

||
- o m
IMaint.- Office ™ Human Storage - Medical [l Exit Base
— Unsafe Run Safe Run One Safe Run Two

Fig. 6. Workspace model and examples of different runs under the outbound
policy p/ and an unsafe policy (in red) without the safe constrains.

sl e

Y Base Stations 0 IS — | (

Fig. 7. Heatmap of the value function v/* associated with the safe-return
constraints in (28). The base station is marked by the red star.

omitted and refer to for methods to combine motion
and action planning. To encourage visits over different office
rooms and mimic the realistic scenario of victims being
relocated from offices to medical stations, the label hm is
removed from an office after it has been visited certain number
of times. For a more precise modeling with robot actions
and dynamic environments, readers are referred to our earlier
work [8]], [37]. On the other hand, the safe-return constraints
require the robot to be able to return to the base station (bs)
from any medical station, via one designated exit (ex), i.e.,

oy = O(md A Qex) A O] (\/jerSj)’ (28)
where J is the set of three base stations as shown in Fig. [6]
For probabilistic requirements, the satisfiability bound x, is
set to 0.8, while the safety bound . is set to 0.9.

2) Simulation Results: In the section, we mainly present
the results for the hierarchical planning algorithm in Alg. [2]
Comparison with other baselines are given in the sequel. The
discretization step for constructing the underlying MDP M is
set to 2m here, which has 1100 states and 10296 edges.

First of all, the DRA A, associated with ¢, in 28) is quite
small with only 7 states, 14 edges and 1 accepting pair. Even
though the original M is relatively large in size, the semi-
MDP M’ in contains 15 states and 210 edges. In par-
ticular, the synthesis of the low-level motion policy p. takes
in average 3ms for each edge within M. Afterwards, the
product P, in ZI) is computed in 1.5s, which has 511 states
and 36288 edges. Given PZ, the optimal return policy =, and
its value function v!* are computed in 2.3s. A visualization
of v/* is given in Fig. [/, which matches our intuition well

r



TABLE I
SCALABILITY RESULTS OF THREE METHODS FOR THE CASE STUDY ONE.
M Methoat MMM P, Pl P. Po. P #, (w2, o), (7))
Size? Time*[s] Size? Time [s] Size? Time [s] Size3  Time [s] Safety
ALT  (6e2, 6€3) 0.2 —— —/—  (2e5,2e7) 3e2 1e6 29.6 0.95
(3e2,2¢3)"  BSL  (3e2,2e3) 0.01 (2e3, 3e4) 0.2 (1e4, 3e5) 21.8 6e3 9.6 0.95
HIR  (3e2,2e3) 0.3 (5e2, 3ed) 0.4 (2€3, 2e5) 10.1 8e3 6.2 0.94
ALT  (le4,2e5) 0.5 —— —/—  (le6,2e7) 4e3 8e7 2ed 0.9
(5e3,4e4)  BSL (53, 4ed) 0.3 (4ed, 3e5) 3.6 (2e5, 2e6) 165 4e5 3e3 0.9
HIR  (3e2, 4e3) 8.3 (5e2, ded) 2.3 (4e3, 2e5) 18.7 5ed 7.1 0.91
ALT  (ded, 6e5) 34 —— —/—  (9e6, 5¢7) led N/A*  N/A N/A
(2e4,2e5)  BSL  (2e4,2e5) 14 (15, 2e6) 15.8 (8e5, 7e6) 7e2 2e6 N/A N/A
HIR  (5¢2, 5¢3) 15.1 (5e2, 5e4) 52 (4e3, 3e5) 22.8 5ed 12.8 0.9
ALT  (3e5, 2¢6) 7.8 —— —— N/A* N/A N/A N/A N/A
(8e4,7e5)  BSL  (8e4, 7e5) 3.7 (65, 7e6) 61.2 N/A N/A N/A N/A N/A
HIR  (6e2, 7¢3) 212 (6€2, 1e5) 10.2 (53, 4e5) 28.2 5ed 17.6 0.9

U ALT: The alternative approach described in Sec. and PRISM 4.6 [24], which does not compute P, directly. BSL: The baseline

solution in Alg. [T] HIR: The hierarchical algorithm in Alg.

