
PushingBots: Collaborative Pushing via Neural Accelerated
Combinatorial Hybrid Optimization

Zili Tang, Ying Zhang and Meng Guo

Abstract—Many robots are not equipped with a manipulator
and many objects are not suitable for prehensile manipulation
(such as large boxes and cylinders). In these cases, pushing is
a simple yet effective non-prehensile skill for robots to interact
with and further change the environment. Existing work often
assumes a set of predefined pushing modes and fixed-shape
objects. This work tackles the general problem of controlling a
robotic fleet to push collaboratively numerous arbitrary objects to
respective destinations, within complex environments of cluttered
and movable obstacles. It incorporates several characteristic chal-
lenges for multi-robot systems such as online task coordination
under large uncertainties of cost and duration, and for contact-
rich tasks such as hybrid switching among different contact
modes, and under-actuation due to constrained contact forces.
The proposed method is based on combinatorial hybrid opti-
mization over dynamic task assignments and hybrid execution
via sequences of pushing modes and associated forces. It consists
of three main components: (I) the decomposition, ordering and
rolling assignment of pushing subtasks to robot subgroups; (II)
the keyframe guided hybrid search to optimize the sequence of
parameterized pushing modes for each subtask; (III) the hybrid
control to execute these modes and transit among them. Last
but not least, a diffusion-based accelerator is adopted to predict
the keyframes and pushing modes that should be prioritized
during hybrid search; and further improve planning efficiency.
The framework is complete under mild assumptions. Its efficiency
and effectiveness under different numbers of robots and general-
shaped objects are validated extensively in simulations and hard-
ware experiments, as well as generalizations to heterogeneous
robots, planar assembly and 6D pushing.

I. INTRODUCTION

Humans often interact with objects via non-prehensile skills
such as pushing and rolling, especially when prehensile skills
such as stable grasping is infeasible. This aspect is however
less exploited in robotic systems. Most existing work treats
pushing as a complementary skill to pick-and-place primitives
for a single manipulator within simple environments, e.g., [1],
[2], [3], [4]. Nonetheless, pushing can be particularly bene-
ficial for low-cost mobile robots that are not equipped with
a manipulator, e.g., ground vehicles, quadruped robots, and
even underwater vehicles [5]. For instance, obstacles can be
pushed out of the path, and target objects can be pushed to
desired positions. In addition, several robots could improve the
feasibility and efficiency by collaboratively and simultaneously
pushing the same object at different points with different
forces, which might be otherwise too heavy for individual
robots. On a larger scale, as shown in Fig. 1, a fleet of such

The authors are with the School of Advanced Manufacturing and Robotics,
Peking University, Beijing 100871, China. This work was supported by the
National Key Research and Development Program of China under grant
2023YFB4706500; the National Natural Science Foundation of China (NSFC)
under grants 62203017, U2241214, T2121002.

Corresponding author: Meng Guo, meng.guo@pku.edu.cn.

Fig. 1. Snapshots of the PushingBots system, during the simulated planar
assembly task via 12 robots and 14 objects (Left); and the hardware
experiments of swapping 2 objects via 4 mini-ground vehicles (Right).

robots can be deployed to transport concurrently numerous
objects, yielding a much higher capacity and reliability.

Despite its intuitiveness, the collaborative pushing task
imposes several challenges that are typical for contact-rich
tasks [6]. Different motions of the object, such as translation
and rotation, can be generated by different modes of pushing
such as long-side, short-side, diagonal, and caging, however
with varying quality depending on the physical properties
of the object [1], e.g., mass distribution, shape, and friction
coefficients. Thus, long-term pushing in complex environments
would require: (I) planning under tight kinematic and geomet-
ric constraints such as narrow passages and sharp turns [3]; (II)
hybrid optimization to switch between different contact modes
with desired pushing forces [7]; and (III) underactuated control
due to constrained contact forces and unmodeled friction or
slipping [8], [9], yielding a difficult problem not only for
modeling and planning, but also for hybrid control. Lastly,
the coordination of multiple robots to push numerous objects
is also non-trivial, due to: (I) the tight coupling of object
trajectories, both spatial and temporal to avoid collisions and
deadlocks [10], [11]; and (II) the inherent uncertainties in the
feasibility and duration of subgroups pushing different objects
during online execution [12].

