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Abstract
A wide range of discrete planning problems can be solved
optimally using graph search algorithms. However, optimal
search quickly becomes infeasible with increased complexity
of a problem. In such a case, heuristics that guide the plan-
ning process towards the goal state can increase performance
considerably. Unfortunately, heuristics are often unavailable
or need manual and time-consuming engineering. Building
upon recent results on applying deep learning to learn gen-
eralized reactive policies, we propose to learn heuristics by
imitation learning. After learning heuristics based on optimal
examples, they are used to guide a classical search algorithm
to solve unseen tasks. However, directly applying learned
heuristics in search algorithms such as A∗ breaks optimal-
ity guarantees, since learned heuristics are not necessarily ad-
missible. Therefore, we (i) propose a novel method that uti-
lizes learned heuristics to guide Focal Search A∗, a variant of
A∗ with guarantees on bounded suboptimality; (ii) compare
the complexity and performance of jointly learning individual
policies for multiple robots with an approach that learns one
policy for all robots; (iii) thoroughly examine how learned
policies generalize to previously unseen environments and
demonstrate considerably improved performance in a simu-
lated complex dynamic coverage problem.

1 Introduction
Intelligent robotic systems have to select from a diverse
set of actions to perform complex operations. For instance,
they must plan sequences of optimal actions to complete
specified tasks such as following trajectories, navigation
within clustered workspace, or coordination among different
robots. Unfortunately, planning is known to be a hard com-
putational problem that often relies on heavily engineered
solutions, for instance heuristic-based rules which are tai-
lored to specific environments (Ghallab, Nau, and Traverso
2004; LaValle 2006; Latombe 2012). These solutions typi-
cally lack generalization capabilities and performance guar-
antees for new environments. Conversely, intelligent robotic
systems will be deployed in previously unseen, complex en-
vironments and thus need capabilities to plan dynamically
while reacting to unforeseen situations.

Here, we propose a step towards bridging this gap by ex-
ploiting recent advancements in deep learning which yields

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intelligent behavior without hand-crafted solutions. Specifi-
cally, rather than synthesizing an entire plan, we learn poli-
cies that output action probabilities given an observation of
the current system state. We build upon recent results where
a reactive policy was learned from expert demonstrations us-
ing a deep neural network (Groshev et al. 2017). The learned
policy generalizes to some degree to novel environments,
which is, however, limited and typically not optimal for ev-
ery situation. Nevertheless the learned policy can be used as
a guiding heuristic in classical planners such as A∗. Still, di-
rectly applying learned policies, as previously proposed by
Groshev et al. (2017), breaks optimality or even complete-
ness guarantees, because the learned heuristic is not ensured
to be admissible (Russell and Norvig 2016).

In this paper, we therefore present a novel combination
of learned policies with ω-optimal A∗ focal search (A∗ω), in-
troduced by Pearl and Kim (1982). Our algorithm exploits
guidance from learned policies and ensures not only com-
pleteness but also bounds on suboptimality. We model the
generalized policy with a deep convolutional neural network
that takes observations of the environment states as input and
outputs next actions as well as the predicted remaining plan
length. Furthermore, we propose two different heuristics that
are derived from the outputs of the learned network, one that
directly predicts a value function, and a second one that esti-
mates the path likelihood of nodes that are expanded during
search.

In summary, the contibution of this paper is (i) we propose
a novel combination of learned heuristics with A∗ω search.
This combination guarantees bounds on suboptimality while
exploiting guidance from learned policies; (ii) we present a
general framework for learning control policies and extend
previous work to multi-agent systems; (iii) we introduce a
novel problem domain based on the real world application
of autonomous valet parking. Extensive experimental evalu-
ations demonstrate the advances or our approach over exist-
ing methods in this domain.