2 Sizes of the MDP models are measured by the number of nodes and edges. aeb = a x 10°. Note that 1e3s ~ 16min

3 Sizes of the polices are measured by the number of LP variables.

4 “N/A” indicates either insufficient memory or computation time longer than 5 hours.

that states that can not reach the base station have low values.
Specifically, due to the narrow passage between debris, the
left side of the office has relatively low value compared with
the right side, while the areas that are completely inaccessible
have value close to zero.

Furthermore, the safety-ensured semi-MDP M/ is com-
puted. The DRA A, associated with task ¢ in has 39
states, 255 edges and 1 accepting pair, which is much larger
than A, earlier. It took 0.3s to construct M. and the
resulting product P/. At last, its associated outbound pol-
icy (7], yes T, oue) is computed in 5.1s an 1.3s, respectively.
The complete computation time is listed in the second row
of Table [l Given the outbound policy, Fig. [6] show several
runs of the online execution. It can be seen that the resulting
trajectories search many different office areas and rescue the
victims inside, while avoiding such areas where the value
function is low and thus not safe to return to the base station.
To show how the safe-return constraints and task constraints
affect the trajectories, the above procedure is repeated with
different values of x., x,. More specifically, by setting these
lower bounds to one of the values in {0.0,0.5,0.9}, the
resulting trajectories and the associated costs are summarized
in Table [[] as partially shown in Fig. [6] Note that the return
event could be requested anytime after the system starts.
It can be seen that when Y, is small, the effectiveness of
adding the safe-return constraints is not apparent as the robot
simply stays around the initial state. However, when yx, is
increased to improve task satisfiability and . increased to
enforce the safety constraints, the resulting trajectories are
more consistent and the robot is less likely to be trapped
inside unsafe states. When x, = 0.0, the average cost of the
resulting trajectories is much higher with more variance, due
to more trajectories where the robot is trapped at an early
stage. Nonetheless, as shown in the last row of Table Il simply

TABLE II
TRAJECTORY COST UNDER DIFFERENT X, AND Xr.
Traj. Cost' [ x; = 0.0 0.5 0.9
Xo = 0.0 3.0+ 1.8 4.3+1.5 5.8+ 1.2
0.5 56.4 +21.2 48.8+123 423+5.7
0.9 N/A? N/A N/A

' Mean cost with standard deviation evaluated over 100
simulated runs of the proposed method with differ-
ent Xo, xr- If the robot is trapped, the cost is computed
as the maximum action cost multiplied by the horizon.

2 “N/A” indicates that no solutions can be found.

increasing X, to 0.9 can not achieve the same results. Namely,
when X, is set too high, the constrained optimization in (8]
becomes infeasible and thus no solutions exist. In that case, a
relaxed and maximume-satisfying policy can be synthesized as
proposed in our earlier work [[1]], which is outside the scope of
this paper. One example trajectory when x, = 0.0 is shown
in Fig. [6] which indicates that the policy can not distinguish
the areas with different value functions, thus more prone to
being trapped during execution.

B. Study Two: Planetary Exploration Mission

For the second numerical study, we consider a planetary
exploration mission similar to the DLR SpaceBot Camp [435].
The rover-like mobile manipulator needs to navigate to differ-
ent areas to look for objects of interests, assemble and store
them, while maintaining its battery level by charging often.

1) Workspace and Task Description: As shown in Fig. [§]
a rover of size 1m x 1m is deployed to a planetary-like envi-
ronment of size 90m x 90m with rough terrains. Its dynamic
model within the environment is similar to the UGV described
in Sec. States are marked by objects of interests with
different probabilities. The environment consists of different
types of soil surfaces that may cause slip and even trapping.