To tackle these challenges, this work addresses the problem
of controlling mobile robots to collaboratively push arbitrary-
shaped objects to goal positions in a complex environment
without predefined contact modes. As illustrated in Fig. 2,
the overall problem is formulated as a combinatorial hybrid
optimization (CHO) including the dynamic assignment of
robots to different objects, and the hybrid optimization of
pushing modes and forces for each object. To begin with,
the pushing task of all objects is decomposed into a set of
temporally-ordered subtasks via the multi-agent path finding
(MAPF) algorithm for irregular-shaped vehicles and spatial

ar
X

iv
:2

51
1.

15
99

5v
1 

 [
cs

.R
O

] 
 2

0 
N

ov
 2

02
5

https://arxiv.org/abs/2511.15995v1


Fig. 2. Overall proposed online planning and adaptation framework, consisting of the MAPF-based task decomposition, subtask generation with partial
ordering, the online rolling assignment of subtasks, the neural accelerated hybrid optimization, and the online hybrid control.

segmentation. Then, to handle the uncertain execution time
of each subtask, a receding-horizon coordination algorithm is
proposed to dynamically assign the robots to different subtasks
based on the estimated feasibility and duration. Moreover,
a learning-while-planning hybrid search algorithm iteratively
decomposes subtasks via keyframe sampling and generates
suitable modes to minimize feasibility loss, transition cost,
and control efforts. Lastly, the online execution and adaptation
strategy is presented for both the task assignment and the
hybrid control. The diffusion-based accelerator is learned
offline and online, to predict the sequence of keyframes and
pushing modes for different subtasks, along with the estimated
cost. Theoretical guarantees on completeness and performance
are ensured under mild assumptions. Extensive simulations
and hardware experiments are conducted to validate its per-
formance and the effectiveness of the learned accelerator.

The main contributions of this work are two-fold: (I) the
novel combinatorial-hybrid optimization algorithm with neural
acceleration, for the multi-robot planar pushing problem of
arbitrary objects, without any predefined contact modes or
primitives; (II) the theoretical condition for feasibility and
completeness, w.r.t. an arbitrary number of robots and general-
shaped objects. To the best of our knowledge, this is the first
work that provides such results.

II. RELATED WORK

A. Task and Motion Planning

The predominant direction in task and motion planning fo-
cuses on navigation and prehensile manipulation, particularly
on grasping strategies and object manipulation sequences [13].
Representative tasks include sequential assembly [6], [14], re-
arrangement [15], and structural construction [16]. In contrast,
non-prehensile planar manipulation poses unique challenges
due to the lack of stable grasps. The classical single-pusher-
single-slider model [1] highlights the importance of online
adaptation of discrete contact decisions and force constraints,
often resulting in exponential planning complexity. To manage
this, motion primitives such as sticking and sliding can be en-
coded into integer programs [3], and various search-based op-
timization approaches have been proposed [7], [17]. However,

most existing methods focus on single manipulators and fixed-
shape objects in simple settings, limiting their applicability to
multi-robot, multi-object scenarios.

Coordinating multiple robots for multi-object tasks intro-
duces significant complexity. Typically, tasks must be decom-
posed into subtasks with well-defined dependencies, which
are subsequently assigned to robot subgroups, as comprehen-
sively surveyed in [18], [19], [20]. Since many task planning
problems are NP-hard or NP-complete [18], meta-heuristic
methods such as local search and genetic algorithms [20]
are commonly employed to improve computational efficiency.
However, these approaches often assume deterministic costs,
limiting their applicability in dynamic environments where
task outcomes are uncertain and evolve over time. Recent
work has addressed the multi-robot scheduling problem un-
der ordered and uncertain tasks via the graph-based learn-
ing [21], distributed coordination [22], and search-based adap-
tation [23], demonstrating strong performance in dynamic
settings. These methods operate on the abstract task graphs
without incorporating the underlying physical constraints. In
contrast, the decomposition and ordering of the pushing tasks
for different objects in this work are not predefined, rather
evaluated online based on the assigned robot subteams and
interaction constraints.