2 Related work
Graph search has been used extensively in the past decades
to solve planning problems, resulting in search algorithms
such as A∗ (Hart, Nilsson, and Raphael 1968) that are opti-
mal and complete if admissible guiding heuristics are used.
For problems with a large number of states, trade-offs are
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commonly made between solution quality and planning effi-
ciency. For instance, A∗ variants with bounded relaxation
have been proposed that allow suboptimal results (Arya
et al. 2004; Helmert and Domshlak 2009; Pearl and Kim
1982; Cohen et al. 2018). In particular, A∗ω by Pearl and
Kim (1982) uses an additional heuristic hF (n) that does not
need to be admissible but guides planning into promising re-
gions. Cohen et al. (2018) present an anytime-version of A∗ω
that tightens the bound iteratively over the planning time.

Finding good heuristics can be hard and in many cases in-
volves tedious manual work. Moreover, good heuristics are
often subject to the environments for which they were de-
signed, i.e., they do not generalize well to novel environ-
ments. Consequently, machine learning has been suggested
and successfully applied to learn and improve such heuris-
tics. For instance, Samadi, Felner, and Schaeffer (2008)
combine several existing heuristics using artificial neural
networks and Arfaee, Zilles, and Holte (2011) propose the
method of iterative deepening, which starts planning with
weak heuristics and iteratively improves them. In contrast,
we focus on the combination of bounded suboptimal plan-
ning with learned policies.

Over the past years, deep neural networks (DNN) have
been used with extraordinary success in a plethora of
different domains, e.g., image classification (Krizhevsky,
Sutskever, and Hinton 2012), natural language processing
(Sutskever, Vinyals, and Le 2014), or control (Mnih et al.
2015). This, together with DNNs theoretically being univer-
sal function approximators (Cybenko 1989), has motivated
their usage in the planning domain. One of the first examples
is the work by Ernandes and Gori (2004), in which DNNs
were used to learn heuristic value functions for guided plan-
ning. Whereas they apply likely admissible heuristics for
which the admissibility requirement is relaxed in a proba-
bilistic sense, our method computes solutions with a hard
suboptimality bound.

Besides learning value functions as heuristics, Groshev
et al. (2017) proposes to directly learn policies, i.e., map-
pings from state to actions by imitation learning. Imitation
learning and, in particular, behavioral cloning are supervised
learning techniques in which a model learns the correct con-
trol policy based on sequences of observation-action pairs
that are provided by an expert demonstrator. As shown in
Groshev et al. (2017), the learned policy is able to general-
ize to situations it has never seen during training. Behavioral
cloning was also successfully used in applications such as
path following with obstacle avoidance (Tamar et al. 2016)
or focused robot skills (Mülling et al. 2013). Others used
actor-critic methods to directly learn policies in multi-agent
scenarios for the purpose of collective construction (Sar-
toretti et al. 2018).

Our approach is closely related and builds upon the work
by Groshev et al. (2017). We extend their work to learn
multi-agent policies and with novel methods that combine
the learned policies with bounded suboptimal planners. This
allows us to retain the aforementioned guarantees. Further-
more, this outperforms the previous method in the proposed
application domain.

Our application domain is connected to coverage prob-

lems, traditionally tackled by choosing frontier cells for the
robots to explore (Burgard et al. 2005) or by designing local
potential functions that the robots minimize (Cortes et al.
2002; Lee, Diaz-Mercado, and Egerstedt 2015). However,
these approaches consider static environments, whereas the
main focus here is on dynamic coverage.

3 Bounded Suboptimal Search with Learned
Heuristics

In this part, we start with the preliminaries of anytime fo-
cal A∗ search. Then we formally state the system model and
the planning objective. The proposed planning framework
consists of mainly two parts: first, we describe the super-
vised imitation learning scheme to learn a generalized pol-
icy based on observation-action pairs of an optimal expert
demonstrator. Second, we show how this learned policy can
be fused with anytime focal A∗ search algorithms to ensure
bounded suboptimality under different heuristics.

