
Automatica 159 (2024) 111377

Z
S
U

h
a
a
i
a
n
d
a
e
d
g

(

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Timeminimization and online synchronization formulti-agent
systems under collaborative temporal logic tasks✩

esen Liu, Meng Guo, Zhongkui Li ∗
tate Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking
niversity, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 4 January 2023
Received in revised form 10 July 2023
Accepted 14 September 2023
Available online 27 October 2023

Keywords:
Networked robots
Linear temporal logic
Task coordination
Anytime search

a b s t r a c t

Multi-agent systems can be efficient when solving a team-wide task in a concurrent manner. However,
without proper synchronization, the correctness of the combined behavior is hard to guarantee,
such as to follow a specific ordering of subtasks or to perform a simultaneous collaboration. This
work addresses the minimum-time task planning problem for multi-agent systems under complex
global tasks stated as syntactically co-safe Linear Temporal Logic (sc-LTL) formulas. These tasks
include the temporal and spatial requirements on both independent local actions and direct sub-
team collaborations. The proposed solution is an anytime algorithm that combines the partial-ordering
analysis of the underlying task automaton for task decomposition, and the branch and bound (BnB)
search method for task assignment. We analyze the soundness, completeness and optimality regarding
the minimal completion time. We show that a feasible and near-optimal solution is quickly reached
while the search continues within the time budget. Furthermore, to handle fluctuations in task duration
and agent failures during online execution, we propose an adaptation algorithm to synchronize
execution status and re-assign unfinished subtasks dynamically to maintain correctness and optimality.
Both algorithms are validated over systems of more than 10 agents via numerical simulations and
hardware experiments, against several established baselines.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-agent systems consist of a fleet of homogeneous or
eterogeneous robots, such as autonomous ground vehicles and
erial vehicles. They are often deployed to accomplish tasks that
re otherwise too inefficient or even infeasible for a single robot
n Arai et al. (2002). First, by allowing the robots to move and
ct concurrently, the overall efficiency of the team can be sig-
ificantly improved. For instance, a fleet of delivery vehicles can
rastically reduce the delivery time (Toth & Vigo, 2002); and
team of drones can surveil a large terrain and detect poach-
rs (Cliff et al., 2015). Second, by enabling multiple robots to
irectly collaborate on a task, capabilities of the team can be
reatly extended. For instance, several mobile manipulators can

✩ This work was supported in part by the National Key R&D Program
of China under grants 2022ZD0116401 and 2022ZD0116400; in part by the
National Natural Science Foundation of China under grants U2241214, 62373008,
62203017, and T2121002. The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
Associate Editor Dimos V. Dimarogonas under the direction of Editor Christos G.
Cassandras.
∗ Corresponding author.

E-mail addresses: 1901111653@pku.edu.cn (Z. Liu), meng.guo@pku.edu.cn
M. Guo), zhongkli@pku.edu.cn (Z. Li).
https://doi.org/10.1016/j.automatica.2023.111377
0005-1098/© 2023 Elsevier Ltd. All rights reserved.
transport objects that are otherwise too heavy for one (Fink et al.,
2008); and a team of mobile vehicles can collaboratively herd
moving targets via formation (Varava et al., 2017). Furthermore,
to specify these complex tasks, many recent work propose to
use formal languages such as Linear Temporal Logic (LTL) for-
mulas (Baier & Katoen, 2008), as an intuitive yet powerful way
to describe both spatial and temporal requirements on the team
behavior; see Guo and Zavlanos (2018), Kantaros and Zavlanos
(2020), Schillinger et al. (2018), Ulusoy et al. (2013) for examples.

However, coordination of these robots to accomplish the de-
sired task can result in great complexity, as the set of possible task
assignments can be combinatorial with respect to the number of
robots and the length of tasks (Lavaei et al., 2022; Toth & Vigo,
2002). This is particularly the case when certain metrics should
be minimized, such as the completion time or the summed cost
of all robots. There are many recent work obtain considerable
results, e.g., via optimal planning algorithms such as mixed in-
teger linear programming (MILP) in Jones et al. (2019), Luo and
Zavlanos (2022), Sahin et al. (2019), and search algorithms over
state or solution space as in Kantaros and Zavlanos (2020), Luo
et al. (2021), Schillinger et al. (2018). Whereas being sound and
optimal, many existing solutions are designed from an offline
perspective, thus lacking in one of the following aspects that
could be essential for robotic missions: (I) Real-time requirements.

https://doi.org/10.1016/j.automatica.2023.111377
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2023.111377&domain=pdf
mailto:1901111653@pku.edu.cn
mailto:meng.guo@pku.edu.cn
mailto:zhongkli@pku.edu.cn
https://doi.org/10.1016/j.automatica.2023.111377

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

O
c
p
r
e
a
t
s
u
a
T
s
t
w
p

m
g
o
i
i
w
o
t
N
a
g
i
l
b
t
r
v
F
d
p
f
a
B
f
o
f
g
s
n
r
p
1

t
r
c
s
r
(
p
s

v
i
p
t

ptimal solutions often take an unpredictable amount of time to
ompute, without any intermediate feedback. However, for many
ractical applications, good solutions that are generated fast and
eliably are often more beneficial; (II) Synchronization during plan
xecution. Many of the derived plans are assigned to the robots
nd executed independently without any synchronization among
hem, e.g., no coordination on the start and finish time of a
ubtask. Such procedure generally relies on a precise model of the
nderlying system such as traveling time and task execution time,
nd the assumption that no direct collaborations are required.
hus, any mismatch in the given model or dependency in the
ubtasks would lead to erroneous execution; (III) Online adapta-
ion. An optimal but static solution cannot handle changes in the
orkspace or in the team during online execution, e.g., certain
aths between subtasks are blocked, or some robots break down.
To overcome these challenges, this work takes into account the

inimum-time task coordination problem of a team of hetero-
eneous robots. We specify the team-wise task as LTL formulas
ver the desired actions to perform at the desired regions of
nterest in the environment. Such action can be independent that
t can be done by one of these robots alone, or collaborative
here several robots should collaborate to accomplish it. The
bjective is to find an optimal task policy for the team such
hat the completion time for the task is minimized. Due to the
P-completeness of this problem, the focus here is to design
n anytime algorithm that returns the best solution within the
iven time budget. More specifically, the proposed algorithm
nterleaves between the partial ordering analysis of the under-
ying task automaton for task decomposition, and the branch and
ound (BnB) search method for task assignment, Each of these
wo sub-routines is an anytime algorithm. The proposed partial
elations can be applied to non-instantaneous subtasks, thus pro-
iding a more general model for analyzing concurrent subtasks.
urthermore, the proposed lower and upper bounding methods
uring the BnB search significantly reduces the search space. We
rove the completeness and soundness of the overall algorithm
or the considered objective, and we also show empirically that
lgorithm can quickly reach a feasible and near-optimal solution.
esides, we propose an online synchronization protocol to handle
luctuations in the execution time, while ensuring that the partial
rdering constraints are still respected. Lastly, to handle agent
ailures during the task execution, we propose an adaptation al-
orithm to synchronize execution status and re-assign unfinished
ubtasks to maintain correctness and optimality. The effective-
ess and advantages of the proposed algorithm are demonstrated
igorously via numerical simulations and hardware experiments,
articularly over large-scale systems of more than 20 robots and
0 subtasks.
The main contribution of this work is threefold: (I) it extends

he existing work on temporal task planning to allow collabo-
ative subtasks and the practical objective of minimizing task
ompletion time; (II) it proposes an anytime algorithm that is
ound, complete and optimal, which is particularly suitable for
eal-time applications where computation time is restricted; and
III) it provides a novel theoretical approach that combines the
artial ordering analysis for task decomposition and the BnB
earch for task assignment.
The rest of the paper is organized as follows: Section 2 re-

iews related work. The formal problem description is given
n Section 4. Main components of the proposed framework are
resented in Sections 5–7. Experiment studies are shown in Sec-

ion 8, followed by conclusions and future work in Section 9.

2

2. Related work

2.1. Multi-agent task planning

Planning for multi-agent systems have two distinctive char-
acteristics: high-level task planning in the discrete task space,
and low-level motion planing in the continuous state space. In
particular, given a team-wise task, task planning refers to the
process of first decomposing this task into subtasks and then
assigning them to the team, see Gini (2017), Torreño et al. (2017)
for comprehensive surveys. Such tasks can have additional con-
straints, such as time windows (Luo et al., 2015), and ordering
constraints (Nunes & Gini, 2015). The optimization criteria can be
single or multiple, two of which are the most common: MinSUM
that minimizes the sum of robot costs over all robots (Gini, 2017;
Luo et al., 2015), and MinMAX that minimizes the maximum cost
of a robot over all robots (Nunes & Gini, 2015), similar to the
makespan of all tasks. Typical solutions can be categorized into
centralized methods such as Mixed Integer Linear Programming
(MILP) (Torreño et al., 2017) and search-based methods (Toth &
Vigo, 2002); and decentralized methods such as market-based
methods (Luo et al., 2015), distributed constraint optimization
(DCOP) (Nunes & Gini, 2015). However, since many task planning
problems are in general NP-hard or even NP-complete (Hochba,
1997), meta-heuristic approaches are used to gain computational
efficiency, e.g., local search (Hoos & Stützle, 2004) and genetic
algorithms (Khamis et al., 2015). One type of problem is particu-
larly of relevance to this work, namely the Multi-Vehicle Routing
Problem (MVRP) in operation research (Gini, 2017), where a team
of vehicles are deployed to provide services at a set of locations,
and the MinSum objective above is optimized. Despite of the
similarity, this work considers a significantly more general spec-
ification of team-wise tasks, which can include as special cases
the vanilla formulation and its variants with temporal and spatial
constraints (Nunes & Gini, 2015). Moreover, collaborative tasks
and synchronization during online execution are often neglected
in the aforementioned work, where planning and execution are
mostly decoupled.

2.2. Temporal logic tasks

Temporal logic formulas can be used to specify complex robotic
tasks, such as Probabilistic Computation Tree Logic (PCTL) in Lahi-
janian et al. (2011), Linear Temporal Logics (LTL) in Chen et al.
(2011), Guo and Dimarogonas (2015), Kantaros and Zavlanos
(2020), Schillinger et al. (2018), and counting LTL (cLTL) in Sahin
et al. (2019). As summarized in Table 1, the most related work
can be compared in the following four aspects: (i) collabora-
tive tasks. In a bottom-up fashion, (Guo & Dimarogonas, 2015,
2016; Tumova & Dimarogonas, 2016) assume local LTL tasks
and dynamic environment, where collaborative tasks are allowed
in Guo and Dimarogonas (2016). In a top-down fashion, (Jones
et al., 2019; Kantaros & Zavlanos, 2020; Luo & Zavlanos, 2022;
Sahin et al., 2019; Schillinger et al., 2018) consider team-wise
tasks, but no direct collaboration among the agents; (ii) the
optimization criteria. Most aforementioned work (Guo & Dimarog-
onas, 2016; Jones et al., 2019; Kantaros & Zavlanos, 2020; Luo
& Zavlanos, 2022; Sahin et al., 2019) optimizes the summed
cost of all agents, while Schillinger et al. (2018) evaluates a
weighted balance between this cost and the task completion
time. Even though both objectives are valid, we emphasize in
this work the achievement of maximum efficiency by minimizing
solely the completion time; (iii) the synchronization requirement.
Synchronization happens when two or more agents communicate
regarding the starting time of next the next subtask. The work

in Kantaros and Zavlanos (2020), Luo et al. (2021), Sahin et al.

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

(
t
i
t
a
t
i
t
l
i
o
w
q
i
a
c
f

3

3

o
t
t
K
⃝

⊥

l
a
K

i
f
{

a
(
s
⃝

n
i

Table 1
Comparison of related work as discussed in Section 2.2, regarding the problem formulation and key features.
Ref. Syntax Collaboration Objective Solution Anytime Synchronization Adaptation

Guo and Dimarogonas (2015), Tumova
and Dimarogonas (2016)

Local-LTL No Summed Cost Dijkstra No Event-based Yes

Guo and Dimarogonas (2016) Local-LTL Yes Summed Cost Dijkstra No Event-based Yes
Kantaros and Zavlanos (2020), Luo et al.
(2021)

Global-LTL No Summed Cost Sampling Yes All-time No

Schillinger et al. (2018) Global-LTL No Balanced Martins’ Alg. No None No
Luo and Zavlanos (2022) Global-LTL Yes Summed Cost MILP No All-time No
Jones et al. (2019), Sahin et al. (2019) Global-cLTL No Summed Cost MILP No Partial No
Ours Global-LTL Yes Min Time BnB Yes Event-based Yes
3

d
b

D
w
Σ

r

r
ρ

h
a
l
K
i
a
t
t
s

3

i
t
s
≤

o
x
b

4

4

W
b
N

i

Fig. 1. Comparison of the planning results based on decompositional states
in Schillinger et al. (2018) (left) and the partial ordering in this work (right).
Note that subtask ω3 has to be completed after ω2 , while ω1 is independent.