B. Collaborative Pushing

As an application of multi-robot systems, collaborative ob-
ject transportation [24] can be realized via pushing, grasping,
lifting, pulling, or caging. Pushing is particularly appealing
since it often requires no additional hardware: robots can
interact with objects using any part of their body. Early
heuristic strategies, such as hand-tuned state machines for
a few robots in free space [11] or occlusion-based pushing
rules for convex objects [25], do not generalize well to clut-
tered or more complex environments. A hybrid optimization
problem is formulated in [26] for several objects, but with
a set of predefined pushing primitives and cost estimation.
Similarly, sequential pushing steps are manually defined for
heterogeneous robots in [12] to clear movable rectangular
boxes in the workspace, where only one robot is assigned



for each box. Recent work [27] adopts several quadruped
robots to push objects of unknown mass and friction, which
however allows a limited set of pushing modes. Another line
of work addresses a similar problem, but only for a single
object in free [28], [29] or in cluttered [30], [31] space.
Current pushing controllers broadly fall into two categories:
force-based and kinematic. The work in [28] exemplifies the
former. Our method, along with [25], [29], [31], belongs to the
latter, relying on a kinematic controller without force sensing.
Separately from the control paradigm, prior work also differs
in kinematic constraints. Both [25], [29] use differential-
drive robots, where [29] explicitly considers nonholonomic
constraints by Jourdain’s principle. By contrast, our work,
together with [28], [31], targets holonomic platforms; nonethe-
less, our pipeline can be partially generalized to nonholonomic
settings. Furthermore, several works adopt distributed schemes
for collaborative pushing [28], [29], [31], which optimize inter-
action modes online via distributed coordination and control,
enabling accurate path tracking in free space [28], [29] and
even in arbitrarily cluttered environments [31], the latter being
the most similar to our task setup but considers only a single
object. In contrast, this work adopts a centralized framework
to tackle multi-robot, multi-object pushing in cluttered envi-
ronments, with a strong focus on multi-object spatiotemporal
coordination, online adaptation and neural acceleration.

C. Neural Policies for Task and Motion Planning
Due to its uncertainty and complexity, pushing a T-block has

been one of the standard benchmarks in neural motion poli-
cies, e.g., self-supervised reinforcement learning [8], implicit
behavioral cloning [32] and diffusion-based methods [33].
Impressive precision and robustness have been shown using
only visual inputs. Similar neural policies are applied to a
quadruped robot for planar pushing of regular objects with
whole-body motion control [5]. For long-term tasks that
require switching among different objects and tools, neural
policies are proposed to predict the contact sequence [34] and
the sequence of action primitives in [15], [35]. However, these
aforementioned works mostly rely on a single manipulator or
quadruped robot via one-point pushing, and human demonstra-
tions. For the multi-robot setup in this work, a simultaneous
multi-point pushing strategy is required, making it difficult
for humans to provide such high-quality demonstrations. Fur-
thermore, due to the multi-modality of both contact modes and
pushing strategies, the long-term pushing task in complex envi-
ronments is particularly challenging for the traditional methods
of imitation learning [36]. Diffusion models on the other hand
have shown great potential in modeling such multi-modality,
i.e., as trajectory samplers for online motion planning [33],
[37]. However, the planning efficiency and generalization of
the resulting policy have not been fully explored in multi-
body systems with coupled and switching dynamics. Lastly,
the performance guarantee of most aforementioned methods
relies on the test scenario to be close to the training datasets,
which however may not always hold and can lead to failures
during online execution [36]. Thus, it remains challenging to
provide formal verification and performance guarantees when
executing such learned policies.