3.1 On Anytime Focal A∗ Search
A∗ is a search algorithm that computes minimum-cost paths
from a start node s to a goal node g on graphs with non-
negative edge-cost (Hart, Nilsson, and Raphael 1968). Dur-
ing search, the algorithm maintains an open list N of nodes
and always expands the node with minimal f-value. This
value is computed by a function f(n), defined as f(n) =
b(n) + h(n), where b(n) is the currently best-known cost
from the start node s to node n, and h(n) is a heuristic1 that
estimates the cost from node n to the goal node g. After node
g was chosen for expansion, the algorithm guarantees to re-
turn the minimum-cost path if the heuristic is admissible,
i.e., if it always under-estimates the true minimal cost from
a given node to the goal. In the special case of h(n) = 0,∀n,
A∗ defaults to Dijkstra’s algorithm (Dijkstra 1959). The effi-
ciency of A∗ strongly depends on the nature of the heuristic
h(n). For example, if a perfect oracle heuristic is available,
A∗ only expands the nodes on a minimum-cost path (Russell
and Norvig 2016). In practice, however, it is usually hard to
find admissible heuristics that are tight lower bounds for the
true cost.

Several A∗ variants trade solution quality for planning ef-
ficiency via bounded relaxations. For these algorithms, guar-
antees on the solution quality can be given. In particular,
A∗ω by Pearl and Kim (1982) guarantees solutions that are
not worse than ω · copt, where copt is the cost of the opti-
mal solution and ω ≥ 1 is a design parameter called focal
value. In contrast to A∗, focal search does not always choose
nmin = argminnf(n), but maintains a focal set with all
nodes for which f(n) < ω ·fmin, with fmin = minn∈N f(n).
When choosing only nodes from the focal set for expansion
in every step, the above bound on the resulting cost is guar-
anteed. Still, the performance highly depends on which node
within the focal set the algorithm chooses. For this, A∗ω uses
an additional heuristic hF (n), selecting nodes that are ‘more
promising’ to expand. It is important to note that this heuris-
tic hF (n) does not need to be admissible.

1In our experiments we set h to be the steps-to-go for the car
for vanilla A∗and for all variants of Focal A∗.
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Figure 1: a) Policy network structure. It consists of one path for predicting action probabilities p(ai|s) for each robot, one for
predicting the plan length for all the robots. b) Focal A∗ω search. Example search path with action probabilities depicted on the
edges. The close-up shows information attached to each node: the state si, the f -value f(n) and the focal heuristic hF (n).

Instead of specifying values of ω, Cohen et al. (2018)
present an anytime version of A∗ω in which the search starts
with high ω and tightens the bound iteratively. Whenever
A∗ω returns a solution path P , the value ω̄ = c(P )/fmin is a
valid suboptimality bound, since the minimum f -value de-
pends on an admissible heuristic and always under-estimates
the cost of the optimal solution. (This is not true when us-
ing classical A∗ with non-admissible heuristics, since then
the f -value itself depends on a non-admissible heuristic).
Also, by design of A∗ω , it always holds that ω̄ ≤ ω. Cohen et
al. (2018) propose to continue search after a valid solution
has been found, e.g. by choosing ωnew = ω̄− ε, where ε > 0
is a small step size, which guarantees decreasing values of
ω sizes over time. Importantly, the anytime version can effi-
ciently re-use the existing search tree when continuing with
decreased values of ω.

3.2 Problem Description
We consider a fully-observable state space S on which a set
ofN agents operate jointly. The agents perform joint actions
a = (a1, . . . , aN ) ∈ A that factor into one action ai for
each agent i. Furthermore, we assume a known, determin-
istic dynamics model of the environment st+1 = f(st, at)
that maps a state st ∈ S and action at ∈ A at time step t
to the state st+1 at time step t + 1. Function c(s, a) ∈ R+

defines a cost for each state-action pair. In addition, we have
an initial configuration sinit, a set of invalid states {s}invalid
which the system is not allowed to reach, as well as a set
of goal states {s}goal. A control strategy π : S → A is a
mapping from state s ∈ S to action a ∈ A. The objec-
tive is to construct a control strategy that drives the system
from the initial state to any goal state while avoiding the
invalid states. We refer to a problem instance as the tuple
(S,A, f, c, sinit, {s}invalid, {s}goal). While we assume that the
state space S and action set A remain invariant for all pos-
sible problem instances, the initial, invalid, and goal states
can change per instance.