2019) requires full synchronization before each subtask due
o the product-based solution, while Schillinger et al. (2018)
mposes no synchronization by allowing only independent sub-
asks and thus limiting efficiency. This work however proposes
n online synchronization strategy for subtasks that satisfies both
he strict partial ordering and the simultaneous collaboration. As
llustrated in Fig. 1, this can improve greatly the concurrency and
hus the efficiency of the multi-agent execution even further; and
astly (iv) the solution basis. Solutions based on solving a MILP as
n Jones et al. (2019), Luo and Zavlanos (2022), Sahin et al. (2019)
ften cannot guarantee a feasible solution within a time budget,
hile this work proposes an anytime algorithm that could return
uickly a feasible and near-optimal solution. Last but not least,
nstead of generating only a static team-wise plan as in the
forementioned work, the proposed online adaptation algorithm
an handle fluctuations in the task duration and possible agent
ailures during execution.

. Preliminaries

.1. Linear temporal logic (LTL)

Linear Temporal Logic (LTL) formulas are composed of a set
f atomic propositions AP in addition to several Boolean and
emporal operators. Atomic propositions are Boolean variables
hat can be either true or false. Particularly, the syntax (Baier &
atoen, 2008) is given as follows: ϕ ≜ ⊤ | p | ϕ1 ∧ ϕ2 | ¬ϕ |

ϕ | ϕ1 Uϕ2, where ⊤ ≜ True, p ∈ AP , ⃝ (next), U (until) and
≜ ¬⊤. For brevity, we omit the derivations of other operators

ike □ (always), ♢ (eventually),⇒ (implication). The full semantics
nd syntax of LTL are omitted here for brevity; see e.g., Baier and
atoen (2008).
An infinite word w over the alphabet 2AP is defined as an

nfinite sequence w = σ1σ2 · · · , σi ∈ 2AP . The language of ϕ is de-
ined as the set of words that satisfy ϕ, namely, Lϕ = Words(ϕ) =
w | w |H ϕ} and |H is the satisfaction relation. However, there is
special class of LTL formula called syntactically co-safe formulas
sc-LTL) (Belta et al., 2017), which can be satisfied by a set of finite
equence of words. They only contain the temporal operators
, U and ♢ and are written in positive normal form where the

egation operator ¬ is not allowed before the temporal operators
ncluding⃝,U,♢.
3

.2. Nondeterministic Büchi automaton

Given an LTL formula ϕ mentioned above, the associated Non-
eterministic Büchi Automaton (NBA) (Baier & Katoen, 2008) can
e derived with the following structure.

efinition 1 (NBA). A NBA B is a 5-tuple: B = (Q , Q0, Σ, δ, QF),
here Q is the set of states; Q0 ⊆ Q is the set of initial states;
= AP is the allowed alphabet; δ : Q×Σ → 2Q is the transition

elation; QF ⊆ Q is the set of accepting states. ■

Given an infinite word w = σ1σ2 · · · , we can get a set of
esulting runs within B. Each of them is an infinite sequence
= q0q1q2 · · · such that q0 ∈ Q0, and qi ∈ Q , qi+1 ∈ δ(qi, σi)

old for all index i ≥ 0. The set of all words that correspond to
ccepting runs is called the language generated by the NBA. The
anguage can be expressed in the prefix–suffix structure (Baier &
atoen, 2008), while the prefix part can result in a run from an
nitial state to an accepting state, and the suffix part can result in
cyclic run that contains the same accepting state. In addition,

he satisfaction of a sc-LTL formula can be achieved in a finite
ime, i.e., each word satisfying an sc-LTL formula consists of a
atisfying prefix and an arbitrary suffix.

.3. Partially ordered set

A partial order (Simovici & Djeraba, 2008) defined on a set S
s a relation ρ ⊆ S × S, which is reflexive, antisymmetric, and
ransitive. Then, the pair (S, ρ) is referred to as a partially ordered
et (or simply poset). A generic partial order relation is given by
. Namely, for x, y ∈ S, (x, y) ∈ ρ if x ≤ y. The set S is totally
rdered if ∀x, y ∈ S, either x ≤ y or y ≤ x holds. Two elements
, y are incomparable if neither x ≤ y nor y ≤ x holds, denoted
y x ∥ y.

. Problem formulation

.1. Collaborative multi-agent systems

Consider a team of N agents operating in a workspaceW ⊂ R3.
ithin the workspace, there are M regions of interest, denoted
y W ≜ {W1,W2, . . . ,WM}, where Wm ∈ W . Each agent n ∈
= {1, . . . ,N} can navigate within these regions following its

own transition graph Gn = (W, →n, dn), where→n⊆ W ×W is
the allowed transition for agent n; and dn :→n→ R+ maps each
transition to its time duration.

Moreover, similar to the action model used in Guo and Di-
marogonas (2016), each robot n ∈ N is capable of performing a
set of actions: An ≜ Al

n∪A
c
n , where Al

n is a set of local actions that
can be independently performed by agent n itself; Ac

n is a set of
collaborative actions that can only be performed in collaboration
with other agents. Moreover, define Ac ≜

⋃
n∈N Ac

n, Al ≜⋃
n∈N Al

n. More specifically, there is a set of collaborative behav-
ors pre-designed for the team, denoted by C ≜ {C , . . . , C }. Each
1 K

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

b
s

C

a
a
t
L

b

ϕ

w
b
s
t

T

S
f

R
t
c
o
a
(
p
o
e

Fig. 2. Overall structure of the proposed framework, which consists of three main parts: the computation of R-posets, BnB search, and online execution.
E
m
t

ϕ

ehavior Ck ∈ C consists of a set of collaborative actions that
hould be accomplished by different agents, namely:

k ≜ {a1, a2, . . . , aℓk}, (1)

where ℓk > 0 is the number of collaborative actions required;
aℓ ∈ Ac , ∀ℓ = 1, . . . , ℓk. To execute a collaborative behavior Ck,
each collaborative action aℓ ∈ Ck should be performed by a
different agent n that is capable, i.e., aℓ ∈ An. Moreover, each
collaborative action has a fixed duration as d : C→ R+.

Remark 1. Different from Jones et al. (2019), Luo and Zavlanos
(2022), Sahin et al. (2019), the definition of collaborative behavior
above does not specify explicitly the agent identities or types,
rather their capabilities. This subtle difference can improve the
flexibility of the underlying solution, e.g., no hard-coding of the
agent identities or types is necessary; any capable agent can be
recruited for the collaborative behavior. ■

4.2. Task specification

First, the following three types of atomic propositions can be
introduced: (i) pm is true when any agent n ∈ N is at region
Wm ∈ W; Let p ≜ {pm, ∀Wm ∈ W}; (ii) amk is true when a local
ction ak is performed at region Wm ∈ W by agent n, where
k ∈ Al

n . Let a ≜ {amk ,∀Wm ∈ W, ak ∈ Al
}; (iii) cmk is true when

he collaborative behavior Ck in (1) is performed at region Wm.
et c ≜ {cmk ,∀Ck ∈ C,∀Wm ∈ W}.
Given these propositions, a team-wide task specification can

e specified as a sc-LTL formula:

= sc-LTL({p, a, c}), (2)

here the syntax of sc-LTL is introduced in Section 3.1. Denote
y t0, tf > 0 the time instants when the system starts and
atisfies executing ϕ, respectively. Thus, the total time taken for
he multi-agent team to satisfy ϕ is given by

ϕ = tf − t0. (3)

ince a sc-LTL can be satisfied in finite time, this total duration is
inite and thus can be optimized.

emark 2. As described previously in Section 1, the minimum
ime cost in (3) is significantly different from the summed time
ost of all agents, i.e.,

∑
i Ti, where Ti is the total time agent i spent

n executing task ϕ, as in Guo and Dimarogonas (2016), Kantaros
nd Zavlanos (2020), Luo and Zavlanos (2022), Schillinger et al.
2018). The main advantage of concurrent execution can be am-
lified via the objective of time minimization, since concurrent
r sequential execution of the same task assignment could be
quivalent in terms of summed cost. ■
4

xample 1. Consider a team of UAVs and UGVs deployed for
aintaining a remote Photovoltaic power plant. One collaborative

ask considered in Section 8 is given by:

1 =♢(repairp3 ∧ ¬scanp3 ∧ ♢scanp3) ∧ ♢(washp21∧

♢mowp21 ∧ ♢scanp21) ∧ ♢(sweepp21 ∧ ¬washp21∧

♢mowp21) ∧ ♢(fixt5 ∧ ¬p18) ∧ ¬p24 U sweepp27
∧ ♢(washp34 ∧⃝scanp34),

(4)

which means to repair and scan certain PV panel p3 in a given
order, deeply cleaning the panel p21, p34, fix transformers t5,
sweep p27 with safety request. ■

4.3. Problem statement

Problem 1. Given the task specification ϕ, synthesize the motion
and action sequence for each agent n ∈ N such that Tϕ in (3) is
minimized. ■

Even though the above problem formulation is straightfor-
ward, it is can be shown that this problem belongs to the class
of NP-hard problems (Hochba, 1997), as its core coincides with
the makespan minimization problem of flow-shop scheduling
problems. Various approximate algorithms have been proposed
in Khamis et al. (2015). However, the combination of dynamic
vehicles within a graph-like environment, linear temporal con-
straints, and collaborative tasks has not been addressed.

In the following sections, we present the main solution of this
work. As shown in Fig. 2, the optimal plan synthesis which is
performed offline is first described in Section 5, and then the on-
line adaptation strategy to handle dynamic changes in Section 6.
The overall solution is summarized in Section 7 with analyses for
completeness, optimality and complexity.

5. Optimal plan synthesis

The optimal plan synthesis aims to solve Problem 1 offline. As
mentioned previously in Section 2.2, most related work requires
the synchronized product between models of all agents, thus sub-
ject to exponential complexity. Instead, we propose an anytime
algorithm that combines seamlessly the partial-ordering analyses
of the underlying task automaton for task decomposition, and
the branch and bound (BnB) search method for task assignment.
In particular, it consists of three main components: (i) the pre-
processing of the NBA associated with the global task; (ii) the
partial ordering analyses of the processed task automaton; (iii)
the BnB search algorithm that searches in the plan space given
the partial ordering constraints.

5.1. Büchi automaton pruning

To begin with, the NBA Bϕ associated with the task ϕ is
derived, e.g., via translation tools in Gastin and Oddoux (2001).

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

N
h
i
t
o
t
i
p

i
r
i
t

n
f
i
r
c
a
a
t
i
t
m
a
t

D

t
a

T

e

P

ote that Bϕ has the structure as defined in Definition 1, which
owever can be overly redundant. For instance, the required
nput alphabets for some transitions are infeasible for the whole
eam; or some transitions can be decomposed equivalently into
ther transitions. Via detecting and removing such transitions,
he size of the underlying NBA can be greatly reduced, thus
mproving the efficiency of subsequent steps. More specifically,
runing of Bϕ consists of three steps:
(i) Remove infeasible transitions. Given any transition qj ∈

δ(qi, σ) in Bϕ , it is infeasible for the considered system if no
subgroup of agents in N can generate σ . It can be easily verified
by checking whether there exists an agent that can navigate to
region Wm and perform local action ak; or several agents that can
all navigate to region Wm and perform collaborative action ak. If
infeasible, this transition is removed.

(ii) Remove invalid states. Any state q ∈ Q in Bϕ is called
nvalid if it cannot be reached from any initial state; or it cannot
each any accepting state that is in turn reachable from itself. An
nvalid state cannot be part of an accepting path thus removed in
he pruned automaton.