TABLE III
SCALABILITY RESULTS OF THREE METHODS FOR THE CASE STUDY TWoO.

M Method! M, M, M Pr. P P. Po. P, R, (me, o), (wl, )
Size Time [s] Size Time [s] Size Time [s] Size  Time [s] Safety
ALT (2e3, 2e4) 0.1 —/— —/— (7e4, 16) 24.1 Te3 9.6 0.95
(92, 8e3)  BSL  (9e2, 8e3) 0.03 (623, 7e4) 0.6 (3e4, 2e5) 6.7 2ed 6.7 0.93
HIR (le2,2e3) 0.2 (1e2, 3e3) 1.9 (2e3, 1e5) 3.5 led 2.5 0.92
ALT (4e4, 6e5) 3.3 —/— —/— (8e4, 1e7) 2e3 N/A N/A N/A
(24, 2e5) BSL (24, 2e5) 0.6 (1e5, 1e6) 10.8 (4e5, 4e6) 145 3e5 2e3 0.9
HIR (2e2, 1e4) 8.3 (4e2, 4e4) 2.9 (2e3, 1e5) 8.7 2ed 4.1 0.9
ALT (2e4, 2e6) 10.4 —— —/— N/A N/A N/A N/A N/A
(6e4,7¢5)  BSL  (6e4, 7e5) 2.4 (4e5, 5¢6) 50.4 (2e6, 2e7) 4e2 N/A N/A N/A
HIR (3e2, 2e4) 19.1 (5e2, 4ed) 32 (2e3, 2e5) 10.1 2ed 6.3 0.9
ALT (6e5, 1e7) le2 —— —— N/A N/A N/A N/A N/A
(3e5,3¢6)  BSL  (3e5, 3e6) 187 N/A N/A N/A N/A N/A N/A N/A
HIR (4e2, 4e4d) 25.1 (5e2, 5e4) 8.4 (2e3, 3e5) 18.2 3e4 10.6 0.9
! Legends are the same as in Table
been visited a certain number of times. The action model and
the method to dynamically update the environment model are
m omitted and refer to our earlier work [8], [37]. On the other
| hand, the safe-return constraints require the rover to be able to
' . return to the base station (bs) after charging (ch) and visiting
the two regions, i.e.,
’ ¢: = O(ch A o(\/ieI ary)) A om(\/jersj). (30)
 Base Station 0 — Q where J is the set of two base stations as shown in Fig. 8] Due
Unsafe Run — se— i to high uncertainties in the model, the satisfiability bound
(sale Run W Charge m Aol  Speci. to hig 1 , : y Xo
Safe Run Two Storage BSupply Base is set to 0.6, while the safety bound x. is set to 0.9.
Time

Fig. 8. Left: heatmap of the value function v’* associated with the safe-
return constraints in (30). The base station is marked by the red star; Right:
examples of different runs under the outbound policy p/) and an unsafe policy
(in red) without the safe constrains.

Furthermore, there are also hills and valleys that might be
too steep to descend and ascend. Once trapped, it may not
be able to return safely to its base station. The system model
is initialized by a depth image with a desired discretization
level and manual estimation of the labels. Namely, given this
depth image and the robot motion model above, the system
model M can be constructed algorithmically, by checking the
relative depth between neighboring cells.