Given a problem instance and a control strategy
π, the system path of length T is given by P =
sinita0s1a1 · · · aT−1sT , where at = π(st). A system path is
called valid if there exists T > 0 such that sT ∈ {s}goal and
st /∈ {s}invalid, ∀t = 0, · · · , T . In addition, each valid path
has an associated cost of C(P ) =

∑T−1
t=0 c(st, at). Then,

optimal planning is concerned with finding the control strat-
egy π∗ that minimizes the cost of the resulting path P ∗.

3.3 Multi-Agent Policy via Imitation Learning
As mentioned earlier, we first train a DNN to imitate expert
behaviors. The network takes an observation of the current
state of a problem instance as input and generates distribu-
tions over the set of actions A, i.e., p(a|s) for each robot.
Moreover, the same network also learns a value function
V (s) which estimates the minimum cost to reach the goal
states for state s ∈ S.

The structure of our proposed DNN, shown in Figure 1,
is based on the single-agent policies presented by Groshev
et al. (2017) . The network consists of two predictive paths,
one for the reactive policy and one for the value function.
Each predictive path is composed of a series of 14 convo-
lutional layers, consisting of 64 3 × 3 filters, followed by
2 fully connected layers. The first 7 convolutional layers
are shared between the two paths. Moreover, each convolu-
tional layer receives skip connections from the input. In the
multi-agent case, we extract a window of fixed k × k size
around each robot’s position before entering the linear lay-
ers, whereby the network becomes invariant to the number
of agents. This may appear as only a small extension of Gro-
shev et al. (2017), where only a single window is extracted.
However, as we will show in our experiments, this makes a
big difference in performance compared to learning policies
for each agent individually. The final action probabilities are
computed by a softmax activation function and all other ac-
tivation functions are linear rectifiers.

We generate training data with an optimal planner, i.e.,
A∗, to solve sampled problem instances. Whenever the opti-
mal planner could not solve an instance, we discard it from
the training set. This yields training data that consists of op-
timal state-action pairs as well as state-value-function pairs.
For training, we use standard cross entropy as loss function
for action probabilities and `1-norm for value predictions.

The whole setup might raise the question why learning to
imitate an optimal planner and not directly use the optimal
planner. One important reason is that in many applications
the optimal planner can not produce a reasonable plan within
given timing limits. Therefore, we propose to learn a guiding
heuristic off-line which helps to speed up on-line planning,
as described in the next section.

3.4 Combine Learned Policy with Focal Search
The straightforward approach to use the DNN model learned
as described in the previous section is to fully trust the net-
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work and act according to the learned policy, e.g., always
act according to the most likely action. However, this ap-
proach does not perform well due to the limited generaliza-
tion ability of the network, as also shown in the quantitative
numerical evaluation in Section 4. A more robust way is to
use the learned policy to assist classical planners such as A∗.
Groshev et al. (2017) propose to use the learned value func-
tion directly as planning heuristic. It considerably improves
performance for some instances but invalidates optimality
guarantees of the solution.

We solve this issue by combining the learned policy with
focal A∗ω , introduced in Section 3.1. Specifically, we pro-
pose two novel approaches to design the focal heuristic hF :
(i) Use the estimated value function from the learned net-
work as hF . We refer to this algorithm as A∗ω,len. (ii) Use the
path probability estimated by the learned policy as hF . This
algorithm is referred to as A∗ω,log. The motivation behind this
focal heuristic is that it guides the search along paths that the
learned action probabilities suggest.

The log-likelihood of a path P = s0a0s1a1 · · · aT−1sT
is given by log p(P ) =

∑T−1
t=0 log p(at|st), where p(at|st)

is the probability of choosing action at at state st. During
search, we would like to estimate the likelihood of the path
through the node that is being evaluated. However, we only
know the actions preceding the current time step tk > 0. To
avoid bias towards the beginning of the path, we therefore
assume a uniform policy for all succeeding steps up until a
fixed horizon, i.e.,

log p(a0, .., atk , .., aT ) ≈
tk∑
i=0

log p(ai) +

T∑
i=tk+1

log
1

|A|
,

where we set T to the maximum number of steps of any node
in the tree, and |A| is the cardinality of the set of actions.