(iii) Remove decomposable transitions. Due to the distributed
ature of multi-agent systems, it is unrealistic to enforce the
ulfillment of two or more subtasks to be exactly at the same
nstant in real time. Therefore, if possible, any transition that
equires the simultaneous satisfaction of several subtasks is de-
omposed into equivalent transitions. Decomposable transitions
re formally defined in Definition 2. In other words, the input
lphabets of a decomposed transition can be mapped to two other
ransitions that connect the same pair of states, but via another
ntermediate state, as illustrated in Fig. 3. Thus, all decomposable
ransitions in Bϕ are removed in the pruned automaton. Algorith-
ically, decomposability can be checked by simply composing
nd comparing the propositional formulas associated with each
ransition.

efinition 2 (Decomposable Transition). Any transition from state
qi to qj in Bϕ is decomposable if there exists another state qk such
hat qj ∈ δ(qi, σik ∪ σkj) holds, ∀σik, σkj ⊆ Σ that qk ∈ δ(qi, σik)
nd qj ∈ δ(qk, σkj) hold. ■

An example of decomposable transitions is shown in Fig. 3.
o summarize, the pruned NBA, denoted by B−ϕ , has the same

structure as Bϕ but with much fewer states and edges. In our
experience, this pruning step can reduce up to 60% states and
edges for typical multi-agent tasks. More details can be found in
the experiment section.

Lemma 1. If there exists a word w that is accepted by B, then an
quivalent word w′ can be found that is accepted by B−.

roof. Consider an accepting word w = · · · {σn} · · · , and its
resulting accepting run in B is given by ρ = · · · qiqj · · · , with
qj = δ(qi, σn). For the first case, if no edges in ρ are Decomposable
Transitions, all edges in ρ can be found in B−. In other words,
ρ is accepting in B−. For the second case, if the transition from
qi to qj is removed as a decomposable transition, there exist a
state qk and σkj, σik satisfying that qk = δ(qi, σik), qj = δ(qk, σkj),
σik ∪ σkj = σn based on Definition 2. Then, an equivalent word
w′ = · · · {σn}{σn} · · · can be created by inserting a time step
in {σn}, of which the associated run is ρ ′ = · · · qiqkqj · · · . If the
transitions from qk to qj and from qi to qk are not removed in B−,
this satisfies Case 1 and w′ is the associated accepting word in
B−. If any transition is removed as a Decomposable Transition, it
satisfies Case 2 and the same insertion process described above
can be applied. According to Definition 2, it eventually happens
in Case 2 that the new created run ρ ′ has no Decomposable

Transition, thus satisfying the Case 1. This completes the proof. □

5

Fig. 3. Example of decomposable transitions. Transitions in red dashed lines are
all decomposable satisfied by Definition 2.

Example 2. The NBA Bϕ associated with the task formula in (4)
has 707 states and 16044 edges with more than 1.29 × 107

accepting words, translated via Gastin and Oddoux (2001). After
the pruning process described above, the pruned automaton B−ϕ
has 707 states and 2423 edges with 174469 accepting words. This
step reduces 84.9% edges and 98.6% accepting words. ■

5.2. Task decomposition

Since the team-wise task in this work is given as a compact
temporal task formula, a prerequisite for optimal task assignment
later is to decompose this task into suitable subtasks. Moreover,
different from simple reachability task, temporal tasks can im-
pose strict constraints on the ordering of subtasks. For instance,
the task ♢(α1 ∧ ♢(α2 ∧ ♢α3)) specifies that α1, α2, α3 should be
satisfied in sequence, while ♢α1∧♢α2∧♢α3 does not impose any
ordering constraint. Thus, it is essential for the overall correctness
to abstract such ordering constraints among the subtasks. This
part describes how the subtasks and their partial orderings are
abstracted from the pruned automaton B−ϕ .

Definition 3 (Decomposition and Subtasks). Consider an accepting
run ρ = q0q1 · · · qL of B−ϕ , where q0 ∈ Q0 and qL ∈ QF . One possible
decomposition of ϕ into subtasks is defined as a set of 3-tuples:

Ωϕ =
{
ωℓ = (ℓ, σℓ, σ s

ℓ), ∀ℓ = 1, . . . , L
}
, (5)

where ℓ is the index of subtask ωℓ; label σℓ ⊆ Σ satisfies
two conditions: (i) qℓ ∈ δ(qℓ−1, σℓ), and (ii) qℓ /∈ δ(qℓ−1, σ−ℓ),
where σ−ℓ = σℓ\{z}, ∀z ∈ σℓ; and label σ s

ℓ ⊆ Σ also satisfies two
conditions: (i) qℓ−1 /∈ δ(qℓ−1, σ), for all σ ∈ Σ, σ ∩ σ s

ℓ ̸= ∅, and
(ii) qℓ−1 ∈ δ(qℓ−1, σ), for all σ ∈ Σ, σ ∩ σ s

ℓ = ∅. ■

Example 3. As shown in Fig. 3 , the subtasks associated with run
ρ = q1q2q4q5 are given by Ωϕ = {(1, {sweepp21}, {p24}) , (2,
{mowp21}, {p24}), (3, {scanp21}, {p24})}. For subtask ω1, ℓ = 1,
σ1 = {sweepp21} and σ s

1 = {p24}, σ−1 can be {}, which sat-
isfies that q2 /∈ δ(q1, σ−1), q2 ∈ δ(q1, σ1). Furthermore, for
σ = {sweepp21 , p24} and σ ∩ σ s

1 ̸= ∅, there exists q1 /∈

δ(q1, {sweepp21 , p24}). For σ = {sweepp21} and σ ∩ σ s
1 = ∅, there

exists q1 ∈ δ(q1, {sweepp21}).

In other words, a subtask ωℓ = (ℓ, σℓ, σ
s
ℓ) consists of its index,

a set of action propositions labels and a set of self-loop require-
ment labels. The index should not be neglected as the same set of
propositions, namely subtasks, can appear multiple times in the
run. It is important to distinguish them by their indices. The labels
of self loop should be satisfied before executing. Moreover, the
two conditions of label σℓ in the above definition are required for
each label σℓ of subtask ωℓ. Thus, every element inside σℓ needs
to be fulfilled for the subtask to be fulfilled. The every element

s
in σℓ should be forbidden before executing the σℓ. Specially, the

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

e
{

i
w
i
r
s
r

D
Ω

R
(
e
a
i
t
o
2
t
t
w
O
d
T
a
b

r
w
G
t

D
d

P

w

(
o
ω
h
{

i

c
i
e
s
a

xistence of self loops is not strictly required, and we denote σ s
ℓ =

Null} for the case of no self loop. Note that the decomposition Ωϕ

mposes directly a strict and complete ordering of the subtasks
ithin, namely, it requires that the subtasks should be fulfilled

n the exact order of their indices. This, however, can be overly
estrictive as it prohibits the concurrent execution of several
ubtasks by multiple agents. Thus, we propose a new notion of
elaxed and partial ordering of the decomposition, as follows.

efinition 4 (Partial Relations). Given two subtasks in ωh, ωℓ ∈

ϕ , the following two types of relations are defined:

(I) ‘‘less equal’’: ⪯ϕ⊆ Ωϕ ×Ωϕ . If (ωh, ωℓ) ∈⪯ϕ or equivalently
ωh ⪯ϕ ωℓ, then ωh has to be started before ωℓ is started.

(II) ‘‘opposed’’: ̸=ϕ⊆ 2Ωϕ . If {ωh, . . . , ωℓ} ⊈=ϕ or equivalently
ωh ̸=ϕ . . . ̸=ϕ ωℓ, then all subtask ωh, . . . cannot all be
executed simultaneously. ■

emark 3. Note that most related work in Guo and Dimarogonas
2015), Jones et al. (2019), Kantaros and Zavlanos (2020), Luo
t al. (2021), Luo and Zavlanos (2022), Sahin et al. (2019), Tumova
nd Dimarogonas (2016) treats the fulfillment of robot actions as
nstantaneous, i.e., the associated proposition becomes True once
he action is finished. Moreover, most of the above approaches
nly take into account the essential sequence (Schillinger et al.,
016) associated with an accepting run, while ignoring the poten-
ial conflicts among simultaneous actions. Therefore, the above
wo relations are often simplified into one ‘‘less equal’’ relation
ithout the ‘‘opposed’’ relation, see e.g., Luo and Zavlanos (2022).
n the contrary, as described in Section 4.1, each action has a
uration when its proposition is True during the whole period.
hus, it is essential to distinguish these two relations defined
bove, namely, whether one subtask should be started or finished
efore another subtask. ■

The above definition is illustrated in Fig. 4. Intuitively, the
elation ⪯ϕ represents the ordering constraints among subtasks,
hile the relation ̸=ϕ represents the concurrent constraints.
iven these partial relations above, we can formally introduce
he poset of subtasks in Ωϕ as follows.

efinition 5 (R-poset of Subtasks). One relaxed and partially or-
ered set (R-poset) over the decomposition Ωϕ is given by

ϕ = (Ωϕ, ⪯ϕ, ̸=ϕ), (6)

here ⪯ϕ , ̸=ϕ are the partial relations by Definition 4. ■

Similar to the original notion of poset in Simovici and Djeraba
2008), the above relation is irreflexive and asymmetric, however
nly partially transitive. In particular, it is easy to see that if
1 ⪯ϕ ω2 and ω2 ⪯ϕ ω3 hold for ω1, ω2, ω3 ∈ Ωϕ , then ω1 ⪯ϕ ω3
olds. However, {ω1, ω2} ⊈=ϕ and {ω2, ω3} ⊈=ϕ cannot imply
ω1, ω3} ⊈=ϕ . Due to similar reasons, {ω1, ω2, ω3} ∉=ϕ cannot
mply {ω1, ω2} ⊈=ϕ . Clearly, given a fixed set of subtasks Ωϕ , the
more elements the relations ⪯ϕ and ̸=ϕ have, the more temporal
constraints there are during the execution of these subtasks. This
can be explained by two extreme cases: (i) no partial relations
in Ωϕ , i.e., ⪯ϕ= ∅ and ̸=ϕ= ∅. It means that the subtasks in Ωϕ

can be executed in any temporal order; (ii) total relations in Ωϕ ,
e.g., ωh ⪯ϕ ωℓ and {ωh, ωℓ} ⊈=ϕ , for all h < ℓ. It means that
each subtask in Ωϕ should only start after its preceding subtask
finishes according to their indices in the original accepting run.
For convenience, we denote by ⪯ϕ≜ F and ̸=ϕ≜ 2Ωϕ for this
ase, where F ≜ {(i, j), ∀i, j ∈ [0, L] and i < j}. As discussed
n the sequel, less temporal constraints imply more concurrent
xecution of the subtasks, thus higher efficiency of the overall
ystem. Thus, it is desirable to find one decomposition and the
ssociated R-poset that has few partial relations.
6

Fig. 4. Illustration of the two partial relations contained in the R-poset. Left:
ω1 ⪯ϕ ω2 requires that task ω2 is started after task ω1 . Middle&Right:
{ω3, ω4, ω5} ⊄=ϕ requires that ω3, ω4, ω5 are not executing simultaneously.

Fig. 5. ⪯ϕ , ̸=ϕ relations in pruned NBAs, where the red dashed arrows are
removed transitions.

Remark 4. The above two relations, i.e., ⪯ϕ and ̸=ϕ , are cho-
sen in the definition of R-posets due to following observations:
as illustrated in Fig. 4 and explained in Remark 3, these two
relations can describe any possible temporal relation between
non-instantaneous subtasks. More importantly, they can abstract
the key information contained in the structure of NBA. Specifi-
cally, we can describe the temporal orders between two subtasks
ω1, ω2 as follows: (i) ω2 should be executed after ω1 has begun,
i.e., (ω1, ω2) ∈⪯ϕ, {ω1, ω2} /∉=ϕ; (ii) ω2 should be executed after
ω1 has ended, i.e., (ω1, ω2) ∈⪯ϕ, {ω1, ω2} ∉=ϕ; (iii) ω1 and ω2
cannot be executed at the same time, i.e., (ω1, ω2) /∈⪯ϕ, {ω1, ω2}

∉=ϕ; (iv) ω1 is parallel to ω2, i.e., (ω1, ω2) /∈⪯ϕ, {ω1, ω2} /∉=ϕ .
These cases are summarized in Fig. 5. ■

Remark 5. It is worth noting that the proposed notion of R-
Posets contains the ‘‘decomposable states’’ proposed in Schillinger
et al. (2018) as a special case. More specifically, the set of de-
composable states divide an accepting run into fully independent
segments, where (i) any two alphabets within the same seg-
ment are fully ordered; (ii) any two alphabets within different
segments are not ordered thus independent. In contrast, the pro-
posed R-poset allows also independent alphabets within the same
segment. This subtle difference leads to more current executions
not only by different segments but also within each segment, thus
increases the overall efficiency. ■

To satisfy a given R-poset, the language of the underlying
system is much more restricted. In particular, the language of an
R-poset is defined as follows.