More specifically, the exploratory mission include: (i) nav-
igate to several potential areas of interest (ar;) and scope
specimens (ss); (i) navigate to a supply area (sp), grasp
containers and put specimens in the containers; (iii) navigate
to a storage area (st) and put the containers there; finally (iv)
charge at the charging areas (ch) whenever battery is low.
These tasks can be specified as the following LTL formulas:

v = (O0ch) A (DO(\/Z,GI ar; A ss)
A D55 = (=55)UO(sp A 0st)))),

where I is the set of potential areas with specimens. Similar
to the previous case, to encourage visits over different areas
of interest, the label ss is removed from an area after it has

(29)

2) Simulation Results: The results by following Alg. [2] are
first presented here. By setting the discretization step to 3m,
the underlying MDP M has 900 states and 8416 edges. Note
that this model is highly non-ergodic, meaning that many
states can be reached from the base station, but can not reach
the base station. For instance, as shown in Fig.[§] some valleys
can be reached easily by descending, but impossible to ascend
back. First, given the DRA A, associated with ¢, in @,
the semi-MDP M. and its motion policy . are constructed
in 1.7s. The resulting product P, has 119 nodes and 2628
edges, of which the optimal return policy 7., and the value
function v’* are computed in 1.9s. The distribution of v* is
shown in Fig. [8] It can be noticed that the probability of
returning to the base station decreases each time a valley or a
rough terrain is crossed.

Second, the task DRA A, has 26 states, 190 edges and 1
accepting pair, which is slightly simpler than the search-and-
rescue task. The semi-MDP M’ and its motion policy p,
are computed in 1.3s with 37 states and 1332 edges. Then,
their product P/ is constructed in 3.5s, with 1898 states and
134784 edges. At last, its associated outbound policy 7. is
computed in 2.5s via a LP of 10* variables. The detailed
model size and computation time are reported in the second
row of Table[IT] Fig. [§|shows several trajectories by following
the hierarchical task policy during online execution. It can be
seen that they remain mostly within central plain area, where



10°

10*

£

10%

10

1(](!

10 10? 10° 10 10° 10 10? 10° 10* 10°
M| M|

Fig. 9. Left: Cost distribution of 100 runs under the polices generated by
the baseline solution (Cx,1, Cr 2).the hierarchical algorithm (C’. ,, C’ )

and the alternative approach (C% 1, C% ,). Right: Evolution of solution time
for both case studies w.r.t. the system size |[M|: (Th,1, Tr,2) for the baseline

solution, (T , Ty, ) for the hierarchical algorithm, and (T% 1, T% o) for

the alternative approach.

the value function is high. In contrast, the above procedure
is repeated without the safe-return constraints. One such run
is also shown in Fig. [§] which instead crosses the connecting
valleys to reach the upper-left region where the value function
is low, and thus more likely to get trapped and not be able to
return the base station.

C. Comparison with Baselines

To further validate the computational gain and cost op-
timality of the proposed hierarchical approach (HIR), we
compare it with the baseline method (BSL) described in Alg. |I|
and the alternative method (ALT) discussed in Sec. [V-E] for
both case studies. Regarding the ALT method, PRISM 4.6 is
used [24] with the “multi-objective solution method” option
set to “LP”, see [22] to compute the prefix policies, while
a similar algorithm as proposed in our earlier work is
followed to compute the suffix policy within the AMECs.
More specifically, we decrease the discretization size of the
workspace such that the size of M increases gradually.

For the case study one, Table |l summarizes the resgl\ting
size of M., M,, P, and P, for Alg. [I} the size of M, P
for the alternative method; and the size of M., M/, P
and P, for Alg. |2} Note that since the alternative method
computes directly the extended model M and its product ﬁ,
the computation of product P, does not apply. The compu-
tation time for these models and the associated polices are
also reported. Both the alternative method and the baseline
method take less pre-processing time to compute M and M,
compared with the abstracted model M’. However, as the
system size increases, it is clear that both methods quickly
become intractable and even formulating the underlying LPs
over P, takes hours. For MDPs with more than 0.7 milliog
edges, the alternative method fails to generate the product P
before even computing the overall policy 7. This is mainly
due to the fact that P = M x A, x A,, which leads to a
drastic blow-up of the model size, compared with P, or P/
in the other two methods. Although the baseline method can
compute the outbound and safety products P, P,, neither
the return policy nor the outbound policy can be computed
within reasonable amount of time, i.e., 5 hours. In contrast, the
proposed method not only can solve the same set of problems
with at least 10 times less time, but also problems with much
higher complexity where the baseline method failed. It is

victims from one bs to one md. Right: without the safe-return constraint, the
robot reaches the other md after crossing the narrow passage between str.