Figure 1b depicts an example where n2 and n4 are cur-
rently in the open list. Using hF with log-likelihood estima-
tion would prefer n2 over n4 if we were only adding along
the currently expanded path, since log(0.5) < log(0.5 · 0.9 ·
0.9). Normalizing to a common path length with the pro-
posed method, however, prefers n4 because now the log-
likelihood of n2 changes to log(0.5 · 0.5 · 0.5).

Since we only modify the focal heuristic hF in A∗ω , i.e.,
not h(n), we retain the guarantees on bounded suboptimal-
ity. At the same time, the A∗ω search process is greatly accel-
erated via using the learned heuristic as guidance.

4 Experimental Results
In the following, we present experimental results of apply-
ing the proposed approach to the use case of Autonomous
Valet Parking (AVP). The resulting dynamic coverage prob-
lem is computationally complex and cannot be solved opti-
mally using A∗ in acceptable time, which motivates the pro-
posed use of learned heuristics with focal search.

4.1 Autonomous Valet Parking
An AVP system parks cars or picks up parked cars au-
tonomously in public parking decks. Most existing solutions
require extensive infrastructures such as a large number of

Figure 2: Execution of an optimal plan in a single-robot AVP
example. a) The car (blue circle) has a fixed desired path τc
(blue arrows) to reach its goal (green circle). b) Each cell
of the car’s monitor region (shaded blue area) has to be ob-
served by at least one robot. While the robot (red circle) can
observe some cells (green solid arrow), the line-of-sight to
other cells is occluded (dashed red arrow) by an obstacle
(black area). c) The optimal strategy for the robot is to move
two cells upwards, because the line-of-sight is still occluded
in position (d). e) The monitor region is fully observable and
the car can drive to the next cell along its path.

laser scanners, tracks, and shuttles to move cars. Such so-
lutions are not only expensive, but also customized for spe-
cific environment structures. These problems could be mit-
igated by replacing static infrastructure with mobile robots
that are equipped with sensors (mobile sensor units). Besides
autonomously parking the car, a critical safety requirement
is that the area in front of the car has to be monitored con-
tinuously to ensure no collisions with obstacles or humans.
Even though robot localization and navigation techniques
are quite mature (Thrun, Burgard, and Fox 2005), the dy-
namic coverage problem still has to be solved, i.e., where to
position which mobile sensor unit for optimal execution time
with minimal energy consumption. Instead of hand-crafted
solutions, we propose to apply the proposed method to solve
this dynamic coverage problem for multi-robot systems.

Modeling AVP: We model the AVP as a problem instance,
described in Section 3.2, as follows. Assume a grid world
with dimensions Dx, Dy ∈ N, where each cell cell(x, y),
with (x, y) ∈ W , {1, . . . , Dx} × {1, . . . , Dy}, is either
occupied by an obstacle or free. The desired path of the car
τc = sc1s

c
2 · · · scL, sci ∈ W , is assumed to be provided by an

external planner. We have R ∈ N robots available to guide
the car along its path. The current state space is given by
S = (sr1, s

r
2, . . . s

r
R, s

c), where sri ∈ W is the position of
robot i and sc ∈ τc is the position of the car. Note that the
car is assumed to only move along its path τc. The robots
can perform actions ari ∈ {up, down, left, right, none},
i.e., move to an adjacent cell within the grid world or stay
still. Goal states are the terminal states of car paths, and in-
valid states are the states where robots or the car collide into
each other or into obstacles. Lastly, the car is only allowed to
move to the next cell in its path when every cell in a monitor
region is visible to at least one robot. This monitor region is
defined as the set of cells surrounding the front of the car.
As a cost function c(a, s), we choose 1 for every time step
until a goal state is reached, and in addition a cost of 1 for
every robot action. The robots are equipped with 360◦ field-
of-view laser scanners with infinite depth. In practice, we
use a ray tracer and test the center of each cell to examine
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Figure 3: Learning curves during training, over training and
validation set, as function of the number of training epochs.

whether a cell is visible for a robot or if the line-of-sight
is occluded. Figure 2 depicts an example of a car path, the
monitor region, the line-of-sight test, as well as execution of
an optimal plan for the AVP problem.