III. PROBLEM DESCRIPTION

A. Model of Workspace and Robots

Consider a team of N robots R fi tRn, n P N u that
collaborate in a shared 2D workspace W Ă R2, where N fi

t1, ¨ ¨ ¨ , Nu. The robots are homogeneous, each with a cir-
cular or rectangular footprint. The state of each robot Rn

at time t ě 0 is defined by snptq fi pxnptq, ψnptqq, where
xnptq PR2 is its position and ψnptq P p´π, πs its orientation.
The associated generalized velocity is pnptq fi

`

vnptq, ωnptq
˘

with its linear velocity vnptq P R2 and angular velocity
ωnptq P R. Let Rnptq Ă W denote the area occupied by
robot Rn at time t. Moreover, each robot tracks the desired
velocity unptq fi ppvnptq, pωnptqq with a low-level feedback
controller, which induces second-order dynamics driven by the
controller and external contact forces. Let SN ptq fi tsnptqu

denote the state of all robots. In addition, the workspace is
cluttered with a set of obstacles, denoted by O Ă W . Thus,
the free space is defined by xW fi WzO.

Lastly, there is a set of M ą 0 target objects Ω fi

tΩ1, ¨ ¨ ¨ ,ΩMu Ă xW , where the shape of each object Ωm

is an arbitrary polygon formed by Vm ě 3 ordered vertices
p1p2 ¨ ¨ ¨ pVm , @m P M fi t1, ¨ ¨ ¨ ,Mu. Similarly, the state
of each object Ωm at time t ě 0 is defined by smptq fi

pxmptq, ψmptqq, and the associated generalized velocity is
pmptq fi

`

vmptq, ωmptq
˘

, with its position xmptq P R2,
orientation ψmptq P p´π, πs, linear velocity vmptq P R2, and
angular velocity ωmptq P R. Its occupied area at time t is
denoted by Ωmptq Ă xW . In addition, its physical parameters
are known a priori, including its mass Mm, the moment of
inertia Im, the pressure distribution at the bottom surface, the
coefficient of lateral friction µcm ą 0, and the coefficient of
ground friction µsm ą 0.

Remark 1. The obstacles are assumed to be static and known
above for simplicity, which can be relaxed to be movable,
unknown or dynamic, as discussed in the sequel. ■

B. Collaborative Pushing Modes

The robots can collaboratively push the objects by making
contacts with the objects at different boundary contact points,
called collaborative pushing modes. More specifically, as is
illustrated in Fig. 1 and 2, a pushing mode for object Ωm P M
is defined by ξm fi pξm, Fm, Nmq, where (I) Nm fi

t1, ¨ ¨ ¨ , Nmu Ď N is the subgroup of robots assigned to push
object Ωm; (II) ξm fi c1c2 ¨ ¨ ¨ cNm with cn P BΩm being the
contact point on the boundary of the object for the n-th robot,
@n P Nm; and (III) Fm fi f1f2 ¨ ¨ ¨ fNm

with fn P R2 being the
contact force exerted by the n-th robot. Since the set of contact
points are not pre-defined, the complete set of all pushing
modes is potentially infinite, denoted by Ξm. Thus, under
different pushing modes, robots can apply different pushing
forces at different contact points, leading to distinct object
motions (translation and rotation).

Remark 2. Detailed modeling of the coupled dynamics during
pushing, including the decomposition of the interaction forces
and frictions, can be found in the Appendix A. ■



C. Problem Statement

The planning objective is to compute a hybrid plan, in-
cluding an object trajectory smptq, a sequence of pushing
modes ξmptq, the pushing robots Nmptq, the required con-
trol uNm , such that each object Ωm P M is moved from a
given initial state s0m to a given goal state sGm, @m P M.
Meanwhile, the robots and the objects should avoid collision
with each other and with all obstacles at all times. More pre-
cisely, it is formulated as a combinatorial hybrid optimization
(CHO) problem as follows:

min
T,tunptq,@nu,

tpsmptq,ξmptqq,@mu

!

