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Abstract— Learning from Demonstration (LfD) provides an
intuitive and fast approach to program robotic manipulators.
Task parameterized representations allow easy adaptation to
new scenes and online observations. However, this approach
has been limited to pose-only demonstrations and thus only
skills with spatial and temporal features. In this work, we
extend the LfD framework to address forceful manipulation
skills, which are of great importance for industrial processes
such as assembly. For such skills, multi-modal demonstrations
including robot end-effector poses, force and torque readings,
and operation scene are essential. Our objective is to reproduce
such skills reliably according to the demonstrated pose and
force profiles within different scenes. The proposed method
combines our previous work on task-parameterized optimiza-
tion and attractor-based impedance control. The learned skill
model consists of (i) the attractor model that unifies the pose
and force features, and (ii) the stiffness model that optimizes the
stiffness for different stages of the skill. Furthermore, an online
execution algorithm is proposed to adapt the skill execution
to real-time observations of robot poses, measured forces, and
changed scenes. We validate this method rigorously on a 7-
DoF robot arm over several steps of an E-bike motor assembly
process, which require different types of forceful interaction
such as insertion, sliding and twisting.

I. INTRODUCTION

Forceful interaction is vital for robotic manipulation in
industry. While stiff kinematic trajectory tracking is adequate
for simple pick-and-drop tasks, it is insufficient for tasks
that involve explicit interaction with the environment. For
instance, consider the E-bike motor assembly illustrated in
Fig. 1; which is also the use case in the experiments of Sec-
tion VI. After following an approaching free-space trajectory,
a metallic shaft should be push firmly into a hole. In contrast,
a metallic peg ought to be slid over the metallic shaft pushing
down softly while twisting to match the inline carvings of
the peg and shaft. These skills require significantly different
kinematic trajectories, force trajectories and stiffness levels.
Variable impedance control and learning have recently been
exploited in manipulation scenarios characterized by the
aforementioned conditions [1]. Furthermore, compliant skills
have shown to be useful in collaborative scenarios between
robots and humans or between multiple robots [2], [3],
especially if the compliance is changed for different stages
of the skill during interaction.

Learning from demonstration (LfD) has increasingly
shown to be an intuitive and effective way to program
primitive skills for industrial robots, see [4], [5]. Instead
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Fig. 1: Various forceful skills considered in the experiment, each of which
contains several stages of forceful interaction.

of simply re-playing the recorded demonstration, several
parameterized skill models have been proposed to improve
the generalization over different scenarios, see [4], [6],
[7]. However most of these approaches have focused on
kinematic demonstrations, i.e., only the robot end-effector
pose is recorded and used during learning. Such position-
based models are often inadequate for tasks that require
forceful interactions, as they not only neglect completely the
demonstrated forces, but also rely on a manually-set stiffness.

In this work, we exploit the LfD paradigm to address
forceful manipulation skills. More specifically, we consider
multi-modal demonstrations including robot poses, force and
torque readings, as well as registered scenes from visual
perception. We propose a learning framework that com-
bines our previous work on task parameterized optimization
in [8], [9] and attractor-based impedance learning in [2].
The learned skill model consists of two parts: (i) a task-
parametrized attractor model that unifies pose and force
demonstration data; and (ii) a stiffness model that specifies
the optimal stiffness for different stages of the skill. Such
combination allows the robot to reproduce the desired skill
patterns extracted from the demonstrated pose and force
profiles while adapting to different environment conditions.

Last but not least, an import criteria of force-sensitive
skills is the ability to adapt to real-time observations includ-
ing deviations in robot poses due to tracking error, measured
external forces, and changes in operation scenes. In this



work, we propose an adaptation algorithm that optimally
adapts the skill trajectory and the associated stiffness given
such past observations.

The remainder of the paper is organized as follows:
Sec. II reviews the related work. The problem formulation
is formally given in Sec. IV, whereas the proposed solution
is described in Sec. V. Sec. VI presents experiment results
for an E-bike assembly use case. Finally, Sec. VII concludes
with future directions of research.