interesting to notice that the computation of the abstraction
model M’, M/ and the associated motion policy took most
of the time, while the size of the product model P, and P!
remains relatively constant given a fixed task specification.
Similar analyses are performed for the case study two.
Table [IT] reports similar results. Namely, both the alternative
method and the baseline method fail to generate a solution for
systems with a large number of states and edges, while the pro-
posed hierarchical approach is close to one order of magnitude
more efficient. For the extreme case where M has 3 million
edges, the alternative approach or the baseline solution can
neither construct the products nor the linear programs given
the memory and time limits, while the proposed approach can
obtain the task and motion policy within 37.2s. Fig.[9|plots the
solution time with respect to the system size for both cases.
Last but not least, the cost optimality of the resulting polices
from all three methods are evaluated by 100 Monte Carlo
simulations, for both case studies. As shown in Fig. E for
system sizes where the baseline method can find the optimal
solution, the proposed approach has a close-to-optimal cost,
while the alternative method can only solve quite limited
scenarios. Even for the case where M has around 10° edges,
the proposed approach is within the range of 5% extra cost.

D. Hardware Experiment

The hardware experiment is carried out on an autonomous
ground vehicle, within an artificial office environment, as
shown in Fig. [I0] The workspace has a size of 5m x 4m.
Its state is monitored by a motion capture system and the
communication between the state estimation, planning and
control is handled by Robot Operating System (ROS).

1) Robot and Workspace Description: As shown in Fig.
the workspace is divided into 10 x 8 cells. The features and task
description follow a similar setting to the search and rescue
mission described in Sec. [VII-AT] Similar to (27), the task is
to transport victims in base stations (bsi, bss) to any medical
stations md, while avoiding the obstacles. On the other hand,
the safe-return constraint is similar to (28), which requires the
vehicle to return to the first base bsg, without being trapped
in the stairs. The number of offices and obstacles is smaller
than the simulated case, of which the associated probabilities
are shown in Fig. [T1] Note that the satisfiability bound x is
set to 0.75 and the safe-return bound x. is set to 0.95. The
vehicle has a navigation controller to move from any cell to



Ll
0
0

’

md
2

|
1 0.

y(m)

‘
»
» i
& &
oo e 0
L2 s oo

0 1 2 3 4 0 1 2 3 4
2(m) 2(m)

$8566600

a4

¢ dbeoccdapd

.
>

Fig. 11. Examples of robot trajectories in the plan suffix with (left) and
without (right) the safe-return constraints via the proposed approach.

adjacent cell in a “turn-and-forward” fashion. It results in a
similar non-determinism, i.e., it drifts side-ways while moving
and overshoot while rotating, but with a smaller uncertainty
compared to the simulated cases. Then, the complete model M
is constructed automatically by composing this motion model
with the labeled workspace model.

2) Results: In this part, we first report the results obtained
by the baseline method in comparison with the case where
no safe-return constraint is imposed. Then we show that the
proposed hierarchical algorithm can generate the same safe-
policy but with only a fraction of the planning time.