T ` α
ÿ

tPT

ÿ

mPM
Jm

`

ξmptq,SN ptq, smptq
˘

)

s.t. smp0q “ s0m, smpT q “ sGm, @m;

Nm1ptq X Nm2ptq “ H,

Ωm1ptq X Ωm2ptq “ H, @m1 ‰ m2, @t;

Ωmptq Ă xW, Rnptq Ă xW, @m, @n, @t;

(1)

where T ą 0 is the task duration to be optimized as the
largest over all objects; T fi t0, 1, ¨ ¨ ¨ , T u; @t, @m and @n
are short for @t P T , @m P M, @n P N , respectively; the cost
function Jm : Ξm ˆ R3N ˆ R3 Ñ R` is a given function to
measure the feasibility, stability, robustness and control cost,
of choosing a certain mode and the forces given the desired
object trajectory, which is different among the objects due
to different intrinsics; and α ą 0 is the weighting between
the task duration and the control performance. The constraints
require that: the object should reach the goal position; each
robot can only participate in the pushing of one object at any
time; the feasibility conditions detailed in Appendix A should
hold; and all objects and robots should be collision-free.

Note that the design of function Jmp¨q is non-trivial and
technically involved; details are given in the sequel. Moreover,
the CHO problem in (1) has an extremely large decision
space: there are MN robot-object allocations per decision
epoch and exponentially many timed schedules of pushing
modes and contact forces over the horizon. Even ignoring
discrete choices, the continuous variables already scale as
« p3N`3MqT when optimizing all objects jointly, rendering
the overall feasible set high-dimensional and highly noncon-
vex, where T denotes the task duration.

IV. PROPOSED SOLUTION

The proposed solution consists of three interleaved compo-
nents in the top-down structure, which are triggered at different
conditions and rates, as shown in Fig. 2. In particular, the
overall task of multi-object pushing is first decomposed into
numerous subtasks via MAPF with ordering constraints in
Sec. IV-A, which are assigned dynamically to subgroups of
robots in a receding-horizon fashion. Then, for each subgroup
to execute the assigned subtask, the optimal hybrid plan is
generated via a hybrid search algorithm in Sec. IV-B, which
is accelerated by a diffusion-based predictor for keyframes
and pushing modes. Finally, to cope with uncertainties during
execution, the object trajectory, the hybrid plan and the task
assignment are all updated online, as described in Sec. IV-C.
Discussions are provided in Sec. IV-D.

(2)  풕ퟏ
⋆ = ퟒퟔ(1)  풕ퟏ

⋆ = ퟎ (3)  풕ퟐ
⋆ = ퟎ

(4)  풕ퟐ
⋆ = ퟖ (5)  풕ퟏ

⋆ = ퟒퟔ (6)  풕ퟏ
⋆ = ퟏퟑퟎ

핾ퟏ
ퟏ 풕ퟏ

풄 =46> 풕ퟐ
풄 =30

푡�
�< 푡�

�

푚�

푚�

핾ퟐ
ퟏ 

핾ퟏ
ퟐ 

풎ퟏ :  ퟏퟓ < 풕 < ퟒퟓ

Fig. 3. Illustration of the decomposition and ordering of pushing tasks
via Alg. 1, yielding 3 subtasks tS1

1,S
2
1,S

1
2u with ordering S1

2 ĺ S2
1 and

S1
1 ĺ S2

1. Note that object m1 waits for object m2 to pass the corridor.

A. Decomposition and Assignment of Pushing Tasks

Since the desired goal state of each object can be far away
and the objects might be blocking each other, the multi-agent
path finding (MAPF) algorithm is adopted first to synthesize
a timed path for each object to reach its goal states. Although
these paths are spatially and temporally collision-free, the
object velocity during collaborative pushing is hard to predict
and control, making it difficult to follow the paths accurately
in time and space. Thus, these paths are further decomposed
into smaller segments with temporal ordering, as subtasks of
the overall pushing task. Lastly, to cope with the uncertainties
during execution, a dynamic task assignment algorithm is
proposed to assign the subtasks to subgroups of robots as
coalitions online in a receding-horizon fashion.