II. RELATED WORK

A. Learning from Demonstration

Compared with traditional motion planning [10], Learn-
ing from Demonstration (LfD) is an intuitive and effec-
tive way to transfer human skills to robots [4], [7], [11].
Teaching methods for LfD include kinesthetic teaching,
tele-operation, and visual demonstrations [11]. Various skill
models are proposed to abstract these demonstrations, such
as the full robot end-effector trajectory [7], Dynamic Move-
ment Primitives (DMPs) [12], Probabilistic Movement Primi-
tives (ProMP) [13], or Task-parameterized Gaussian Mixture
Models (TP-GMMs) [2], [4], [14], which extend GMMs
by incorporating observations from different perspectives
so called task parameters, task-parametrized hidden semi-
Markov models (TP-HSMMs) [8], [9], and deep neural
networks [15], [16] that directly map observations to control
inputs. In this work, we adopt TP-HSMMs as learning model,
mainly for two reasons: first, TP-HSMMs provide an elegant
probabilistic representation of motion skills, which extracts
temporal, sequential and spatial features from few human
demonstrations. In contrast, TP-GMMs only encode spatial
information; second, task parameterization allows the model
to generalize to new situations. Furthermore, the aforemen-
tioned works do not consider multi-modal demonstrations
including both pose and force data. This work further extends
the LfD framework to such data.

B. Force-based and impedance learning

Most works that utilize force readings in the learning
process can be categorized according to the force control
strategy: direct and indirect force control. The former ex-
plicitly assumes a force feedback controller and thus a task-
frame authority strategy is needed to select which Cartesian
axes are position or force controlled [17], [18], [19]. The
latter exploits impedance control to indirectly control the
forces required by the task [2], [3], which is the approach
we leverage in this work. Impedance controllers provide
a compliant behavior in all phases of a contact task but
are limited in their force tracking ability, mainly due to
the incomplete knowledge about the environment. To cope
with this limitation, two distinct methodologies are usually
adopted: impedance and set-point adaptation. Impedance
adaptation adjusts the controller parameters (e.g., inertia,
damping, and stiffness) to improve tracking in response to
force, position, or velocity measurements [20], [21]. Set-
point adaptation improves force tracking by adjusting the
controller set-point (e.g., the reference position) based on

force tracking errors or on estimations of the environment’s
change in stiffness [2], [3]. A learning framework for force-
sensitive manipulation skills is proposed in [22] that com-
bines impedance control with parameter learning, which
however requires manual design of different stages of a skill,
e.g., “approach”, “contact”, “align”, and “insert” for the peg-
in-hole skill. In this work we combine variable impedance,
state-dependent adaptation of the dynamics attractor set-
point, and TP-HSMM into a single LfD framework. This
allows a robotic manipulator to learn and reproduce contact-
rich tasks that require different compliance levels, feature
temporal patterns, and depend on task parameters related
to objects of interest in the robot workspace. In contrast
to the aforementioned works which tackle only a subset of
these problems, our approach provides a suitable solution
that addresses all these challenges, which naturally arise in
complex industrial settings.

III. PRELIMINARIES

We briefly present some preliminary results in robot skill
learning with focus on Task-Parameterized Hidden Semi-
Markov Models (TP-HSMMs), as well as the algorithm to
find the most-likely sequence of components within it.

A. TP-HSMMs

As exploited in our earlier work [8], [9], TP-HSMM
provides a compact representation for both the temporal
and spatial features of human demonstrations. Its task-
parameterized formulation allows flexible adaption of robot
skills to new scene conditions such as unseen object poses.

Consider a set of demonstrations tξu “ t
“

ξt
‰

u, where ξt
can belong to various manifolds, e.g., the Euclidean or the
Riemannian manifold from [14]. Also, we assume that the
same demonstrations are recorded from the perspective of
p “ t1, ¨ ¨ ¨ , P u coordinate systems. These are given by
the task parameters and include, e.g., objects of interest.
One common way to obtain such data is to transform the
demonstrations from a global frame to frame p by ξppqt “

Appq
´1

pξt´ b
ppq
q. Here, tpbppq,AppqquPp“1 is the translation

and rotation of frame p w.r.t. the global frame. A Task-
Parameterized HSMM (TP-HSMM) model is defined as:

Θ “
 

tahku
K
h“1, pµ

D
k , σ

D
k q, γk

(K

k“1
, (1)

where γk “ pπk, tpµ
ppq
k , Σ

ppq
k qu

P
p“1q is one component of the

model, which is modeled as a task parameterized Gaussian
mixture model (TP-GMM). It represents the observation
probability corresponding to component k; ahk is the transi-
tion probability from component h to k; pµDk , σ

D
k q describe

the Gaussian distributions for the duration of component k,
i.e., the probability of staying in state k for a certain
number of consecutive steps. Note that, differently from
standard GMMs, the mixture model above cannot be learned
independently for each frame. Indeed, the coefficients πk are
shared by all frames and the k-th component in frame p must
map to the same k-th component in the global frame.