4.2 Dataset Creation and Policy Learning
Training and Validation Dataset We generated a diverse
set of problem instances (grid worlds of size 20×20) for the
AVP domain as described in Section 4.1 by randomly sam-
pling numbers and shapes of obstacles, initial positions for
the car and the robot(s), as well as the goal position for the
car. In a first step, we computed the desired path for the car,
ignoring the robots, using a python implementation of stan-
dard A∗ planner with Euclidean distance as heuristic h. In a
second step, an optimal planner based on A∗ computed opti-
mal action sequences for the robot(s) that minimize the ob-
jective function. In this case the heuristic h is the steps-to-go
for the car. Since A∗ is complete and the state space of the
problem instances is finite, the optimal planner eventually
returns for all instances, although in some complex cases
only after hours of computing. Either it returns a valid so-
lution or it fails when no solution is possible, in which case
we discard this instance. Finally, we added all intermediate
states along the optimal path together with their respective
optimal actions into the dataset.

Learning the Models For training, the network receives
an observation of the current system state which contains
the static map, the car path together with its current position
along it, as well as the robots’ current positions. Specifically,
a 3-layer tensor of dimensionW×3 from the current state of
a grid world is created. The first layer contains a binary map
of static obstacles, i.e., cell(x, y) of this layer is 1 if there
is an obstacle, and 0 otherwise. The second layer consists of
the car position and path, encoded as cell(xcsc , y

c
sc) = sc/L,

sc ∈ {1, . . . , L}. Hence this also embeds the car goal po-
sition. The third layer contains the robot positions, encoded
as cell(xri , y

r
i ) = i, i ∈ {1, . . . , R}. The network outputs

are then trained against the ground truth actions and value
functions from the dataset, as described in Section 3.3.

4.3 Experiments and Results
We evaluated the ability of different policies to learn and,
more importantly, generalize to new problem instances.
Also, we examined the need to learn true multi-robot poli-
cies versus the possibility of applying single-robot policies
to multi-robot scenarios. For this, we used the following two

SPSW SPSW SPMW MPMW
1 rob. 2 rob. 2 rob. 2 rob.

mean acc. 0.84 0.045 0.25 0.64

std acc. 0.37 0.21 0.43 0.48

mean len. err. 0.88 17.67 1.26 0.81

std len. err. 3.83 8.40 4.53 3.00

Table 1: Performance of learned policies on the validation
set. Comparison in terms of accuracy as the percentage of
correctly predicted actions, and plan length prediction error.
Mean and std values are computed on a per trial basis by
forward simulating each world in the validation set.

experiments: (1) A comparison of the accuracy and perfor-
mance between learning single vs multi-robot policies. (2) A
comparison between the different strategies for solving the
entire problem instances.

Learning single vs multi-robot models: In this experi-
ment we learned three different DNN-models for single and
multi-robot problem instances. To distinguish among the
models, we denote them as follows:

• SPSW – Single-robot Policy over Single-robot Worlds:
outputs action probabilities and a plan prediction for one
single robot and is learned over problem instances with
one single robot.

• SPMW – Single-robot Policy over Multi-robot Worlds:
outputs action probabilities and plan prediction for one
single robot but is learned over problem instances with
two robots. In particular, the network selects only one k×
k window at the position of one of the robots, for which
it outputs the action probability. This policy can also be
seen as the decentralized case, where each robot observes
the full state but only controls its own actions.

• MPMW – Multi-robot Policy over Multi-robot Worlds:
outputs action probabilities and plan prediction for two
robots and is learned over problem instances with two
robots. In contrast to SPMW, this reflects the centralized
case, where one policy controls all robots.

For this, we created two different test and validation datasets
according to Section 4.2. The first contains problem in-
stances where one single robot is in charge of escorting one
car. The second contains instances with two robots escort-
ing one car. To examine performance over training, we per-
formed validation (with fixed weights) after each training
epoch. All reported timing information in the experimental
section refer to a server with 2.10 GHz Intel(R) Xeon(R) E5-
2695 v4 CPUs and a GTX 1080 TI graphics card.