1) Decomposition and Ordering via MAPF: Given the
initial and goal states ps0m, s

G
mq of each object m P M, a

MAPF algorithm [38] is employed to generate a set of timed
path for all objects: pS fi tSm,@m P Mu, where each
path Sm of length L ą 0 for object m is defined as:

Sm fi pt0, smpt0qq ¨ ¨ ¨ ptℓ, smptℓqq ¨ ¨ ¨ ptL, smptLqq, (2)

with ttℓu being the uniform time steps and smptℓq being
the object state at time tℓ. Note that MAPF is a centralized
algorithm which ensures that the objects do not collide with
each other nor the obstacles along the timed paths, i.e.,
Ωm1ptℓq X Ωm2ptℓq “ H,@m1 ‰ m2, @tℓ. Due to the
combinatorial complexity w.r.t. the number of robots and
the collision detection of non-convex polytopes, a sequential
planning approach can also be adopted to reduce compu-
tation time, e.g., ordered by the length of shortest path to
the goal states. Although the paths in pS derived above are
collision-free, they can be difficult to follow both spatially
and temporally. Thus, to ensure safety during execution, these
paths are further decomposed into smaller segments that are
temporally ordered. For ease of notation, let Smpts, teq denote
the segment of Sm between the time period rts, tes, i.e.,
Sm fi pts, smptsqq ¨ ¨ ¨ pte, smpteqq. Then, each path can be
decomposed into a sequence of segments.

Definition 1 (Path Segments). Each path Sm P pS can be
decomposed into Km ě 1 segments according to its spatial



Algorithm 1: Segmentation and Partial Ordering
Input: Paths tSmu

Output: Segments tSmu

1 Initialize t‹m “ 0,Sm “ H @m P M;
2 while Dm P M, t‹m ă tL do
3 for m P M and t‹m ă tL do
4 Determine the next instance tsm by (5);
5 if tsm not found then tsm set to tL;
6 if tsm “ t‹m then Continue;
7 Add Smpt‹m, t

s
mq to Sm;

8 t‹m Ð tsm;
9 Determine the partial relations for tSmu by Def. 2;

intersection with other paths, i.e.,

Sm fi S1
m Y ¨ ¨ ¨Sk

m Y ¨ ¨ ¨SKm
m , (3)

where Sk
m fi Smptk,sm , tk,em q is the k-th segment of Sm

between the starting time tk,sm and the ending time tk,em ,
where 0 ď tk,sm ă tk,em “ tk`1,s

m ă tk`1,e
m ď L. ■

Thus, denote by Sm fi tSk
m, k “ 1, ¨ ¨ ¨Kmu the set of

segments for each object, and S fi tSm, @m P Mu for
all objects, respectively. In addition, the cumulative covered
area of each segment Sk

m is defined as: Sk
m fi Ωmptk,sm q Y

¨ ¨ ¨ YΩmptk,em q, where Ωmptq is the covered area of object m
at smptq. More importantly, the segments are temporally
ordered by a partial relation defined as follows.

Definition 2 (Partial Ordering). The partial relation ĺĂ SˆS
satisfies that Sk1

m1
ĺ Sk2

m2
if one of the following cases hold:

(I) m1 “ m2 and k1 ă k2; (II) m1 ‰ m2 and tk1,c
m1

ď tk2,c
m2

holds, where tk1,c
m1

, tk2,c
m2

are the earliest time instances when
the segments Sk1

m1
and Sk2

m2
collide, i.e.,

tk1,c
m1

“ min
!

tℓ P rtk,sm1
, tk,em1

q |Ωm1
ptℓq X Sk

m2
‰ H

)

, (4)

and tk2,c
m2

is defined analogously; (III) m1 ‰ m2, Sk1
m1

XSk2
m2

“

H, and there exists Sk
m P SztSk1

m1
,Sk2

m2
u such that Sk1

m1
ĺ

Sk
m ĺ Sk2

m2
holds. ■

Namely, all segments of the same object are ordered by their
temporal sequence, while the segments of different objects
that can potentially intersect are ordered by the time that
intersection first occurs. Denote by PrepSk2

m2
q fi tSk1

m1
P

S |Sk1
m1

ĺ Sk2
m2

u these subtasks that are ordered before Sk2
m2

.