The model parameters can be estimated using a reformu-
lation of the Expectation-Maximization (EM) algorithm [4],



Transform

TPHSMM ΘyTPHSMM

Task (ξ0, ξT )

Optimal Seq s?

F?

Impedance Control

Forceful skill a

[ξt]

Attractor Demos

Optimal Stiffness

Section V.A

Learn

Optimize
{Kρ,?

k
}

Initial Kρ

Initial Kν

Section V.B

[ξ`]

Attractor
[y`]

Online Skill Execution.

Offline Model Learning.

Multi-modal demos
[yt]

Attractor Ref.

Observ

Observ

(Y?, Ẏ?, Ÿ?
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Fig. 2: Overall diagram of the proposed method. Left: during the offline model learning, an attractor model Θy and a stiffness model tKρ,‹
k u are learned

from a set of multi-modal demonstrations; Right: during online skill execution, given a new scenario and a new task, the reference trajectory Y ‹ and
the preferred stiffness tKρ,‹

k u are generated online using the learned models and the real-time observations from the robot. They are then passed to the
impedance controller to compute the actual control input F .

which is tailored to jointly train the HSMM and the under-
lying TP-GMM, with polynomial complexity. Once learned,
the model Θ can be used during skill reproduction to adapt
automatically to new configurations of the P task parameters.

B. Most-Likely Sequence of Components

As motivated in [9], [23], a common problem that arises
with the HSMM model above is to find the most-likely se-
quence of components within Θ, given the past observations
“

ξ`
‰t

`“1
until time t ą 0 and the desired final observation

ξT . This problem is relevant for robot motion generation, as
we may need to estimate reference trajectories to achieve a
specific task goal such as a desired pose of a manipulated
object. More specifically, a modified Viterbi algorithm was
proposed in our earlier work [9], which defines:

δtpkq “ max
@d,@h‰k

#

ahkδt´dphq pkpdq
t
ź

`“t´d`1

b̃kpξ`q

+

,

δ1pkq “ bkpξ1qπk pkp1q,

(2)

where pkpdq “ N pd |µDk , σDk q is the duration probability of
component k, δtpkq is the likelihood of the system being in
component k at time t and not in state k at t` 1, see [24]
for details; and the observation probability at time `:

b̃kpξ`q “

#

N pξ` | µ̂k, Σ̂kq, ` P t1, 2, ..., t, T u;

1, ` P tt` 1, t` 2, ..., T ´ 1u ,

where pµ̂k, Σ̂kq is the global Gaussian component k in
Θ given ξ`. Namely, at each time t and for each compo-
nent k, the two arguments that maximize equation δtpkq are
recorded, and a simple backtracking procedure is used to find
the most likely sequence of components, denoted by s‹. This
sequence optimally matches the given the observations and
the learned spatial-temporal distributions of the model.

IV. PROBLEM DESCRIPTION

Consider a multi-DoF robotic arm, whose end-effector has
state x P R3 ˆ S3 as its Cartesian position and orientation
in the task space. However, for the sake of simplicity,
the formulations in the sequel are all given for Euclidean
space. Details regarding how quaternions should be handled

properly are given in Sec. V-A.3. To achieve compliant
behaviors, we assume that the arm is governed by a Cartesian
Impedance Controller [25] in the Lagrangian formulation:

F “Kρ
pxd´xq`K

ν
p 9xd´ 9xq` Ipqq:xd`Ωpq, 9qq, (3)

where we omit the time t as under-script for brevity; F is
the input torque control, projected to task space; pxd, 9xd, :xdq
are the desired pose, velocity and acceleration in the task
space; Kρ and Kν are stiffness and damping terms; Ipqq
and Ωpq, 9qq are the task-space inertia matrix and internal
dynamics terms, respectively; the latter terms depend on the
current joint angular position q and velocity 9q, which are
assumed to be available during execution.

To demonstrate a forceful manipulation skill for an object,
a human user performs several kinesthetic demonstrations on
the robot for different poses of the object. Particularly, the
set of demonstrations is given by D “ tD1, ¨ ¨ ¨ ,DMu, each
of which is a timed sequence of observations of the format:

Dm “
“

ξt
‰Tm

t“1
“

“`

pxt, 9xt, :xt,f tq,pt
˘‰Tm

t“1
, (4)

where at each time t the observation ξt consists of the robot
pose xt, velocity 9xt, acceleration :xt, the external force and
torque f t, and finally the object pose pt. Such observations
are often obtained from a state estimation module, a percep-
tion module or dedicated sensors.