The learning curves in Figure 3 show the average loss,
over the corresponding validation dataset, for the learned
policies as function of the number of training epochs. The
curves demonstrate the ability of each policy to consis-
tently learn without over-fitting their corresponding training
set. More importantly, Table 1 compares accuracies of ac-
tion choice, and plan length predictions when the learned
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Figure 4: Examples of solved problem instances. Each image depicts a full run to the goal state. a) Single-robot problem in-
stance, solved perfectly just by applying the learned policy. b)-e) Multi-robot problem instances. b) Optimal solution computed
by A∗ without time limit. A∗ could not find a solution in 5 min. c) First solution computed by A∗∞,log after 2.5 s, d) Refined
solution by A∗AT after five minutes. e) Directly applying the policy MPMW did not solve the problem.

Figure 5: Comparing different policies solving 100 problem
instances with one robot using SPSW policies. a) Success
rate. b) Computation time. c) Nodes expanded during search.
d) Cost of the final solution, normalized to A∗.

networks were applied to multi-robot problem instances.
Single-robot policies from SPSW and SPMW were applied
to each robot, while MPMW already outputs control actions
for all robots. For completeness also the values of SPSW
applied to single robot dataset are shown in the table in the
left column. The figure shows that merely applying single-
robot policies, even if learned over multi-robot scenarios,
leads to poor performance. Although learning single poli-
cies over multi-robot scenarios (SPMW) leads to improved
performances, it is still not sufficient to reach acceptable per-
formance as indicated by the mean accuracy in Table 1. In
other words, the results demonstrate that multi-robot coordi-
nation must be learned jointly.

Application of learned heuristics: In this experiment we
took the learned policies SPSW, SPMW and MPMW from

above and used them as learned heuristics in combina-
tion with different control strategies. Each combination was
tested on 100 randomly selected worlds from the respective
validation sets. However, each problem instance was lim-
ited to a maximal planning time of 5 min (arbitrarily cho-
sen). If this time was exceeded, the control strategies failed.
Moreover, whenever the system reached an invalid state, the
episode was terminated. In particular, we evaluated the fol-
lowing control strategies:

• A∗: Classical planner without learned policy. Heuristic
function h is the steps-to-go for the car.

• Focal A∗, first solution (A∗∞,log): Focal search with ω =
∞. This means that the search fully trusts the focal heuris-
tic and returns after the first valid solution has been found.
Its suboptimality bound can be computed after a solution
is found (see Section 3.1). Using the learned policy to
compute hF with log-likelihood estimation.

• Focal A∗, first solution (A∗∞,len): As before, focal search
with ω = ∞. Here the learned value function is used as
focal heuristic hF .

• Focal A∗ (A∗3,log): Focal search with ω = 3 and learned
log-likelihood estimation as hF .

• Anytime Focal A∗ (A∗AT): Focal search in anytime ver-
sion, log-likelihood as hF .

• Groshev et al. (A∗H ): Directly using the learned value
function as heuristic in A∗ as proposed in Groshev et
al. (2017)

• Greedy: Hand-crafted method to provide baseline bench-
marks. The strategy employs available robots in the order
of their relative distances to the monitored cells. Addi-
tional robots are acquired if the already deployed ones are
insufficient to cover the monitor region.

• Deterministic (det): The deterministic control strategy
maps a state to the action with the highest probability.

• Probabilistic (prob): Choose actions by a weighted ran-
dom selection based on the action probability given by the
network. Here, we allow repeatedly choosing an action
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Figure 6: Comparing policies for problem instances with two robots. In all panels, blue and red bars correspond to using the
SPMW or MPMW model, respectively. a) Success rates. b) Average planning time for all methods. c) Average cost of the
returned environments, normalized to the optimal A∗, only problem instances for which A∗succeeded are considered.

until either a valid action is selected or until a maximum
number of 5 trials is reached.

Figure 4 shows examples of a) one- and b)-e) two-robots
problem instances from the validation set, solved using dif-
ferent control strategies. Figure 4a depicts the solution of
directly applying the learned policy (SPSW) as a probabilis-
tic strategy in a one-robot instance. In this comparably easy
example the policy solved the problem almost optimally,
which shows that the DNN models have learned meaning-
ful behavior.