Definition 6 (Language of R-poset). Given an R-poset Pϕ = (Ωϕ, ⪯ϕ

, ̸=ϕ), its language is defined as the set of all finite words that
can be generated by the subtasks in Ωϕ while satisfying the
partial constraints. More concretely, the language is given by
L(Pϕ) = {wϕ}, where wϕ is a finite word constructed with the
set of subtasks in Pϕ , i.e.,

wϕ = (t1, ω1)(t2, ω2) · · · (tL, ωL), (7)

where the subtask ωℓ ∈ Ωϕ and tℓ is the starting time of
subtask ωℓ. Furthermore, wϕ should satisfy the partial relations
in Pϕ , namely: (i) tℓ ≤ tℓ′ holds, ∀(ωℓ, ωℓ′) ∈⪯ϕ; (ii) ∀ω̂ ⊈=ϕ

, ∃ωℓ, ωℓ′ ∈ ω̂, tℓ + dℓ < tℓ′ holds, where dℓ and dℓ′ are the dura-
tions of subtasks ωℓ, ωℓ′ ∈ Ωϕ . With a slight abuse of notations,
wϕ can also denote the simple sequence of alphabets ω1ω2 · · ·ωL.

■

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

L

t
r
I
f
a

u
v

Given the above definition, a R-poset Pϕ is called accepting if
its language satisfies the original task specification, i.e., L(Pϕ) ⊆
ϕ . In other words, instead of directly searching for the accepting
word of ϕ, we can focus on finding the accepting R-poset that
requires the least completion time. In the rest of this section, we
present how this can be achieved efficiently in real-time. First of
all, it is worth pointing out that it is computationally expensive to
generate the complete set of all accepting R-poset and then select
he optimal one. More precisely, even to generate all accepting
uns in B−ϕ , the worst-case computational complexity is O(|Q−|!).
nstead, we propose an anytime algorithm that can generate the
irst valid R-poset quickly, while adding more R-posets as time
llows.

Algorithm 1: compute_poset(·): Anytime algorithm to
compute accepting R-posets.

Input : Pruned NBA B−ϕ , time budget t0 .
Output: R-posets Pϕ , language Lϕ .

1 Choose initial and final states q0 ∈ Q−0 and qf ∈ Q−F ;
2 Set Lϕ = Pϕ = ∅;
3 Begin modified DFS to find an accepting run ρ;
4 while time < t0 do

/* Subtask decomp. by Definition 3 */
5 Compute Ω and word w given ρ;
6 if w /∈ Lϕ then
7 Set P = (Ω, ⪯ϕ= F, ̸=ϕ= 2Ω), and ⪯ϕ= F;
8 Set L(P) = {w},Que = [w], I1 = I2 = ∅;

/* Reduce partial relations */
9 while |Que| > 0 and time > t0 do

10 w← Que.pop();
11 for i = 1, 2, · · · , |w| − 1 do
12 ω1 = w[i], ω2 = w[i+ 1];
13 w′ ← Switching ω1 and ω2 within w;
14 if w′ is accepting then
15 Add (ω1, ω2) to I1;
16 Add w′ to Que, L(P) if not in L(P);
17 else
18 Add (ω1, ω2) to I2;

19 Remove {I1 \ I2} from ⪯ϕ , update time;
20 If time > t0 , return Pϕ ,Lϕ .

21 for ω̂ ⊈=ϕ do
22 w′ ← Replace ωi ∈ ω̂ in w by

⋃
ωi∈ω̂

ωi;
23 if w′ is accepting then
24 Remove ω̂ from ̸=ϕ ;

/* Self loop calculation */
25 for w in L(P) do
26 Get path ρ ′ associated with σℓ of w;
27 for i = 1, · · · , |ρ ′| do
28 σ

p
ℓi
= σ

p
ℓi
∩ δ−1(ρ ′[i− 1], ρ ′[i− 1]);

29 Add P to Pϕ , add L(P) to Lϕ ;

30 Continue the modified DFS, and update ρ, time;

31 return Pϕ , Lϕ ;

As summarized in Algorithm 1, the proposed algorithm builds
pon the modified depth first search (DFS) algorithm with local
isited sets (Sedgewick, 2001). Given the pruned automaton B−ϕ ,

the modified DFS can generate an accepting run ρ given the
chosen pair of initial and final states. Given ρ, the associated set of
subtasks Ω and word w can be derived by following Definition 3 ,
see Line 5 . Then, a R-poset P is initialized as P = (Ω, F, 2Ω)
in Line 7 , namely, a fully-ordered R-poset as described after
Definition 5 . Furthermore, to reduce the partial relations, we
introduce a ‘‘swapping’’ operation to change the order of adjacent
alphabets, and then check if the resulting new word can lead to
an accepting run in the circle of Lines 9–19 . If so, it means the
relative ordering of this two adjacent subtasks can potentially be
relaxed or removed from ⪯ϕ as in Line 19 . On the contrary, for
any other word within L(P), if such swapping does not result in
an accepting run, it is definitively kept in the partial ordering.
The queue Que is used to store the set of accepting words w and
7

the iteration ends when |Que| = 0 in Line 9, which indicates
that all words in L(P) have been found. The resulting R-poset is a
new and valid R-poset that have less partial ordering constraints.
Furthermore, for any subtasks set that belong to the ‘‘opposed’’
relation, a new word is generated by allowing all subtasks to be
fulfilled simultaneously in Line 22 . If this new word is accepting,
it means that this subtasks set does not belong to the relation ̸=ϕ

in Line 24 . After that, labels of self loop σ s
ℓ are calculated by

checking all feasible word in line 27 . Note that the resulting P
is only one of the R-posets and the associated language is given
by L(P) as defined in Definition 6 . Lastly, as time allows, the DFS
continues until a new accepting run is found, which is used to
compute new R-posets with same steps.

Example 4. Continuing from Example 3, we can get an R-poset
with ⪯ϕ= {(1, 2), (1, 3)}, ̸=ϕ= {{2, 3}}. ■

Lemma 2. Any R-poset within Pϕ obtained by Algorithm 1 is
accepting.

Proof. Due to the definition of accepting R-poset, it suffices
to show that the language L(P) derived above for reach P is
accepting. To begin with, as shown in Line 16, any word w added
to L(P) is accepting. Secondly, assume that there exists a word
w ∈ Lϕ that satisfies P but w ̸∈ L(P), i.e., w satisfies the partial
ordering constraints in P but does not belong to L(P). Regarding
the ordering relation ⪯ϕ , due to the iteration process of Que in
Lines 9–18, any accepting word w that can be generated by a
sequence of switching operation will be added to L(P). Assume
that w = σjσk · · · where w[1] is associated with the subtask ωj.
Then, (ωi, ωj) /∈⪯ϕ holds if i < j and w cannot satisfy the
‘‘less equal’’ constraints otherwise. Similar to the bubble sorting
algorithm (Astrachan, 2003), wo[j] is switched sequentially with
all the preceding terms wo[j− 1], . . . , wo[0]. The resulting words
w′ after each switch are accepting, because if any w′ is not
accepting, then the switched pairs of subtasks (ωi, ωj) are kept
in ⪯ϕ for all i < j as in Line 19. Afterwards, the resulting word
is given by w1 = σjσ1σ2 · · · . This operation can be applied to
relocate σk in w1 to the second place as w2 = σjσk · · · , and so on
until wn = w holds. Thus, every word generated in the process
is accepting, and the resulting w is added to L(P). Respecting
to each ordering relation within ̸=ϕ , it is simpler as any word
within L(P) satisfies this relation and is verified to be accepting
after augmenting the alphabets with the union of all alphabets.
Thus, if w satisfies the constraints of P , it will be first added to Que
in Lines 9–18 and then verified in Line 22, as w ∈ L(P). This
completes the proof. □

Since Algorithm 1 is an anytime algorithm, its output Pϕ

within the time budget could be much smaller than the actual
complete set of accepting R-posets. Consequently, if a word w

does not satisfy any R-poset P ∈ Pϕ , i.e., w /∈ Lϕ , it can still be
accepting. Nonetheless, it is shown in the sequel for completeness
analyses that given enough time, Algorithm 1 can generate the
complete set of R-posets. In that case, any word that does not
satisfy any R-poset within Pϕ is surely not accepting. It means
that the complete set of R-posets Pϕ is equally expressive as the
original NBA B−. The above analysis is summarized in Lemma 3.

Lemma 3. The outputs of Algorithm 1 satisfy that L(Pi) ∩ L(Pj) =
∅, ∀i ̸= j, and L(Pi)⊂Lϕ , ∀Pi ∈ Pϕ . Moreover, given enough
time t0 →∞, the complete set of R-posets can be returned, i.e., Lϕ =

∪Pi∈Pϕ L(Pi) = Lϕ .

Proof. The first part can be proven by contradiction. Assume
that there exist two R-posets P , P ∈ P and one accepting
1 2 ϕ

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

d
e

o
w

(

t
(
L
b
i

ω

w
i

Ω

w
a

Fig. 6. Left: an illustration of the relations between the accepting language of
ifferent R-posets L(Pi) and the accepting language of the task Lϕ . Right: an
xample of the R-posets graph GPϕ , where the relations ⪯ϕ and ̸=ϕ are marked

by black and red arrows, respectively.

word w ∈ Lϕ such that w ∈ L(P1) ∩ L(P2) holds. Since the set
f subtasks within the R-poset is simply the union of all subtasks
ithin each word, it implies that Ω1 = Ω2. Then, as discussed

in Lemma 2, w ∈ L(P1) implies that there exists a sequence of
switching operations that map the original word w0 to w, all of
which satisfy the partial relations in P1. The same applies to w ∈

L(P2). Since the set of subtasks are identical, it implies that the
relations in P1 are a subset of those in P2, or vice versa. However,
since the Que in Algorithm 1 iterates through all accepting words
of the same Ω , the partial relations are the maximum given the
same Ω , Thus both partial relations in P1, P2 can only be equal
and P1 = P2 holds. Regarding the second part, the underlying DFS
search scheme in Algorithm 1 is guaranteed to exhaustively find
all accepting runs of B−ϕ . Namely, the complete set of R-posets Pϕ

returned by the algorithm after full termination is ensured to
cover all accepting words of the NBA. As discussed earlier, the
pruning procedure does not effect the complete set of accepting
words. Thus, it can be concluded that the returned language set Lϕ

is equivalent to the original task specification. □

Similar to the Hasse diagram in Simovici and Djeraba (2008),
the following graph can be constructed given one R-poset Pϕ .

Definition 7 (R-posets Graph). The R-poset graph of Pϕ = (Ωϕ, ⪯ϕ

, ̸=ϕ, Ω0) is a digraph GPϕ = (Ω, E, R), where Ω is the set of
nodes; E ⊂ Ω × Ω is the set of directed edges; R ⊂ 2Ω is the
set of undirected special ‘edges’ which connect multiple nodes
instead of only two. An edge (ω1, ω2) ∈ E if two conditions hold:
(i) (ω1, ω2) ∈⪯ϕ; and (ii) there are no intermediate nodes ω3
such that ω1 ⪯ϕ ω3 ⪯ϕ ω2 holds; lastly, Ω0 ⊆ Ωϕ is set of
root nodes that have no incoming edges. An undirected ‘edge’
(ω1, ω2, . . .) ∈ R, if {ω1, ω2, . . . } ∉=ϕ . ■

The R-poset graph GPϕ provides a straightforward represen-
tation of the partial ordering among subtasks, i.e., from low to
high in the direction of edges. As shown in Fig. 6 , GPϕ can be
dis-connected with multiple root nodes.

5.3. Task assignment

Given the set of R-posets Pϕ derived from the previous sec-
tion, this section describes how this set can be used to compute
the optimal assignment of these subtasks. More specifically, we
consider the following sub-problems of task assignment.

Problem 2. Given any R-poset P = (Ω, ⪯ϕ, ̸=ϕ) where P ∈ Pϕ ,
find the optimal assignment of all subtasks in Ω to the multi-
agent system N such that (i) all partial ordering requirements in
⪯ϕ, ̸=ϕ are respected; (ii) the maximum completion time of all

subtasks is minimized. ■

8

Fig. 7. Illustration of the main components in the BnB search, i.e., the node
expansion and branching to generate and explore new nodes (in green arrow);
and the lower and upper bounding to avoid undesired branches (in orange).