Problem 1. Given the paths tSmu, find the segments tSmu

such that the partial ordering ĺ above is satisfied. ■

As summarized in Alg. 1 and shown in Fig. 3, an iterative
algorithm is proposed to derive the segments S from the
paths pS. For each object m, the variable t‹m is introduced
to track the largest splitting time instance, which is set to zero
initially. Then, the next splitting instance tsm is given by:

tsm fi min
m1‰m

!

tcm | tcm ą tcm1 by (4) given rSm, rSm1

)

, (5)

where rSm fi Smpt‹m, tLq and rSm1 fi Sm1 pt‹m1 , tLq are the
remaining paths of objects m and m1 that have not been

Fig. 4. Selection and expansion during the proposed receding-horizon
assignment of the 12 subtasks and 7 robots, given the current planning time
(red dashed line) and the horizon H “ 5 (blue dashed line).

segmented. If the splitting instances can not be found, tsm is
set to tL. Otherwise, a new segment Smpt‹m, t

s
mq is generated

and t‹m is updated to tsm. This process is repeated until t‹m “ tL
holds, @m P M. Lastly, the partial ordering among the
segments is determined by the rules in Def. 2.

The above strategy of decomposition not only divides the
overall pushing task of an object into subtasks, but also ensures
a collision-free execution under uncertain task durations, as
long as the partial ordering among the subtasks is satisfied.

2) Dynamic Task Assignment: The set of segments S above
represents the subtasks of the overall pushing task, each of
which could be accomplished by a subgroup of robots. In other
words, each robot would execute a sequence of subtasks, i.e.,
push different objects along different segments.

Definition 3 (Task plan). The local task plan of robot i P N is
denoted by τi fi pt1, S

k1
m1

qpt2, S
k2
m2

q ¨ ¨ ¨ ptLi
, S

kLi
mLi

q, where
the segment Skℓ

mℓ
P S is executed by robot i from time tℓ;

and Li ą 0 is the total length. The overall task plan of the
fleet is denoted by τ fi tτi, i P N u. ■

The overall task plan τ is called valid if the following two
conditions hold: (I) all partial orderings in ĺ are respected, i.e.,
if Sk1

m1
ĺ Sk2

m2
, then the segment Sk1

m1
should be completed

before the segment Sk2
m2

is started by the assigned subgroup
of robots. (II) the subgroup of robots assigned to each segment
should be sufficient to push the object along the segment. (III)
there should be enough time for each robot i P N to navigate
between consecutive segments in its plan.

Problem 2. The objective of the task assignment for S is to
find a valid task plan such that the estimated time to complete
all tasks is minimized, i.e., min

τ

!

max
Sk

mPS

␣

tendpSk
m, N k

mq
(

)

. ■

To begin with, the above problem includes the job-shop
problem as a special instance [18], thus is also NP-hard. The
most straightforward solution is to formulate a Mixed Integer
Linear Program (MILP). However, the computation complex-
ity and the lack of intermediate solutions make it unsuitable
for this application, particularly so when the pushing subtasks
have large uncertainties in execution time.