The objective here is to learn a motion policy for the
impedance controller in (3), such that the skill can be
reproduced reliably with the demonstrated pose and force
profiles, even for new object poses.

Several examples of forceful skills addressed in the exper-
iment section are shown in Fig. 1. Note that these skills al-
ready show different characteristics of forceful manipulation,
e.g., the PCB board requires a sequential pushing motion for
pins, while for the gear a specific sliding path needs to be
followed in a compliant way; the shaft should be inserted
with a stiff downward motion, while for the peg a compliant
twisting-and-sliding motion is needed.

V. PROPOSED SOLUTION

This section presents the two main components of the
proposed solution, as shown in Fig. 2: the offline model



Fig. 3: Top: trajectories in z-axis for the press-PCB skill: one demonstration,
the learned attractor, and one execution. Bottom: the recorded force in z-axis
during demonstration and one execution.

learning as described in Sec. V-A and the online skill
execution as described in Sec. V-B.

A. Offline Model Learning

Two models are learned offline from the set of demonstra-
tions: (I) the attractor model Θy , as a TP-HSMM model over
the attractor trajectories; and (II) the stiffness model tKρ,‹

k u

associated with the attractor model. Both models are essential
as the attractor model shows how the pose trajectory should
adapt to the actual scenario, while the stiffness model mon-
itors the reproduction of the force profile.

1) Learning of Attractor Model: One of the main chal-
lenges for the skill learning problem is to properly abstract
an unified model from multi-modal demonstrations that en-
capsulate position, force and vision data. We propose here to
combine the attractor-based interaction model and the task-
parameterized Markovian model for this purpose, both of
which are developed in our earlier works [2], [8], [9].

In particular, we employ the attractor interaction model
proposed in [2] to transform the pose and force demonstra-
tions to attractor trajectories by assuming that the attractor is
driven by a virtual mass-spring-damper system. Consider any
demonstration Dm “

“

ξt
‰

from (4), the associated attractor
trajectory

“

yt
‰

can be computed by:

yt “ xt `K
´ρ
t pKν

t 9xt ` :xt ´ f tq , (5)

where pxt, 9xt, :xt,f tq P ξt is part of the demonstration
as described in Sec. IV; Kρ

t , Kν
t are the stiffness and

the damping terms, the design of which is described in
the sequel; K´ρ

t “ pKρ
t q
´1 for brevity. Intuitively, the

position, velocity, acceleration and force demonstrations are
transformed into a single entity: the pose of a virtual at-
tractor. Examples of the demonstrated pose trajectory and
the computed attractor trajectory for the press-pcb skill are
shown in Fig. 3. It can be seen that the resulting attractor
pose can differ greatly from the demonstrated pose when
large velocities and sensed forces are present.

In other words, (5) allows us to transform each demo
Dm P D into an attractor demo Ψm “

“

pyt, ptq
‰

, i.e.,
the attractor trajectory and the associated object pose. As

Fig. 4: The learned attractor model (top), the optimized translation stiffness
(middle) and the optimized angular stiffness (bottom), for the last stage of
push-shaft skill (left) and twist peg (right).

a result, the standard procedure as described in Sec. III-A
can be followed to learned a TP-HSMM model from the set
of attractor demonstrations Ψ “ tΨmu. First, the attractor
trajectory

“

yt
‰

is transformed into local observations from
different frames, e.g., from the initial robot pose and the
object pose. Then, an EM algorithm is used to compute the
TP-HSMM model as defined in (1), which encapsulates the
spatial-temporal features of the derived attractor trajectories.
Denote by Θy this attractor model, which can already
adapt to different initial robot and object poses due to its
task parameterization. The attractor models associated with
the last stage of pushing a shaft and twisting a peg are
shown in Fig. 4. Typically, the Gaussian components have
small covariance during contact between the robot and the
workstation with large forces, while a larger variance is
allowed during free motion.

2) Optimization of Stiffness Matrix: As mentioned earlier,
to compute the attractor trajectories in (5), the stiffness and
damping terms Kρ

t and Kν
t have to be chosen beforehand.

Clearly, the choice of these terms has a great impact on the
resulting attractor model Θy . In this section, we describe
how to optimize them.