To begin with, even without the constraints of partial ordering
and collaborative actions, the above problem includes the multi-
vehicle routing problem (Khamis et al., 2015), and the job-shop
scheduling problem (Morrison et al., 2016) as special instances.
Both problems are known to be NP-hard. Thus, the above prob-
lem is also NP-hard and its most straightforward solution is
to formulate a Mixed Integer Linear Program (MILP). However,
there are two major drawbacks of MILP: (i) the computation
complexity grows exponentially with the problem size; (ii) there
is often no intermediate solution before the optimal solution is
generated via a MILP solver, e.g., GLPK (Makhorin, 2008). Both
drawbacks hinder the usage of this approach in large-scale real-
time applications, where a timely good solution is more valuable
than the optimal solution.

Motivated by these observations, an anytime assignment algo-
rithm is proposed in this work based on the Branch and Bound
(BnB) search method (Morrison et al., 2016). It is not only com-
plete and optimal, but also anytime, meaning that a good solution
can be inquired within any given time budget. As shown in Fig. 7,
the four typical components of a BnB algorithm are the node
expansion, the branching method, and the design of the upper
and lower bounds. These components for our application are
described in detail below.

Node expansion. Each node in the search tree stands for one
partial assignment of the subtasks, i.e.,

ν = (τ1, τ2, . . . , τN), (8)

where τn is the ordered sequence of tasks assigned to agent n ∈
N . To give an example, for a system of three agents, ν =
(ω1, ω2), (), ()) means that two subtasks ω1, ω2 are assigned to
agent 1, whereas no tasks to agents 2 and 3.

To avoid producing infeasible nodes, we assign only the next
task that satisfies the partial order. In other words, subtask ωi
cannot be assigned to the current node ν if there exists ωj
such that (ωj, ωi) ∈⪯ϕ has not been assigned to ν. This valida-
ion process can avoid the expansion to infeasible nodes with
· · ·ωi · · ·ωj · · ·) ∈ ν ′, (ωj, ωi) ∈⪯ϕ , thus improving efficiency.
et ν be the current node of the search tree. The next subtask ω to
e assigned is chosen from the R-poset GPϕ defined in Definition 7
f all of its parent subtasks are already assigned, i.e.,
′
∈ Ων, ∀ω

′
∈ Pre(ω), (9)

here Pre(ω) is the set of preceding or parenting subtasks of ω
n GPϕ ; and Ων is the set of assigned subtasks as

ν = {ω ∈ τn, ∀n ∈ N }, Ω−ν = Ω\Ων, (10)

here Ω is the set of subtasks from Pϕ; Ων is the set of subtasks
lready assigned in node ν; and Ω− are the remaining unassigned
ν

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

n
a
w
c

w
a

t
g

T

w

Algorithm 2: BnB(·): Anytime BnB algorithm for task
assignment

Input : Agents N , R-poset Pϕ , time budget t0.
Output: Best assignment J⋆ and makespan T ⋆.

1 Initialize root node ν0 and queue Q = {(ν0, 0)};
2 Set T ⋆

= ∞ and J⋆ = ();
3 while (Q not empty) and (time < t0) do
4 Take node ν off Q ;
5 Jν, T ν, TΩ = upper_bound(ν, Pϕ)
6 if T ⋆ > T ν then
7 Set T ⋆

= T ν and J⋆ = Jν , T ⋆
Ω = TΩ ;

8 Expand child nodes {ν+} from ν ;
9 forall ν+ ∈ {ν+} do

10 T ν = lower_bound(ν+, Pϕ)
11 if T ν ≤ T ⋆ then
12 Add (ν+, T ν) into Q .

13 Return J⋆, T ⋆, T ⋆
Ω ;

subtasks. Once this subtask ω is chosen, the succeeding or child
ode ν+ of ν in the search tree is created by assigning local
ction to any agent or cooperative task combination of agents
hich has capable functions. If subtask ω is associated with a
ollaborative behavior Ck, an agent nmay be chosen if it is capable
of performing the required action aℓ ∈ An ∩ Ck.

Branching. Given the set of nodes to be expanded, the branch-
ing method determines the order in which these child nodes are
visited. Many search methods such as breadth first search (BFS),
depth first search (DFS) or A⋆ search can be used. We propose to
use A⋆ search here as the heuristic function matches well with the
lower bounds introduced in the sequel. More specifically, the set
of child nodes is expanded in the order of estimated completion
time of the whole plan given its current assignment.

Lower and upper bounding. The lower bound method is
designed to check whether a node fetched by branching has the
potential to produce a better solution. The upper bound method
is tried for each chosen node to update the current best solution.
More specifically, given a node ν, the upper bound of all solutions
rooted from this node is estimated via a greedy task assignment
policy encapsulated as

Jν, T ν, TΩ = upper_bound(ν, Pϕ), (11)

here T ν is the upper bound, and Jν is the associated complete
ssignment with the same structure of ν, while its Ω− is empty;

TΩ is the beginning time of each subtasks. From node ν, any
ask ω ∈ Ω−ν is assigned to any allowed agent set {n} ⊂ N , thus
enerating a set of child nodes {ν+n,ω}. Then, for each node ν ∈

{ν+n,ω}, its concurrency level ην is estimated as follows:

ν = max
n∈N
{Tτn}, T s

ν =

∑
ω∈Ων

DωNω, ην =
T s
ν

Tν

, (12)

here node ν = (τ1, . . . , τN); Tτn is the execution time of all
subtasks in τn by agent n; Tν is the max current makespan;
and T s

ν is the total execution time of all subtasks ω given its
duration Dω and the number of participants Nω . The makespan
Tν is calculated given the temporal constraints ⪯ϕ, ̸=ϕ of the R-
Poset, the motions constraints of agents, and the collaborative
subtasks. In particular, (ωi, ωj) ∈⪯ϕ requires that ωj should start
after ωi has started; {ωi, ωj} ∉=ϕ requires that ωi, ωj cannot
be executed at the same time; the dynamic constraints require
that agent n needs to follow the transition cost between different
regions in graph G ; and the collaborative constraints require that
n

9

all actions of the same cooperative behavior should be executed
simultaneously. We choose ην instead of Tν as the index to sort
child nodes, because Tν can describe the efficiency between nodes
with different assigned subtasks. Thus, the child node with the
highest ην is chosen as the next node to expand. This procedure
is repeated until no subtasks remain unassigned. Afterwards, once
a complete assignment Jν is generated, its makespan Tv and start
time TΩ are obtained by solving a linear program the same as Tν .

Furthermore, the lower bound of the makespan of all solutions
rooted from this node is estimated via two separate relaxations of
the original problem: one is to consider only the partial ordering
constraints while ignoring the agent capacities; another is vice
versa. Details of optimization functions for these bounds can be
found in Liu et al. (2022).

Remark 6. The computation of both the upper and lower
bounds are designed to be free from any integer optimization.
This is intentional to avoid unpredictable solution time caused by
external integer optimization solvers. ■

Given the above components, the complete BnB algorithm can
be stated as in Algorithm 2. In the initialization step in Line
1–2, the root node ν0 is created as an empty assignment, the
estimated optimal cost T ⋆ is set to infinity, and the queue Q to
store un-visited nodes and the lower bound as indexes contains
only (ν0, 0). Then, within the time budget, a node ν is taken from
Q for expansion with smallest lower bound. We calculate the
upper bound of ν in line 5 and update the optimal value T ⋆, J⋆, T ⋆

Ω

in lines 6–7. After that, we expand the child nodes {ν+} of current
node ν. Finally, we calculate the lower bound of each new node
ν+ in line 10 and store the node with the potential to get a better
solution into Q in lines 11, 12. This process is repeated until time
is elapsed or the whole search tree is exhausted.

Lemma 4. Any task assignment J⋆ obtained from Algorithm 2
satisfies the partial ordering constraints in Pϕ .

Proof. Since the assignment J⋆ belongs to the set of solutions
obtained from the upper bound estimation in (11) at certain node
in the search tree, it suffices to show that any solution of (11)
satisfies the partial ordering constraints. Regardless of the current
node ν, the set of remaining subtasks in Ω−ν is assigned strictly
following the preceding order in the R-poset graph as defined
in (9). In other words, for any pair (ω1, ω2) ∈⪯ϕ ∩ ̸=ϕ , if
ω1 ∈ Ων and ω2 ∈ Ω−ν , then the starting time of ω2 is larger than
the finishing time of ω1. Similar arguments hold for ⪯ϕ and ̸=ϕ

separately. □

5.4. Overall algorithm

The complete algorithm can be obtained by combining Algo-
rithm 1 to compute R-posets and Algorithm 2 to assign sub tasks
in the R-posets. More specifically, as summarized in Algorithm 3,
the NBA associated with the given task ϕ is derived and pruned
as described in Section 5.1. Afterwards, within the allowed time
budget t0, once the set of R-posets Pϕ derived from Algorithm 1
is nonempty, any R-poset Pϕ ∈ Pϕ is fed to the task assignment
Algorithm 2 to compute the current best assignment J and its
makespan T , which is stored in a solution set J . This procedure is
repeated until the computation time elapsed. By then, the optimal
assignment J⋆ and its makespan T ⋆ are returned as the optimal
solution.

Remark 7. It is worth noting that even though Algorithm 1
and Algorithm 2 are presented sequentially in Lines 5–6. They

can be implemented and run in parallel, i.e., more R-posets are

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

a
A
c

a
a

a
f
o
s
‘
d

Algorithm 3: Complete algorithm for time minimization
under collaborative temporal tasks

Input : Task formula ϕ, time budget t0.
Output: Assignment J⋆, makespan T ⋆

1 Compute Bϕ given ϕ

2 Compute B−ϕ by pruning Bϕ ; // Section 5.1
3 Initialize J = ∅;
4 while time < t0 do
5 Pϕ ← compute_poset(B−ϕ) ; // Alg. 1
6 (J, T , TΩ)← BnB(Pϕ) ; // Alg. 2
7 Store (J, T , TΩ) in J ;
8 Select J⋆, T ⋆

Ω with minimum T ⋆ among J ;
9 Get time list TΩ for each task;

10 Return J⋆, T ⋆, T ⋆
Ω ;

generated and stored in Line 5, while other R-posets are used for
task assignment in Line 6. Moreover, it should be emphasized that
Algorithm 3 is an anytime algorithm meaning that it can run for
ny given time budget and generate the current best solution.
s more time is allowed, either better solutions are found or
onfirmations are given that no better solutions exist. ■

Finally, once the optimal plan J⋆ is computed with the format
defined in (8), i.e., the action sequence τn and is assigned to
agent n with the associated time stamps tω1 tω2 · · · tωn in T ⋆

Ω . In
other words, agent n can simply execute this sequence of subtasks
at the designated time, namely ωk at time Tωk . Then, it is ensured
that all task can be fulfilled in minimum time. However, such way
of execution can be prone to uncertainties in system model such
as fluctuations in action duration and failures during execution,
which will be discussed in the next section.

6. Online adaptation

Since there are often uncertainties in practice, e.g., the agents
may transit faster or slower due to disturbances, an action might
be finished earlier or latter, or failures may occur during missions,
the optimal plan derived above might be invalid during online
execution. Thus, in this section, we first analyze these uncertain-
ties in the execution time and agent failures, for which online
adaptation methods are proposed.

6.1. Online synchronization under uncertain execution time

Uncertainty in the execution time can cause delayed or early
termination of subtasks. Without proper synchronization, the
consequences can be disastrous. For instance, one collaborative
action is started without waiting for one delayed collaborator, or
one subtask ω2 is started before another subtask ω1 is finished,
which violates the ordering constraints ω1 ̸=ϕ ω2. To overcome
these drawbacks, we propose an adaptation algorithm that relies
on online synchronization and distributed communication.