First, via the baseline method, the product P, has 9880
states and 87048 edges, while the P, has 1900 states and
16740 edges. It takes 30.8s and 0.1s to compute the policy 7,
and ., respectively. One of the resulting trajectories is
shown in Fig. [T1} which avoids the regions which can only
be accessed via stairs. In comparison, when no such safe-
return requirements as in (28)) are imposed, the same product
automaton P, can be used and one resulting trajectory is
also shown in Fig. [T] It can be seen that the robot reaches
the medical station md via the narrow passage is trapped
when exiting one region. Moreover, the proposed hierarchical
algorithm is applied to the same problem. It took around 2.1s
to construct the semi-MPDs M, and 0.5s for M. Afterwards,
the high-level task policy 7/ is synthesized in 7.3s, while the
safe policy and the value function v™* is computed in 2.6s.
The total planning time is around half of the baseline solution.
However, if the workspace is expanded by four times the size,
the baseline solution takes around 97.5s while the hierarchical
solution generates the optimal polices in merely 10.7s, i.e.,
close to one order of magnitude reduction in planning time,
which is similar to the trend observed in the simulated cases.

VIII. SUMMARY AND FUTURE WORK

This work has proposed a hierarchical motion planning
algorithm for mobile robots operating within uncertain en-
vironments. The proposed algorithm has taken into account
not only high-level tasks but also safe-return constrains, both
of which are specified as LTL formulas. It has been shown
that the hierarchical planning algorithm significantly reduces
the computation time compared with baseline solution, while
maintaining a close-to-optimal performance. Future work in-
cludes online adaptation of the hierarchical policies.

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

REFERENCES

M. Guo and M. M. Zavlanos, “Probabilistic motion planning under
temporal tasks and soft constraints,” IEEE Transactions on Automatic
Control, vol. 63, no. 12, pp. 40514066, 2018.

C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-Time
Dynamical Systems. Springer, 2017, vol. 89.

X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for
finite deterministic systems,” Automatica, vol. 50, no. 2, pp. 399—-408,
2014.

M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and
I. Lee, “Reinforcement learning for temporal logic control synthesis with
probabilistic satisfaction guarantees,” in IEEE Conference on Decision
and Control (CDC), 2019, pp. 5338-5343.

A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” in /EEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 10349-10 355.

S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
L. Laurenti, M. Lahijanian, A. Abate, L. Cardelli, and M. Kwiatkowska,
“Formal and efficient synthesis for continuous-time linear stochastic
hybrid processes,” IEEE Transactions on Automatic Control, vol. 66,
no. 1, pp. 17-32, 2020.

M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218-235, 2015.

P. Schillinger, M. Biirger, and D. V. Dimarogonas, “Simultaneous task
allocation and planning for temporal logic goals in heterogeneous multi-
robot systems,” The International Journal of Robotics Research, vol. 37,
no. 7, pp. 818-838, 2018.

T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes,” in 29th International Coference on Machine Learning.
ACM, 2012, pp. 1451-1458.

M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite
markov decision processes with gaussian processes,” Advances in Neural
Information Processing Systems, vol. 29, 2016.

M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34-37, 1966.

D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an
overview,” in IEEE Conference on Decision and Control (CDC), vol. 1,
1995, pp. 560-564.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification and
synthesis for discrete-time stochastic systems,” IEEE Transactions on
Automatic Control, vol. 60, no. 8, pp. 2031-2045, 2015.

X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
markov decision processes with linear temporal logic constraints,” IEEE
Transactions on Automatic Control, vol. 59, no. 5, pp. 1244-1257, 2014.
V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Quan-
titative multi-objective verification for probabilistic systems,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 112-127.

J. Tumova and D. V. Dimarogonas, “Multi-agent planning under lo-
cal LTL specifications and event-based synchronization,” Automatica,
vol. 70, pp. 239-248, 2016.

Y. Kantaros, B. V. Johnson, S. Chowdhury, D. J. Cappelleri, and
M. M. Zavlanos, “Control of magnetic microrobot teams for temporal
micromanipulation tasks,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1472-1489, 2018.

S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning for
surveillance with temporal-logic constraints,” The International Journal
of Robotics Research, vol. 30, no. 14, pp. 1695-1708, 2011.

V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for proba-
bilistic model checking,” in Automated Technology for Verification and
Analysis.  Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
317-332.