Instead of solving them for each time instant, we pro-
pose to optimize these terms locally for each component
within Θy . Particularly, consider component k within Θy .
For each attractor trajectory Ψm, the accumulative residual
of the computed attractor trajectory with respect to this
component is given by:

εm “
ÿ

ξtPDm

pt,k
`

µk ´ xt ´K
´ρ
k pKν

t 9xt ` :xt ´ f tq
˘

,

(6)
where pt,k is the probability of state xt belonging to com-
ponent k, which is a by-product of the EM algorithm when
deriving Θy; µk is the mean of component k from Θy;
pxt, 9xt, :xt,f tq P ξt is the demonstration point at time t
of Dm; K´ρ

k is the inverse of the stiffness term to be
optimized, while the damping term Kν

t remains unchanged.
Consequently, the optimal local stiffness for component k



can be computed by minimizing the complete residual over
all demonstrations, namely:

Kρ,‹
k “ min

Kρ
k

›

›

›

›

›

ÿ

Dm

εm

›

›

›

›

›

, s.t. Kρ
k ľ 0, (7)

which requires the stiffness matrix to be positive semidefi-
nite. The above optimization problem belongs to the semidef-
inite program (SDP) [2], which can be solved efficiently
using techniques such as interior-point methods [26].

To summarize, an initial choice of Kρ
t and Kν

t is set
to compute the attractor model as described in V-A.1. A
common choice is the default stiffness of the underlying
impedance controller in (3) and its critical damping term.
Afterwards, the local stiffness of each component can be
optimized by (7) as described above, denoted by tKρ,‹

k u.
Note that the learned stiffness varies along the attractor tra-
jectory in order to match the robot stiffness during kinesthetic
teaching. It becomes apparent in the sequel that the optimized
stiffness is also crucial during online execution to react in
real-time to pose and force/torque measurements. Fig. 4
shows the optimized translational and rotational stiffness
for the push-shaft and twist-peg skills. It can be seen that
insertion requires relatively high translational stiffness upon
contact while twisting requires high rotational stiffness.

3) Riemannian Manifold Formulation: It is commonly
the case in robotic manipulation that the end-effector pose
contains orientation representations such as quaternions.
Classical Euclidean-based methods often rely on local ap-
proximations, which imposes no guarantee on the validity of
the results. As shown in [9], [14], the theory of Riemannian
manifold can tackle this issue in an elegant way. More
specifically, for each point x in the manifold M, there
exists a tangent space TxM. This allows us to carry out
Euclidean operations locally, while being geometrically con-
sistent with the manifold constraints. Two special operations
called exponential and logarithmic maps allows us to map
points between TxM and M, while maintaining the geodesic
distance. Another useful operation is the parallel transport,
which moves vectors between tangent spaces without intro-
ducing distortion. The exact form of these operations for
various manifolds can be found in [14].

The aforementioned calculations in this paper can be
easily adapted to Riemannian manifold formulation. For
instance, the subtraction of poses within (3) and (6) can be
replaced by the logarithmic operation and the summation of
poses in (5) by the exponential operation. More importantly,
the TP-GMMs within the attractor model Θy belong to
the manifold. The Gaussian mixtures need to be computed
iteratively by projecting to the tangent space and back to the
manifold. Thus the Riemannian formulation is often more
computationally expensive than its Euclidean counterpart,
which however always ensures the validity of the results.

B. Online Skill Execution

After both the attractor model and stiffness model are
learned offline, they can be used for skill execution. The

ft
x0
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p0 pt

s?

ŝ?

Old

New
Transition

Fig. 5: Online adaptation scheme during execution, due to changes in object
pose pt, robot pose xt and external forces f t. A transition phase (in green)
is added before tracking the new attractor trajectory (in solid blue).

skill execution consists of two steps: initial synthesis and
online adaption, which are described in this section.

1) Initial Synthesis: Consider a new scenario where the
robot and object poses may be different than the demon-
strated ones. The first step is to compute the current frames
for the attractor model Θy given this new scenario, i.e.,
the P frames in (1). Second, the global GMMs in the
global frame associated with Θy are computed as weighted
product of the local GMMs in these local frames. Moreover,
given the initial observation ξ0 and possibly the desired
final observation ξT , the modified Viterbi algorithm in (2)
is used to compute the most-likely sequence of compo-
nents within Θy , denoted by s‹ “ rs‹t s. Lastly, a linear
quadratic tracking (LQT) [27] algorithm is used to retrieve
the optimal and smooth reference trajectory that tracks this
sequence of Gaussian components. This trajectory is the
reference attractor trajectory to track by the robot, including
a consistent velocity and acceleration profile, denoted by
Y ‹ “ ry‹t s, 9Y

‹
“ r 9y‹t s, :Y

‹
“ r:y‹t s, respectively. Details

on the controller design and its adaptation to Riemannian
manifold can be found in our earlier work [9].