More specifically, consider the optimal assignment J⋆ and the
local sequence of subtasks for agent n: τn = ω1

nω
2
n · · ·ω

Kn
n . With-

out loss of generality, agent n just finished executing ωk−1
n and

is during the transition to perform subtask ωk
n at the designated

region. Additionally, the agent with the largest ID is chosen as
the temporary leader of the sub-group performing the subtask
ωk

n, and this leadership lasts until the end of this subtask. No
matter the transition is delayed or accelerated, the following
synchronization procedure can be enforced to ensure a correct
execution of the derived plan even under uncertainties:

(i) Before execution. In order to start executing ωk
n, if agent n

is the leader, a ‘‘start’’ synchronization message is sent by
10
Fig. 8. Illustration of the online synchronization process in Section 6.1. Consider
the ordering ω1 ⪯ϕ ω2 and {ω1, ω3} ⊈=ϕ . The ‘‘Start’’ and ‘‘Stop’’ messages
re marked by red diamonds and black circles. The subtask in red is executing,
nd the subtask in gray is finished.

gent n to another leader agent m, for each subtask ωℓ
m satis-

ying (ωk
n, ωℓ

m) ∈⪯ϕ . This message indicates that the execution
f ωk

n is started thus ωℓ
m can be started. On the other hand, for each

ubtask ωℓ
m satisfying (ωℓ

m, ωk
n) ∈⪯ϕ , leader agent n waits for the

‘start’’ synchronization message from agentm. This message in-
icates that the execution of ωℓ

m is started thus ωk
n can be started.

Last, for each subtask ωℓ
h satisfying {ωk

n, ω
ℓ
h, . . . } ⊈=ϕ , leader

agent n checks the ‘‘start’’ or ‘‘stop’’ message from agent h
to ensure that not all subtasks in {ωk

n, ω
ℓ
h, . . . } are executing.

Moreover, the labels of self loop associated with the subsequent
subtasks must be forbidden to satisfy the R-poset. Namely, each
subset of agents that are executing ωℓ′ publishes the labels of self
loop σ s

ℓ associated with the subsequent subtask ωℓ. Thus, other
agents would satisfy the requirements in σ s

ℓ before ωℓ′ is finished.
(ii) During execution. If ωk

n is a collaborative behavior, then
agent n sends another synchronization message to the leader
agent of this behavior to start executing this action. The leader
coordinates with all collaborators to start simultaneously after
relevant constraints within the R-posets are satisfied and the
synchronization messages of all collaborators are received. Oth-
erwise, if ωk

n is a local action, then agent n starts the execution
directly.

(iii) After execution. After the execution of ωk
n is finished, for

each subtask ωℓ
h satisfying {ωk

n, ωℓ
h, . . . } ⊈=ϕ , a ‘‘stop’’ synchro-

nization message is sent by agent n to agent h, This message
indicates that the execution of ωk

n is finished thus ωℓ
h can be

started. The above procedure is summarized in Fig. 8.

Remark 8. The synchronization protocol above is event-based,
i.e., only the subtasks within the partial relations are required to
synchronize, which are much less than within the whole subtasks.
In comparison, the product-based solution (Baier & Katoen, 2008)
and the sampling-based solution (Kantaros & Zavlanos, 2020)
require full synchronization during execution, meaning that the
movement of all agents should be synchronized for each tran-
sition in the global plan. Moreover, the Mixed Integer Linear
Program (MILP)-based solution in Jones et al. (2019), Luo and
Zavlanos (2022) requires no synchronization as each agent simply
executes the subtasks according to the optimal time plan. The
planning algorithm in Schillinger et al. (2018) also requires no
synchronization as the local subtasks of each agent are designed
to be independent, however losing optimality. As validated in the
numerical experiments, the synchronization protocol offers great
flexibility and robustness against fluctuation in task durations
during execution, while ensuring correctness. ■

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

6

i
t
r

ω

.2. Plan adaptation under agent failures

Whenever an agent cannot continue executing its remain-
ng subtasks due to certain failure, a more complex adapta-
ion method is required as the unfinished subtasks should be
e-assigned to other agents.

Assume that agent Nd has the optimal plan τNd = ω1
Nd

ω2
Nd
· · ·

KNd
Nd

. It fails at time t = Td after the execution of subtask ω
kd−1
Nd

and during the transition to subtask ω
kd
Nd
. Consequently, the set of

unfinished tasks is given by

Ω̂Nd = {ω
k′
Nd

, k′ = kd, kd + 1, . . . , KNd}, (13)

which is communicated to other agents before agent Nd failed.
Note that if an agent fails during the execution of a subtask, this
subtask has to be re-scheduled and thus re-executed.

Given this set of subtasks, the easiest recovery is to recruit
another new agent N ′d with the same capabilities as agent Nd
and takes over all tasks in Ω̂Nd . However, this is not always
feasible, meaning that Ω̂Nd needs to be assigned to other existing
agents within the team. Then, the BnB algorithm in Algorithm 2
is modified as follows. First, the initial root node now consists of
the subtasks that are already accomplished, i.e.,

ν ′0 = (τ ′1, . . . , τ
′

Nd−1, τ
′

Nd+1, . . . , τ
′

N), (14)

where τ ′n = ω1
nω

2
n · · ·ω

Kn
n and Kn is the last subtask accomplished

at time t = Td, for each agent n = 1, . . . ,Nd − 1,Nd + 1, . . . ,N .
Namely, agent Nd is excluded from the node definition. Second,
the node expansion now re-assigns all unfinished tasks: Ω̂d =⋃

n∈N Ω̂n, where Ω̂n ⊂ Ωϕ is the set of unfinished tasks for
agent n ∈ N , defined similarly as in (13). Namely, each re-
maining task is selected according to the same partial ordering
constraints Pϕ as before agent failure, for node expansion. After-
wards, the same branching rules and the methods for calculating
lower and upper bounds are followed. Consequently, an adapted
plan Ĵ⋆ can be obtained from the same anytime BnB algorithm. It
is worth noting that the above adaptation algorithm shares the
same completeness and optimality property as Algorithm 3.

Last but not least, when there are multiple failed agents,
the above procedure can be applied with minor modifications,
e.g., the node definition excludes all failed agents.

7. Algorithmic summary

To summarize, the proposed planning algorithm in Algorithm
3 can be used offline to synthesize the complete plan that min-
imizes the time for accomplishing the specified collaborative
temporal tasks. During execution, the proposed online synchro-
nization scheme can be applied to overcome uncertainties in
the duration of certain transition or actions. Moreover, whenever
one or several agents have failures, the proposed adaptation
algorithm can be followed to re-assign the remaining unfin-
ished tasks. In the rest of this section, we present the analysis
of completeness, optimality and computational complexity for
Algorithm 3.

Theorem 5 (Completeness). Given enough time, Algorithm 3 can
return the optimal assignment J⋆ with minimum makespan T ⋆.

Proof. To begin with, Lemma 2 shows that any R-poset ob-
tained by Algorithm 1 is accepting. As proven in Lemma 3, the
underlying DFS search scheme finds all accepting runs of B−ϕ via
exhaustive search. Thus, the complete R-posets Pϕ returned by
Algorithm 1 after termination is ensured to cover all accepting
words of the original task. Moreover, Lemma 4 shows that any
11
assignment J⋆ from the BnB Algorithm 2 satisfies the input R-
poset from Algorithm 1. Combining these two lemmas, it follows
that any assignment J⋆ from Algorithm 3 satisfies the original
task formula. Second, since both Algs. 1 and 2 are exhaustive,
the complete set of R-posets and the complete search tree of
all possible assignments under each R-poset are searched for the
optimal solution. As a result, once both sets are enumerated, the
derived assignment J⋆ is optimal over all possible solutions. □

The computational complexity of Algorithm 3 is analyzed as
follows. To generate one valid R-poset in Algorithm 1, the worst
case time complexity is O(M2), whereM is the maximum number
of subtasks within the given task thus bounded by the num-
ber of edges in the pruned NBA B−ϕ . However, as mentioned
in Section 3.2, the size of B is double exponential to the size
of |ϕ|. The number of R-posets is upper bounded by the number
of accepting runs within B−ϕ , thus worst-case combinatorial to
the number of nodes within B−ϕ . Furthermore, regarding the BnB
search algorithm, the search space in the worst case is O(M! ·NM)
as the possible sequence of all subtasks is combinatorial and the
possible assignment is exponential to the number of agents. How-
ever, the worst-time complexity to compute the upper bound via
Algorithm 2 remains O(M ·N) as it greedily assigns the remaining
subtasks, while the complexity to compute the lower bound
is O(M2) as it relies on a BFS over the R-poset graph GPϕ . How
to decompose the overall formula while ensuring the satisfaction
of each subformula, thus overcoming the bottleneck in the size
of Bϕ , remains our ongoing work.

Remark 9. The exponential complexity above is expected due
to the NP-hardness of the considered problem. However, as em-
phasized earlier, the main contribution of the proposed algorithm
is the anytime property. Namely, it can return the best solution
within the given time budget, which is particularly useful for
real-time applications where computation time is limited. ■

8. Simulations and experiment

This section contains the numerical validation over large-scale
multi-agent systems, both in simulation and actual hardware. The
proposed approach is implemented in Python3 on top of Robot
Operating System (ROS) to enable communication across plan-
ning, control and perception modules. All benchmarks are run
on a workstation with 12-core Intel Conroe CPU. More detailed
descriptions can be found in Liu et al. (2022).

8.1. Simulations and experiment

The numerical study simulates a team of multiple UGVs and
UAVs that are responsible for maintaining a remote photovoltaic
(PV) power station. We first describe the scenario and three
types of tasks, followed by the results obtained via the proposed
method. Then, we introduce various changes in the environment
and agent failures, in order to validate the proposed online adap-
tation algorithm. Third, we perform scalability analysis of our
method by increasing the system size and the task complexity.
Lastly, we compare our methods against several strong base-
lines, in terms of optimality, computation time and adaptation
efficiency.

8.1.1. Workspace description
Consider a group of UAVs and UGVs working in a PV power
station for long-term daily maintenance. As shown in Fig. 9, the

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

P
t
a
t

s
r
b
t
m
U
e
e
r
a
t
r
t
s
s
c
t
b

8

s

Fig. 9. PV power station in the numerical simulation study, which consists of
V panels pi , roads, inverters/transformers ti and base stations b. The arrow
rajectories are the paths of the agents executing the LTL formula ϕ1 . The
rrow direction is the motion direction and the arrow density correspond to
he velocity of different agents.

tation consists of mainly three parts: PV panels p1, . . . , p34,
oads, inverter/transformer substations t1, . . . , t7 and the robot
ase station b. Furthermore, there are one type of UAVs and
wo types of UGVs. The UAVs Vf are quadcopters which can
ove freely between all interested places. The larger type of
GVs, denoted by Vl, has the limitation of not going to PV pan-
ls or transformers; the smaller ones Vs can travel more freely,
.g., under the PV panels but not under the transformers. As a
esult, different types of robots have different motion models Gn
s described in Section 4.1 and distinctive action models. The
raveling time among the regions of interest is estimated by the
oute distance and their respective speed. Detailed descriptions of
he workspace and robot model are omitted here due to limited
pace. Interested readers please refer to Liu et al. (2022). Note that
ome actions can be performed alone while some require direct
ollaboration of several agents, e.g., one Vs can sweep debris under
he PV panel while one Vl and two Vs are required to repair a
roken PV panel.

.1.2. Task description
For the nominal scenario, we consider a system of moderate

ize, including 12 agents: 6 Vf , 3 Vl and 3 Vs. Scalability analyses to
larger systems are performed later in Section 8.1.5. Moreover, we
consider a complex task and test it with agent failure. This task
can be specified as the following LTL formulas, requires a series
of limited actions to maintain the photovoltaic power station:

ϕ1 =♢(repairp3 ∧ ¬scanp3 ∧ ♢scanp3) ∧ ♢(washp21∧

♢mowp21 ∧ ♢scanp21) ∧ ♢(sweepp21 ∧ ¬washp21∧

♢mowp21) ∧ ♢(fixt5 ∧ ¬p18) ∧ ¬p24 U sweepp27
∧ ♢(washp34 ∧⃝scanp34),

(15)

where the locations of these subtasks are chosen across the
workspace. Thus, a strategy to minimize the completion time is
crucial.

8.1.3. Results
In this section, we present the results of the proposed method,

including the computation of R-posets, task assignment via the
BnB search algorithm, and the task execution.