This is in contrast to more complex scenarios with two
robots, as depicted in Figure 4b-e. Panel b shows the ground
truth solution, computed by A∗ within 18 min, and resulting
in a cost of 72. In the optimal solution, one of the robots es-
corts the car close to its goal pose. At the end of its path the
car ’parks’ close to a wall, which requires both robots to co-
operate to observe the whole monitor region. Therefore, the
second robot has to move to a location where it can monitor
parts of the region that cannot be observed by the first robot.

Here, directly applying the learned (MPMW) model did
not lead to successful behavior (as shown in Figure 4e).
Also, classical A∗ could not find a solution within 5 min,
while focal search guided by the learned heuristics found a
first solution already after 1 s with a resulting cost of 211.
In this example, the cost of the returned path is three times
the optimal solution, which by design is less than the plan-
ner’s guarantee of ω = 6. Continuing focal search within
the 5 min planning time refines the solution, as depicted in
Figure 4d, resulting in ω = 5 and C(P ) = 156.

The qualitative results illustrated in the example above
also show up in quantitative analysis. Figure 5 shows the
average results of 100 single-robot problem instances using
SPSW strategies. The success rates of all A∗ based methods
are 1, while directly applying the learned probabilistic poli-
cies result in a success rate around 0.96. However, A∗∞,log

uses an order of magnitude less nodes to find a valid solution
compared to A∗. The difference in computation time is not
as big, since the network queries (of about 5 ms per query)
increase computation time whenever the learned policy is
used. Figure 5d shows the cost of the solutions, normalized
over the solution of A∗. In the single robot case, all strategies
found solutions that are close to the optimal.

The planning difficulty increases drastically when two
robots are deployed due to the much larger state space. Fig-
ure 6 shows results for SPMW (blue) and MPMW (red), av-
eraged over 100 two-robot problems. In these complex sce-
narios, A∗ has a success rate of only 0.9 when planning time
is limited to 5 min. Also, directly applying the policies did
not perform well and showed success rates of at most 0.6
when MPMW was applied using the probabilistic strategy.
Directly using the learned heuristic in an optimal planner
(A∗H ), as proposed in Groshev et al. (2017), returns a suc-
cess rate of about 0.8. Our proposed method A∗∞,log using
the learned MPMW heuristics as guidance returned a so-
lution in all of the 100 validation scenarios. Moreover, our
method found a first solution already within 1 s on average,
with average ω = 7.2 and a real suboptimality factor of 3.1.
Continuing the search for the remainder of the 5 min plan-
ning time window using A∗AT further reduced the value of ω
to 4.2, with an actual suboptimality factor of 2.0 on average.

Comparing the results for SPMW and MPMW in Figure 6
suggests that jointly learned multi-robot policies signifi-
cantly outperform single-robot policies. Also note that, in
general, focal A∗ using log likelihood estimation as heuris-
tic (A∗∞,log) surpasses value function estimation (A∗∞,len).
In all plots, whenever we show normalized values, we only
compare planning instances for which A∗ found a solution
within the allowed planning time.

The results of our experiments show that directly apply-
ing learned heuristics does not perform well in complex sce-
narios. Using them as guiding heuristics improves perfor-
mance considerably, though. Moreover, using (anytime) fo-
cal search has the benefit of getting first solutions fast that
can be refined over time, always having a guaranteed upper
bound on the suboptimality factor.

5 Conclusion
In this work, we present novel methods to combine learned
policies with classical planning methods to ensure bounded
sub-optimality. Exhaustive experiments demonstrate that
our technique clearly improves performances over previ-
ous methods, especially over directly applying the learned
policies. Even though highly hand-crafted heuristics could
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still provide better performance, the proposed method re-
quires much less manual engineering and, more importantly,
is easily adaptable to different problem domains. Finally, we
achieve guarantees for the qualities of our estimated solu-
tions with respect to optimal solutions by combining an ex-
isting focal search algorithm with our learned heuristics.

Since the network already produces a policy and a value
function, further work in reinforcement learning seems to be
an obvious path to follow in future work. Specifically, we are
interested in learning policies in even more complex tasks,
such as problem instances with more than two agents for
which optimal ground truth is not available.
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