Given s‹t , y‹t , 9y‹t , :y‹t at time t ą 0 above, the control
input for the Cartesian Impedance controller in (3) can be
computed as the torque input projected to task space:

F t “K
ρ,‹
s‹
t
py‹t ´xtq`K

ν
t p 9y‹t ´ 9xtq`Ipqtq:y

‹
t `Ωpqt, 9qtq,

(8)
where the stiffness Kρ,‹

s‹
t

is the optimal stiffness computed
from (7) that is associated with component s‹t ; Kν

t is the
damping term according to the choice in (5); pxt, 9xtq are
the current robot end-effector pose and velocity; pqt, 9qtq
are the current joint angular position and velocity. Via this
impedance controller, the robot tracks the desired attractor
trajectory Y ‹ with the desired stiffness.

2) Online Retrieval: Once the robot starts moving, obser-
vations such as current robot pose and force/torque readings
are obtained, which can indicate deviations in skill execution
due to for instance external disturbances or tracking errors.
Furthermore, changes in the scene such as new object poses
are also registered. This section addresses how to adapt
the reference attractor trajectory and the associated stiffness
given these real-time measurements.



Algorithm 1: Learn Forceful Skills from Multi-
modal Demonstrations

Input: D “ tDmu, rξ`st`“0 at time t ď 0
Output: Θy , tKρ,‹

k u, F t
/* Offline Learning, Sec. V-A */

1 Convert Dm to Ψm;
2 Learn attractor model Θy;
3 Learn stiffness model tKρ,‹

k u;
/* Online Execution, Sec. V-B */

4 Compute s‹ and Y ‹ given Θy and pξ0, ξT q;
5 while Goal ξT is not reached and t ă T do
6 Compute F t given y‹t and Kρ,‹

t by (8);
7 Send F t to impedance controller;
8 Obtain new observation ξt;
9 Update Θy given new P frames;

10 Update s‹ given rξ`s and Θy;
11 Compute ps‹ by (9);
12 Update y‹t via LQT given ps‹ and Θy;

To begin with, the changes in object poses lead to changes
of the task parameters in the attractor model Θy . Thus, the
global GMMs associated with all components are updated
by re-computing the product of local GMMs similar to the
initial synthesis. Consequently, the observation probability
within (2) is changed and so is the most-likely sequence s‹.
More importantly, the past observations in (2) is not empty
anymore as in the initial synthesis. In particular, given
the past observations of robot pose and force readings
rξ`s “ rpx`, f `qs until time t, their corresponding virtual
observations of attractor ry`s is given by (5), where the
stiffness and damping terms are set to the same as used
during execution in the impedance controller (8). Then, these
converted observations of attractors are used to evaluate the
updated emission probability of the whole sequence, i.e.,

b̃kpξ`q “

#

N py` | µ̂s‹
`
, Σ̂s‹

`
q, ` P t1, 2, ..., t, T u;

1, ` P tt` 1, t` 2, ..., T ´ 1u ,

where y` “ x``K
´ρ
s‹
`
pKν

` 9x` ` :x` ´ f `q is the observation
of the virtual attractor. Lastly, this emission probability is
used in the modified Viterbi algorithm (2) to compute the
new optimal sequence of components s‹.

Given the updated sequence s‹, a transition phase should
be followed to drive the system from its current pose xt
to the associated attractor pose yt for t ą 0. This is critical
during online adaptation as the attractor pose yt and the robot
pose xt in (5) can be significantly different due to e.g., high
velocity and acceleration, or large external force, while this
difference is negligible when the system starts initially at
t “ 0. As a result, the adapted trajectory Y ‹ should start
from the current pose xt, cross the via-point yt, and then
track the updated sequence of components as specified in s‹.
To achieve this, an artificial Gaussian global component ky is
introduced which has its mean at yt and the same covariance
as the first component in s‹, and the current stiffness as
the desired stiffness in Kρ,‹

t . Moreover, this component is
assigned a duration dy , which is proportional to the distance

Fig. 6: Left: workspace in experiment, including the assembly area and the
loading area. Right: close-up of the E-bike motor internal.

between xt and yt. Finally, this new sequence of component
ky with dy is pre-pended to the updated sequence s‹, namely,

ps‹ “ pky ¨ ¨ ¨ kyq s
‹, (9)

where ky is repeated dy times. This updated sequence ŝ‹ can
be tracked by the updated reference trajectory Y ‹ computed
via LQT. Consequently, this new reference trajectory is
sent to the impedance controller as shown in (8) with the
associated stiffness. Fig. 5 illustrates the above adaptation
process, where the reacted attractor guides the end-effector
to compensate for disturbances in robot poses or external
forces as well as changes in the scene.