Partial analysis: The NBA Bϕ1 associated with task ϕ1 in (15)
contains 707 states and 16044 edges. And the pruning step re-
duces 84.9% edges within 30.43 s. Then, Algorithm 1 explores 4
accepting runs in 0.14 s to find the first R-poset and gets the best
R-poset in 22.40 s. Finally, as shown in Fig. 11, we choose the
best R-poset Pp

ϕ with 10 subtasks, whose language L(Pp
ϕ) has 525

words. In Pp, there are multiple subtasks that can be executed in
ϕ

12
parallel such as ω2 with ω4, ω1 with ω7. However, these subtasks
are still ordered as no subtask set can be executed independent
with the left subtasks. This means that we cannot divide the word
into a series of independent parts using the method in Schillinger
et al. (2018). It is worth noting that this R-poset has only one
subtask ω7 with mowp21 , which is required twice in ϕ1. It follows
additional partial orders as ω4 ⪯ϕ ω8, ω6 ⪯ϕ ω8. This means
that our method can find a more efficient R-poset with relations
not explicitly written in the formula. There are two ̸=ϕ relations
(ω2, ω3), (ω4, ω6), due to the constrains repairp3 ∧¬scanp3 and
sweepp21∧¬washp21 in formula ϕ1. Until execute ω8, all subtasks
have the labels of self loop ¬p24 due to ¬p24Usweepp27 .

Task assignment: Then, during the task assignment step, the
first valid solution is found in 0.131 s. Afterwards, at t = 1.75 s, a
node is reached and its estimated lower bound is larger than the
current upper bound, and thus cut off from the search tree. Over-
all, around 84.2% of visited nodes are cut off, which clearly shows
the benefits of the ‘‘bounding’’ mechanism. Then, the estimated
upper bound rapidly converges to the optimal T ⋆

= 1388.5 s
in 3.34 s by exploring 30 nodes. This is due to the branching effi-
ciency during the BnB search, using the estimated lower bounds
as heuristics. Lastly, the whole search tree is exhausted after more
than 10 hours, due to the complexity of the problem.

As shown in Fig. 10, in the optimal task assignment, for the
same type of task wash, different types of agent Vf 3, Vl3 are
employed for washp34 and Vf 4, Vf 5 for washp21 . All the constraints
of ⪯ϕ, ̸=ϕ are satisfied, e.g., mowp21 should be executed after
washp21 , sweepp21 and washp21 should not be executed at the
same time. These relations are denoted by triangles of the cor-
responding color. Moreover, most subtasks without these rela-
tions are executed in parallel, such as ω1, ω2. These parallelisms
dramatically reduce the makespan.

8.1.4. Online adaptation
In this subsection, we simulate two practical scenarios to vali-

date the proposed online adaptation algorithm: (i) fluctuations in
the execution time of subtasks; (ii) agent failures during online
execution,

First of all, we artificially change the executing time of certain
subtasks. For instance, the executing time of the maintenance
tasks for smaller panels is reduced in comparison to the large
panels, e.g., the execution time of washp34 are reduced to 141 s
from 565 s, as the size of p34 is 25% of p10. The transfer time
between different regions will be disturbed. The proposed online
synchronization method in Section 6.1 is applied during execu-
tion to dynamically accommodate these fluctuations. As shown in
Fig. 10, Vs1 , Vs2 arrive p3 first and then begin ‘‘communicate with
collaborate leader‘‘ until leader Vl1 arrives p3 and returns the mes-
sage ‘‘synchronization begins’’. After finish task scanp21 , agent Vf2
go to the proper place quickly but cannot start scanp34 as its
cooperators are not arrived and the related partial orders are also
not satisfied. Thus, it turns to the states of ‘‘communicate with
other leader for start and stop messages‘‘ and ’’communicate
with collaborate leader’’ .

Secondly, more severe scenarios are simulated where agents
break down during task execution and thus are removed from the
team. More specifically, vehicle Vf4 breaks down at 250 s, Vl1 , Vs3
break down at 600 s during the execution of ϕ1. Consequently,
as shown in Fig. 10, washp21 is re-assigned to other agent as one
of its cooperators Vf4 is failed. Subtask repairp3 is continuing as
its cooperation situation and partial relations are still satisfied.
As described in Section 6.2, the set of unfinished tasks is re-
assigned to the remaining agents by re-identifying the current
node in the BnB search tree and continue the planning process.
It can be seen that no subtasks are assigned to Vf4 anymore in
the updated assignment. Then, as V , V break down at 600 s,
l1 s3

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

p
t
w
r

Fig. 10. Left: Illustration of the upper and lower bounds T ν , T ν , and the optimal value T ⋆ , along with the BnB search process. Middle: Gantt graph of offline
lanning. Right: Gantt graph of the plan execution under agent failures and fluctuated subtask duration during the execution. Additional lines and labels are added
o highlight the online synchronization process. Red segments denote that the agents are during transition among regions, green segments denote ‘‘communicate
ith collaborate leader’’, and blue segments denote ‘‘leader communicate with other leader for start and stop messages’’. The ‘‘start‘‘ message is marked by the
ed diamond and the ‘‘stop’’ message by the black dot, both of which are published by the respective leader. Three agent failures are highlighted in black.
ly,
Fig. 11. R-Poset graph of task ϕ1 , in which the negative labels of σℓ are omitted
here for simplicity. The relations ⪯ϕ , ̸=ϕ are marked by black and red arrows.

Table 2
Scalability analyses of the proposed methoda .
System (Vf , Vs, Vl) tϕ1 [s] tϕ2 [s] tϕ3 [s]

(8, 4, 4) 0.13, 5.9 0.14, 1.08 0.23, 4.81
(12, 6, 6) 0.15, 4.6 0.08, 1.85 0.22, 5.23
(16, 8, 8) 0.13, 5.0 0.10, 1.56 0.21, 4.33
(20, 10, 10) 0.53, 8.4 0.09, 2.11 0.58, 6.20

R-Poset analysis 64.4, 71.1 8.4, 37.9 136.4, 552.5

a System size is given by the number of different types of agents. The associated
solution time is measured by two time stamps: (1) when the first solution or
poset is returned; (2) when the optimal solution or the best poset with largest
language is returned.

the execution of subtask repairp3 is interrupted. It is executed
again by vehicles Vl2 and Vs1 , Vs3 at 1222 s. In the same way, the
unfinished subtasks are re-assigned to the remaining agents. It is
worth noting that the partial ordering constraints are respected
at all time during the adaptation. For instance, Vf1 cannot exe-
cute the subtask washp34 before mowp21 is started, as mowp21 ⪯ϕ

washp34 holds. All subtasks are fulfilled at 2109 s, despite of the
above contingencies. The trajectories of the agents are shown in
Fig. 9.

8.1.5. Scalability analysis
To further validate the scalability of the proposed methods, the

following tests are performed: (i) the same task with increased
team sizes, e.g., 16, 24, 32 and 40; (ii) more LTL formulas with
different structures.

As summarized in Table 2, as the system size is increased
from 8 to 40, the computation time to obtain the first solution
for task ϕ1 remains almost unchanged, while the time taken to
compute the optimal value increases slightly. This result verifies
that the proposed anytime algorithm is beneficial especially for
large-scale systems, as it can return a high-quality solution fast,
and close-to-optimal solutions can be returned as time permits.
13
Secondly, more tasks ϕ2, ϕ3 are considered as follows:

ϕ2 =♢(washp11 ∧ ¬scanpi ∧ ♢scanp11 ∧ ♢((mowp11
∧ ¬washp11) ∧ ♢(sweepp11 ∧ ¬mowp11)))∧

♢(tempp25 ∧ ♢repairp25 ∧ ♢((scanp25∧

¬washp25) ∧ ♢(sweepp25 ∧ ¬p26))) ∧ ♢tempt4 ,

(16)

ϕ3 =♢(tempp25 ∧ ♢repairp25 ∧ ♢((scanp25 ∧ ¬washp25)

∧ ♢(sweepp25 ∧ ¬p26))) ∧ ♢tempt4 ∧ ♢(sweepp8
∧ ♢washp8) ∧ ♢repairp4 ⃝¬p5 ∧ ♢(sweepp8
∧ ¬washp8 ∧ ♢scanp8) ∧ ¬tempt4 U fixt4 ,

(17)

where Bϕ2 contains 216 states and Bϕ3 contains 970 states. As
summarized in Table 2, the computation time of both R-posets
and tasks assignment are increased significantly, as the task be-
comes more complex. However, the time when the first solution
is obtained in tasks assignment does not monotonically increase
due to the polynomial complexity of upper bound method.

8.1.6. Comparison
The proposed method is compared against several state-of-

the-art methods in the literature. More specifically, four methods
below are compared:

Prod: the standard solution (Baier & Katoen, 2008) that first
computes the Cartesian products of all agent models, then com-
putes the product Büchi automaton, and searches for the accept-
ing run within. As the brute-force method, it is well-known to
suffer from complexity explosion.

Milp: the optimization-based solution that formulates the as-
signment problem of R-posets as a MILP, then computes optimal
assignment similar to Jones et al. (2019), Luo and Zavlanos (2022),
i.e., instead of the search method. The partial relations are for-
mulated as constraints in the program. An open source solver
GLPK (Makhorin, 2008) is used.

Samp: the sampling based method proposed in Kantaros and
Zavlanos (2020). Compared with the product-based methods, it
does not pre-compute the complete system model. Instead, it
relies on a sampling strategy to explore only relevant search
space. However, since it does not support collaborative actions
natively, we modify the definition of transitions there slightly.

Decomp: the task assignment strategy proposed in Schillinger
et al. (2018). As discussed earlier in Section 1, the proposed
task decomposition strategy only allows completely independent
subtasks. Furthermore, since it does not support collaborative
actions, collaborative subtasks are decomposed manually.

Comparisons are performed under different system sizes, name
12 and 24 agents, to compare not only efficiency but also scalabil-
ity. To begin with, the nominal system of 12 agents under task ϕ2
is considered. The above four methods are used to solve the
same planning problem. The results are summarized in Table 3.

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

s
t

S
t
o
g
a
m
t
w
a
t
t
c
b
t
c
i
c
b

s
s
t
s
c
s
t
s

8

a
t
t
O
s

8

s
m
r
a
U
c

w

Table 3
Comparisons to other methodsa .
Method tfir [s] topt [s] tfin [s] Tobj [s] Nsync

Prod ∞ ∞ ∞ – –
∞ ∞ ∞ – –

Milp 2069.27 2069.27 2069.27 1058.47 –
∞ ∞ ∞ – –

Samp 328.59 1838.96 ∞ 1968.03 24
3280.68 16294.30 ∞ 1968.03 24

Decomp 580.16 580.16 4581.3 1266.99 0
1151.24 1151.24 5082.07 1267.00 0

Ours 24.81 25.26 ∞ 1058.47 8
28.12 37.40 ∞ 1058.47 8

a tfir is the time to get the first solution; topt the time to get the optimal
olution; tfin the time to complete the search; Tobj the makespan; and Nsync
he number of synchronization during execution.

ince the methods Prod, Milp and Decomp are not anytime, the
ime to obtain the first solution is equal to the time when the
ptimal solution is obtained. It can be seen that Prod fails to
enerate any solution within 11h as the system-wide product
utomata for both cases has more than 1019 states. The Milp
ethod is only applicable for small-scale systems, which returns

he optimal solution in 0.5h but fails to return any solution
ithin 16h for the large-scale case. The Samp method has the
nytime property but it takes ten times more time to generate
he first solution, compared with our method. In addition, since
he subtasks are executed in sequence, the actual time of task
ompletion is significantly longer. The Decomp method can solve
oth problems but the overall time for task completion is longer
han our results, which matches our analyses in Remark 5. In
omparison, our method returns the first solution for both cases
n less than 30 s and the optimal solution within another 10 s. It
an be seen that the task completion time remains the same for
oth cases.
Lastly, the last column in Table 3 compares the number of

ynchronizations required during execution. Although the same
olution is obtained, theMilpmethod requires more synchroniza-
ion than our method. This is because our method requires only
ynchronization for relations within the R-posets, rather than all
onsecutive subtasks. The Prod and Samp methods require more
ynchronization due to their fully sequential execution, while
he Decomp method requires no synchronization as the local
ubtasks of each agent are independent.

.2. Hardware experiment

For further validation with hardware, a similar setup is built
s shown in Fig. 12. In total 4 UAVs and 2 UGVs are deployed in
he workspace of 4 × 5m2. Each robot communicates wirelessly
o the control PC via ROS, of which the state is monitored by the
ptiTrack system. Different tasks and scenarios are designed to
how how the proposed methods perform on actual hardware.

.2.1. Workspace and task description
The workspace mimics the PV farm described in the numerical

imulation. As shown in Fig. 12, there are 6 PV panels (p1 − p6,
arked in blue), 4 transformer substations (t1 − t4, marked in

ed) and 1 base station (b1 marked in yellow). Moreover, 4 UAVs
nd 2 UGVs are deployed to maintain the PV farm, where the
AVs are Crazyflie mini-drones, denoted by Vf , and the UGVs are
ars with four mecanum wheels (denoted by Vs, Vl). Existing ma-

ture navigation controllers are used and omitted here for brevity.