K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis, “Multi-
objective model checking of markov decision processes,” in Tools and
Algorithms for the Construction and Analysis of Systems.  Springer,
2007, pp. 50-65.

M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems,” in Computer Aided Verification.
Springer, 2011, pp. 585-591.



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

(38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
markov decision processes with temporal logic specifications,” in /JEEE
Conference on Decision and Control (CDC), 2012, pp. 3372-3379.

J. Wang, X. Ding, M. Lahijanian, I. C. Paschalidis, and C. A. Belta,
“Temporal logic motion control using actor—critic methods,” The Inter-
national Journal of Robotics Research, vol. 34, no. 10, pp. 1329-1344,
2015.

J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in International
Conference on Hybrid Systems: Computation and Control, 2013, pp.
1-10.

C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in [EEE
International Conference on Robotics and Automation (ICRA), 2017,
pp. 1481-1488.

R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

P-J. Meyer and D. V. Dimarogonas, ‘“Hierarchical decomposition of LTL
synthesis problem for nonlinear control systems,” IEEE Transactions on
Automatic Control, vol. 64, no. 11, pp. 4676-4683, 2019.

P. Nilsson and N. Ozay, “Incremental synthesis of switching protocols
via abstraction refinement,” in 53rd IEEE Conference on Decision and
Control, 2014, pp. 6246-6253.

S. Haesaert, S. E. Zadeh Soudjani, and A. Abate, “Verification of
general markov decision processes by approximate similarity relations
and policy refinement,” SIAM Journal on Control and Optimization,
vol. 55, no. 4, pp. 2333-2367, 2017.

C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press
Cambridge, 2008.

J. Klein, “Itl2dstar-LTL to deterministic streett and rabin automata,”
http://www.ltl2dstar.de, 2007.

P. Schillinger, M. Biirger, and D. V. Dimarogonas, “Hierarchical LTL-
task MDPs for multi-agent coordination through auctioning and learn-
ing,” The International Journal of Robotics Research, 2019.

M. Guo and D. V. Dimarogonas, “Task and motion coordination for
heterogeneous multiagent systems with loosely coupled local tasks,”
IEEE Transactions on Automation Science and Engineering, vol. 14,
no. 2, pp. 797-808, 2016.

Y. Kantaros, M. Malencia, V. Kumar, and G. J. Pappas, ‘“Reactive
temporal logic planning for multiple robots in unknown environments,”
in [EEE International Conference on Robotics and Automation (ICRA),
2020, pp. 11479-11485.

G. H. Polychronopoulos and J. N. Tsitsiklis, “Stochastic shortest path
problems with recourse,” Networks: An International Journal, vol. 27,
no. 2, pp. 133-143, 1996.

A. Pnueli, “The temporal semantics of concurrent programs,” Theoretical
Computer Science, vol. 13, no. 1, pp. 45-60, 1981.

MDP_TG, https://github.com/MengGuo/P_MDP_TG.

X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “Mdp optimal control
under temporal logic constraints,” in Decision and Control (CDC), IEEE
Conference on, 2011, pp. 532-538.

E. Altman, Constrained Markov decision processes. CRC Press, 1999,
vol. 7.

D. P. Bertsekas and J. N. Tsitsiklis, “An analysis of stochastic shortest
path problems,” Mathematics of Operations Research, vol. 16, no. 3, pp.
580-595, 1991.

D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and
localization for autonomous navigation in rough terrain using a 3d laser
scanner,” Robotics and Autonomous Systems, vol. 88, pp. 104-115, 2017.
G. L. O. Solver, https://developers.google.com/
optimization/lpl

Meng Guo (M’11) received the M.Sc. degree (2011)
in System, Control, and Robotics and the Ph.D.
degree (2016) in Electrical Engineering from KTH
Royal Institute of Technology, Sweden. He was a
postdoctoral associate with the Department of Me-
chanical Engineering and Materials Science, Duke
University, USA. During 2018-2021, he worked as a
senior research scientist on Reinforcement Learning
and Planning at the Bosch Center for Artificial
Intelligence (BCAI), Germany. Since 2022, he is an
assistant professor at the Department of Mechanics
and Engineering Science, College of Engineering, Peking University, China.
His main research interests include task and motion planning for robotic
systems.