3) Overall Algorithm: The overall framework is summa-
rized in Alg. 1. Note that the offline learning process between
Line 1-3 only needs to be done once. The learned attractor
model Θy and stiffness model tKρ,‹

k u are saved and loaded
directly for each execution. During online execution, the past
observations rξ`s are saved and used whenever an online
adaptation is triggered.

VI. EXPERIMENTS

This section presents the experimental validation on a 7-
DoF Franka Emika robot arm for an industrial E-bike motor
assembly process. The arm is extended by a wrist-mounted
ATI FT45 sensor and a parallel gripper. The proposed
approach is implemented in Python3. The Robot Operating
System (ROS) enables communication between the planning,
motion control and perception modules. All benchmarks are
run on a desktop with an 8-core Intel Xeon CPU. Experiment
videos can be found in the supplementary files.

A. Workspace Setup and Manipulation Tasks

As shown in Fig. 6, the workstation consists of the loading
area where components are picked and the assembly area
where the components are assembled together. The whole
motor is roughly 16.5ˆ14.6ˆ15cm3 in size. A pre-defined
sequence of tasks should be followed during the assembly.
As illustrated in Fig. 1, we focus on the following four tasks
as part of the assembly process in this experiment:

[Press-PCB]: A PCB of size 15.6ˆ7.5ˆ0.2cm3 is pressed
into three pins on the motor base to secure the board. This
skill consists four stages: approaching, pressing, transition,
pressing and retreating. The pressing should be done with an
appropriate force, if too small then the pins are not securely
inserted; if too large then the PCB may be damaged; while



Skill Name M T rss N TP t pΘy |K
‹q [s]

grasp gear 3 1.2 8 tr, ou 3 | 2
mount gear 3 4.8 18 tr, gu 14 | 12
pick shaft 3 1.3 7 tr, ou 4 | 2
insert shaft 2 5.7 23 tr, gu 20 | 18

pick peg 3 2 10 tr, gu 3 | 2
slide peg 2 5.3 24 tr, ou 18 | 15
press pcb 4 6 22 tr, gu 15 | 10

TABLE I: For each skill, the number of demonstrations M , the trajectory
length T , number of components N , choice of task parameters TP, and the
training time for Θy and K‹. Note that r, g, o are the robot, global, object
frame, respectively.

the transition should be accurate to not miss the pins (with
less than 2 mm tolerance).

[Mount-Gear]: A spur gear of size 11.5ˆ11.5ˆ3.7cm3 is
mounted above the rotor casing. This skill consists of three
stages: approaching, sliding and pushing. The sliding stage is
quite delicate as the metal bottom of the gear needs to follow
a tunnel on the casing into the desired location, followed by
a light push to secure it in-place.

[Insert-Shaft]: A drive shaft of size 1.6ˆ 1.6ˆ 15cm3 is
inserted through the opening of the gear into a hole in the
metal casing. This skill consists of three stages: approaching,
wiggling and pushing. The “wiggling” stage is to insert the
bottom of the shaft into the hole beneath the gear, which
has a tolerance of around 1mm. Furthermore, the shaft is
pushed with a large force in a stiff manner to “click” in
position during the “pushing” stage. This proper placement
is vital for the functionality.

[Slide-Peg]: The peg of size 2.4 ˆ 2.4 ˆ 10.2cm3 is
slided between the inserted shaft and the mounted gear. This
skill consists of four stages: attaching, sliding, twisting and
pushing. The “attaching” stage is to attach the peg bottom
to the top of the shaft, which has a toleration of 1mm.
Moreover, to match the inline tooth of the shaft and the peg,
the peg should be pushed with a small force, while twisting
in a compliant manner during the this stage.

It can be seen that these four skills already have different
characteristics of forceful interaction. For instance, different
stiffness or accuracy is required for different stages of the
execution, of which translational and rotational stiffness can
also be different.