14
Fig. 12. Left: Layout of the experiment setup. Right: Actual trajectories of each
agent when UAV 4 is manually taken down at 75 s.

The routine maintenance task can be specified with the following
LTL formulas:
ϕ4 =♢(repairp2 ∧ ¬scanp2 ∧ ♢scanp2 ∧ ♢(sweepp2

∧ ¬repairp2)) ∧ ♢fixt1 ∧ ♢scanp3 ∧ ♢washp5 ,
(18)

hich can be understood in a similar way to ϕ1 in (15).

8.2.2. Results
First, we describe the nominal scenario. Following the pro-

cedure described in Algorithm 3, the LTL formula is converted
to its NBA B with 62 nodes and 521 edges. And the pruned
NBA B− has 62 nodes and 377 edges. Only one R-poset is found
with Algorithm 1, which contains 6 subtasks whose language L(P)
is equal to the full language L(B−). Furthermore, Algorithm 2
finds the optimal task assignment within 3.7 s, which has the
estimated makespan of 124 s, after exploring 59 nodes. During
execution, it is worth noting that due to collision avoidance and
communication delays, the fluctuations in the time of navigation
and task execution are significant. Consequently, the proposed
online synchronization protocol in Section 6.1 plays an important
role to ensure that the partial constraints are respected during
execution, instead of simply following the optimal schedule. The
execution of the complete task lasts 170 s and the resulting
trajectories are shown in Fig. 12. Moreover, to test the online
adaptation procedure as described in Section 6.2, one UAV Vf4
is stopped manually to mimic a motor failure during execution
at 75 s. During adaptation, a new node is located the BnB search
tree given the set of unfinished tasks and the search is continued
until a new plan is found within 0.8 s. As a result, UAV Vf1 takes
over the subtask scanP2 to continue the overall mission. The
resulting trajectory is shown in Fig. 12, where the trajectory of Vf4
before failure is shown in red, and the trajectory in blue is that of
another UAV taking over the subtasks. In the end, the complete
task is accomplished in 178 s.

9. Conclusion

In this work, a novel anytime planning algorithm has been
proposed for the minimum-time task planning of multi-agent
systems under complex and collaborative temporal tasks. Fur-
thermore, an online adaptation algorithm has been proposed to
tackle fluctuations in the task duration and agent failures during
online execution. Its efficiency, optimality and adaptability have
been validated extensively via simulations and experiments. Fu-
ture work includes the distributed methods for computing the
products between local and global R-posets. This can potentially
alleviate the complexity bottleneck when translating a long LTL
formula into its associated NBA.

Z. Liu, M. Guo and Z. Li Automatica 159 (2024) 111377

R

A

A

B
B

C

C

F

G

G

G

G

G

H

K

L

L

L

U

V

eferences

rai, T., Pagello, E., & Parker, L. E. (2002). Advances in multi-robot systems. IEEE
Transactions on Robotics and Automation, 18(5), 655–661.

strachan, O. (2003). Bubble sort: An archaeological algorithmic analysis. ACM
Sigcse Bulletin, 35(1), 1–5.

aier, C., & Katoen, J.-P. (2008). Principles of model checking. MIT Press.
elta, C., Yordanov, B., & Gol, E. A. (2017). Formal methods for discrete-time

dynamical systems, vol. 15. Springer.
hen, Y., Ding, X. C., Stefanescu, A., & Belta, C. (2011). Formal approach to the

deployment of distributed robotic teams. IEEE Transactions on Robotics, 28(1),
158–171.

liff, O. M., Fitch, R., Sukkarieh, S., Saunders, D. L., & Heinsohn, R. (2015). Online
localization of radio-tagged wildlife with an autonomous aerial robot system.
In Robotics: science and systems.

ink, J., Hsieh, M. A., & Kumar, V. (2008). Multi-robot manipulation via caging in
environments with obstacles. In 2008 IEEE international conference on robotics
and automation (pp. 1471–1476). IEEE.

astin, P., & Oddoux, D. (2001). Fast LTL to Büchi automata translation. In
Computer aided verification (pp. 53–65). Springer.

ini, M. (2017). Multi-robot allocation of tasks with temporal and ordering
constraints. In AAAI conference on artificial intelligence.

uo, M., & Dimarogonas, D. V. (2015). Multi-agent plan reconfiguration under
local LTL specifications. International Journal of Robotics Research, 34(2),
218–235.

uo, M., & Dimarogonas, D. V. (2016). Task and motion coordination for
heterogeneous multiagent systems with loosely coupled local tasks. IEEE
Transactions on Automation Science and Engineering, 14(2), 797–808.

uo, M., & Zavlanos, M. M. (2018). Multirobot data gathering under buffer
constraints and intermittent communication. IEEE Transactions on Robotics,
34(4), 1082–1097.

ochba, D. S. (1997). Approximation algorithms for NP-hard problems. ACM
Sigact News, 28(2), 40–52.

Hoos, H. H., & Stützle, T. (2004). Stochastic local search: foundations and
applications. Elsevier.

Jones, A. M., Leahy, K., Vasile, C., Sadraddini, S., Serlin, Z., Tron, R., & Belta, C.
(2019). ScRATCHS: Scalable and robust algorithms for task-based coordi-
nation from high-level specifications. In Proc. int. symp. robot. res. (pp.
1–16).

antaros, Y., & Zavlanos, M. M. (2020). Stylus*: A temporal logic optimal control
synthesis algorithm for large-scale multi-robot systems. International Journal
of Robotics Research, 39(7), 812–836.

Khamis, A., Hussein, A., & Elmogy, A. (2015). Multi-robot task allocation: A
review of the state-of-the-art. In Cooperative robots and sensor networks 2015
(pp. 31–51). Springer.

Lahijanian, M., Andersson, S. B., & Belta, C. (2011). Temporal logic motion plan-
ning and control with probabilistic satisfaction guarantees. IEEE Transactions
on Robotics, 28(2), 396–409.

Lavaei, A., Soudjani, S., Abate, A., & Zamani, M. (2022). Automated verification
and synthesis of stochastic hybrid systems: A survey. Automatica, 146, Article
110617.

iu, Z., Guo, M., & Li, Z. (2022). Time minimization and online synchronization
for multi-agent systems under collaborative temporal logic tasks (extended
version). arXiv preprint, arXiv:2208.07756.

uo, L., Chakraborty, N., & Sycara, K. (2015). Distributed algorithms for multi-
robot task assignment with task deadline constraints. IEEE Transactions on
Automation Science and Engineering, 12(3), 876–888.

uo, X., Kantaros, Y., & Zavlanos, M. M. (2021). An abstraction-free method for
multirobot temporal logic optimal control synthesis. IEEE Transactions on
Robotics.

Luo, X., & Zavlanos, M. M. (2022). Temporal logic task allocation in het-
erogeneous multi-robot systems. IEEE Transactions on Robotics, 38(6),
3602–3621.

Makhorin, A. (2008). GLPK (GNU linear programming kit). http://www.gnu.org/
s/glpk/glpk.html.

Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-
bound algorithms: A survey of recent advances in searching, branching, and
pruning. Discrete Optimization, 19, 79–102.

Nunes, E., & Gini, M. (2015). Multi-robot auctions for allocation of tasks with
temporal constraints. In Proceedings of the AAAI conference on artificial
intelligence, vol. 29, no. 1.
15
Sahin, Y. E., Nilsson, P., & Ozay, N. (2019). Multirobot coordination with counting
temporal logics. IEEE Transactions on Robotics, 36(4), 1189–1206.

Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2016). Decomposition of
finite LTL specifications for efficient multi-agent planning. In International
symposium on distributed autonomous robotic systems.

Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2018). Simultaneous task allo-
cation and planning for temporal logic goals in heterogeneous multi-robot
systems. International Journal of Robotics Research, 37(7), 818–838.

Sedgewick, R. (2001). Algorithms in C, Part 5: graph algorithms. Pearson Education.
Simovici, D. A., & Djeraba, C. (2008). Mathematical tools for data mining. London:

SpringerVerlag, Springer.
Torreño, A., Onaindia, E., Komenda, A., & Štolba, M. (2017). Cooperative

multi-agent planning: A survey. ACM Computing Surveys, 50(6), 1–32.
Toth, P., & Vigo, D. (2002). An overview of vehicle routing problems. In The

vehicle routing problem (pp. 1–26). SIAM.
Tumova, J., & Dimarogonas, D. V. (2016). Multi-agent planning under local LTL

specifications and event-based synchronization. Automatica, 70, 239–248.
lusoy, A., Smith, S. L., Ding, X. C., Belta, C., & Rus, D. (2013). Optimality and

robustness in multi-robot path planning with temporal logic constraints.
International Journal of Robotics Research, 32(8), 889–911.

arava, A., Hang, K., Kragic, D., & Pokorny, F. T. (2017). Herding by caging: A
topological approach towards guiding moving agents via mobile robots. In
Robotics: science and systems (pp. 696–700).

Zesen Liu received the B.E. degree (2015) in Aerospace
Engineering and Applied Mechanics from Tongji Uni-
versity, Shanghai, China. He is currently a Ph.D.
candidate at the College of Engineering, Peking Univer-
sity, China. His research interests include multi-agent
task planning and coordination under LTL formula.

Meng Guo received the M.Sc. degree (2011) in System,
Control, and Robotics and the Ph.D. degree (2016)
in Electrical Engineering from KTH Royal Institute of
Technology, Sweden. He was a postdoctoral associate
with the Department of Mechanical Engineering and
Materials Science, Duke University, USA. During 2018–
2021, he worked as a senior research scientist on
Reinforcement Learning and Planning at the Bosch
Center for Artificial Intelligence (BCAI), Germany. Since
2022, he is an assistant professor at the Department
of Mechanics and Engineering Science, College of Engi-

neering, Peking University, China. His main research interests include task and
motion planning for robotic systems.

Zhongkui Li received the B.S. degree in space en-
gineering from the National University of Defense
Technology, China, in 2005, and his Ph.D. degree in
dynamics and control from Peking University, China, in
2010. Since 2013, Dr. Li has been with the Department
of Mechanics and Engineering Science, College of Engi-
neering, Peking University, China, where he is currently
a tenured Associate Professor. His current research
interests include multi-agent systems, distributed con-
trol, cooperative motion and task planning.

Dr. Li was the recipient of the State Natural Science
Award of China in 2015, the Natural Science Award of the Ministry of Education
of China in 2022 and 2011, and the National Excellent Doctoral Thesis Award
of China in 2012. His coauthored papers received the IET Control Theory &
Applications Premium Award in 2013 and the Best Paper Award of Journal of
Systems Science & Complexity in 2012. He serves as an Associate Editor of IEEE
Transactions on Automatic Control, and several other journals.

http://refhub.elsevier.com/S0005-1098(23)00543-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb3
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb5
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb5
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb5
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb5
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb5
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb8
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb8
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb8
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb9
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb9
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb9
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb13
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb13
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb13
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb19
http://arxiv.org/abs/2208.07756
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb23
http://www.gnu.org/s/glpk/glpk.html
http://www.gnu.org/s/glpk/glpk.html
http://www.gnu.org/s/glpk/glpk.html
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb27
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb27
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb27
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb30
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb31
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb31
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb31
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb33
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb33
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb33
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00543-5/sb36

	Time minimization and online synchronization for multi-agent systems under collaborative temporal logic tasks
	Introduction
	Related Work
	Multi-agent Task Planning
	Temporal Logic Tasks

	Preliminaries
	Linear Temporal Logic (LTL)
	Nondeterministic Buchi Automaton
	Partially Ordered Set

	Problem Formulation
	Collaborative Multi-agent Systems
	Task Specification
	Problem Statement

	Optimal Plan Synthesis
	Buchi Automaton Pruning
	Task Decomposition
	Task Assignment
	Overall Algorithm

	Online Adaptation
	Online Synchronization under Uncertain Execution Time
	Plan Adaptation under Agent Failures

	Algorithmic Summary
	Simulations and Experiment
	Simulations and Experiment
	Workspace Description
	Task Description
	Results
	Online Adaptation
	Scalability Analysis
	Comparison

	Hardware Experiment
	Workspace and Task Description
	Results

	Conclusion
	References