Tianjun Liao received the bachelor’s degree from
the National University of Defense Technology,
Changsha, China, in 2007, and Ph.D. degree from
the Institute de Recherches Interdisciplinaires et de
Developpements en Intelligence Artificielle, Uni-
versite Libre de Bruxelles, Brussels, Belgium, in
2013. He is currently with the Academy of Mili-
tary Sciences, Beijing, China. His research interests
include heuristic optimization algorithms, automated
algorithm configuration, and swarm intelligence.

Junjie Wang received the B.E. degree (2020) in Au-
tomation from Beihang University, Beijing, China.
He is currently a PhD candidate at the College of
Engineering, Peking University, China. His research
interests include formal control synthesis for multi-
agent systems.

Zhongkui Li (M’11, SM’21) received the B.S.
degree in space engineering from the National Uni-
versity of Defense Technology, China, in 2005, and
his Ph.D. degree in dynamics and control from
Peking University, China, in 2010. Since 2013, Dr.
Li has been with the Department of Mechanics
and Engineering Science, College of Engineering,
Peking University, China, where he is currently a
tenured Associate Professor. He has authored the
book Cooperative Control of Multi-Agent Systems:
A Consensus Region Approach (CRC press, 2014)
and has published a number of journal papers. His current research interests
include multi-agent systems, autonomous unmanned systems, cooperative
control, motion and task planning. Dr. Li was the recipient of the State Natural
Science Award of China (Second Prize) in 2015, the Yang Jiachi Science
and Technology Award in 2015, and the National Excellent Doctoral Thesis
Award of China in 2012. His coauthored papers received the IET Control
Theory & Applications Premium Award in 2013 and the Best Paper Award of
Journal of Systems Science & Complexity in 2012. He serves as an Associate
Editor of IEEE Transactions on Automatic Control, Nonlinear Analysis:
Hybrid Systems, and the Conference Editorial Board of IEEE Control Systems
Society.


http://www.ltl2dstar.de
https://github.com/MengGuo/P_MDP_TG
https://developers.google.com/optimization/lp
https://developers.google.com/optimization/lp

	Introduction
	Related Work
	MDPs with Temporal Tasks
	Safety in Planning
	Hierarchical Temporal and Symbolic Abstraction

	Preliminaries
	Linear Temporal Logic (LTL)
	Deterministic Rabin Automaton (DRA)

	Problem Formulation
	Labeled MDP
	Task Specification
	Safe-Return Constraints
	Problem Statement

	Theoretical Analyses and Baseline Solutions
	Product Automaton and AMECs
	Task Satisfiability Reformulation
	Safe-return Constraints Reformulation
	Baseline Solution and Computational Complexity
	Alternative Baseline

	Proposed Hierarchical Solution
	Hierarchical Planning for Safe-return Constraints
	Labeled Semi-MDPs for Safe-return Constraints
	Hierarchical Safe-Return Policy Synthesis

	Hierarchical Planning for Tasks
	Safety-ensured Semi-MDPs for Tasks
	Hierarchical Outbound Policy Synthesis

	Algorithmic Summary and Online Execution

	Simulation and Experiment Study
	Study One: Search-and-Rescue Mission
	Workspace and Task Description
	Simulation Results

	Study Two: Planetary Exploration Mission
	Workspace and Task Description
	Simulation Results

	Comparison with Baselines
	Hardware Experiment
	Robot and Workspace Description
	Results


	Summary and Future Work
	References
	Biographies
	Meng Guo
	Tianjun Liao
	Junjie Wang
	Zhongkui Li