B. Results

This section first presents the learning results of each
skill above, and then the performance during reproduction
in terms of success rate.

1) Skill Learning: Due to the high requirement on preci-
sion, all demonstrations are logged at 100Hz. Details about
the skill model such as the number of demonstrations,
frames, skill duration are shown in Table I. The initial
stiffness and damping terms are set to 400 and 40 times
identity matrix with appropriate dimensions. On average, it
takes around 10s to learn the skill model, where the EM
for the attractor-model and the stiffness optimization for
the stiffness model split the time equally. Examples of the
learned attractor model and the associated stiffness model for
the Insert-Shaft and Slide-Peg skills are shown in Fig. 4. Note

Methods Press-PCB Mount-Gear Insert-Shaft Slide-Peg

Pose-based 0 3 0 1
Demo-replay 0 4 0 2

Ours 9 10 8 9
Manual N/A N/A 9 9

TABLE II: Success rate of four different methods out of 10 repeated
executions. Note that manual skills are not programmed for first two skills.

Fig. 7: Online adaptation during the execution of Insert-Shaft skill. Position
disturbance in robot x-axis is introduced within the green area, while force
disturbance in the z-axis is added during insertion in the blue area.

that the optimized stiffness matches the expected behavior
well, e.g., a high translational stiffness for insertion and a
high rotational stiffness for twisting.

2) Skill Reproduction: As summarized in Alg. 1, the
learned model is applied on-line provided with the observed
robot positions and external forces. Table II shows the
success rate of executing each skill with 10 repetitions. The
Press-PCB and Mount-Gear skills are reliably reproduced
without any manual tuning of the associated frames, while a
manual shift in the object frame is needed for the Insert-shaft
and Slide-Peg skills to compensate for the tracking error of
the underlying impedance controller. Such errors are mostly
due to robot model mismatch during identification, and the
internal joint force or torque control mechanism. Fig. 3
highlights the differences between the executed trajectory,
the reference attractor trajectory and the demonstrations. In
addition, it also shows that the exerted force profile during
execution matches the demonstrations well.

To validate the online adaptation scheme, manual distur-
bances are introduced in robot position and measured forces
during the execution of Insert-Shaft. As shown in Fig. 7, the
execution adapts to these changes: the executed trajectory
recovers to the original reference after the robot is pushed
away along x-axis; and the exerted pushing force in z-axis
remains close to the desired level after the robot wrist is
lifted up or pushed down.

C. Comparison and Discussion

For benchmark, the proposed method is compared against
three main baselines: the direct replay of the demonstration
(demo-replay); the standard position-based skill model (pose-
based) as proposed in [9]; and manually-tuned skills (man-
ual) by following the procedure proposed in [22]. Pose-based
methods simply ignore the force profile when learning the
skill model, while the manual method require manual tunning
of all fixed reference trajectory and the associated stiffness.

The resulting success rate is summarized in Table II. First,



Fig. 8: Comparison of executed trajectories via demo-replay, manual tunning
and our method, for the Insert-Shaft skill (left) projected on y ´ z plane
and Slide-Peg skill (right) projected on x´ z plane.

the success rate of demo-replay and pose-based methods
are quite low for all four skills, especially when delicate
force interaction is required. Often, via both methods, the
skill execution simply reaching these key reference points
without exerting the desired force, e.g., the robot only
touches the pins without any pushing force during Press-
PCB. Moreover, raw human demonstrations are quite shaky
in general as shown in Fig. 8. Replaying such small un-
necessary movements are often harmful for the execution.
Lastly, the manual tunning of both Insert-shaft and Slide-
peg skills can lead to rather reliable execution. However, the
time taken to program these skills is significantly longer than
the method proposed here (hours vs. minutes empirically).
In addition, the resulting trajectory often follows a zig-
zag pattern with harsh transitions due to linear interpolation
between manually-chosen waypoints, as shown in Fig. 8.

Note that our previous work [9] proposed a method to
automatically choose the best grasping maneuver via the
task parameterized skill model, given different object poses.
However, due to the lack of reliable and accurate perception
module, the poses of the work pieces are not changed in this
experiment, which remains part of our future work.

VII. CONCLUSION

This work extends the LfD framework to learn forceful
manipulation skills from multi-modal demonstrations. The
learned skill model consists of the attractor model and the
stiffness model. Furthermore, an online execution algorithm
is proposed to adapt the skill execution to real-time obser-
vations. Future work involves the combination with learning
to mitigate the tracking errors during execution.
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