Thus, an adaptive receding-horizon task assignment algo-
rithm is proposed, which incrementally assigns subtasks in S
to robot subgroups via node expansion. The details are omitted
here due to limited space. Briefly speaking, it processes at
most H ą 0 subtasks per planning horizon to avoid intractable



Fig. 5. Illustration of the keyframe-guided hybrid search algorithm (Top), which is accelerated by the diffusion-based predictor for keyframes and pushing
modes (Bottom). Note that the multi-modal predictions are verified by the hybrid search scheme for feasibility and quality.

complexity and account for uncertainties during collaborative
pushing. As illustrated in Fig. 4, the search begins with
an empty assignment node, and expands it by assigning
one subtask at a time, ensuring that preceding subtasks are
assigned first as required by the ordering in ĺ. Each robot
subgroup assigned to a subtask is evaluated by the feasibility
and the estimated completion time, which is described in the
subsequent module. The nodes are prioritized based on their
time-average efficiency. The search is terminated after all H
subtasks are assigned. Thus, the node with the maximum
efficiency is selected as the partial plan τ , by which the
subtasks are executed. Once the replaning condition holds such
as a fixed number of subtasks are fulfilled or certain subtasks
are delayed, the set of subtasks S are updated and re-assigned.

More details about the dynamic task assignment can be
found in the supplementary materials. Moreover, the above
procedure for task decomposition and partial ordering have
the following guarantees for completeness and correctness, of
which the proofs are provided in the Appendix B.

Lemma 1. Alg. 1 terminates in finite steps and generates a
strict partial ordering. ■

Lemma 2. Given the partially-ordered segments pS, ĺq, each
object m P M can reach its goal state without collision, by
traversing its sequence of segments Sm as follows: (I) each
segment S

k

m P Sm takes a bounded time to traverse; (II)
if Sk1

m1
ĺ Sk2

m2
holds, object m2 can be moved from the initial

state sm2
ptk2,s

m2
q of Sk2

m2
only after object m1 has reached the

ending state sm1
ptk1,e

m1
q of Sk1

m1
, @Sk2

m2
P PrepSk1

m1
q. ■

B. Accelerated Hybrid Optimization for Collaborative Push

Given the local task plans τ “ tτ ‹
i u from the previous sec-

tion, a subgroup of robots Nm is assigned to push object Ωm

along the path segment Sk
m. This section describes how to

efficiently generate feasible hybrid plans for the subgroup
as a sequence of pushing modes, forces and the reference
trajectory, in a learning-while-planning manner.

Problem 3. Given Sk
m and N k

m for object Ωm, determine the
hybrid plan tpξptq,SNm

ptq, smptqqu such that the local cost
function in (1) is minimized. ■

1) Keyframe-guided Hybrid Search: A keyframe–guided
hybrid search (KGHS) is proposed to solve Problem 3 as
shown in Fig. 5. Instead of optimizing an entire segment
at once, the algorithm recursively splits it into short arc
segments, each of which is executable under a single pushing
mode. A keyframe is an intermediate object state at which
the contact mode is allowed to switch. Let sℓ denote the ℓ-th
keyframe along the segment. Namely, the hybrid plan becomes
a sequence of keyframes and the pushing modes between them,
denoted by ϑ fi κ0 ¨ ¨ ¨κℓ ¨ ¨ ¨κLϑ

, with the ℓ-th stage κℓ fi

psℓ, ξℓq being the keyframe sℓ and the mode ξℓ “ pξℓ,Fℓq,
@ℓ “ 1, ¨ ¨ ¨ , Lϑ. Note that s0 “ s0m and sLϑ

“ sGm, while ξℓ is
the pushing mode for the arc segment ϱℓ fi

hkkkkkkj

sℓsℓ`1. The search
space, denoted by Θ fi tϑu, is thus significantly reduced.

Starting from ϑ0 fi ps0m,HqpsGm,Hq, the search space Θ
is explored via iteratively selecting the promising node and
adding keyframes as needed. To begin with, the node ϑ‹ with
the lowest estimated cost is selected, i.e.,

Jmhybpϑq fi

Lϑ´1
ÿ

l“0

`

JmMFpξℓ, p
B

ϱℓ
q ` wsJ

m
swpξℓ, ξℓ`1q

` wnJ
m
nvpsℓ, sℓ`1q

˘

,

(6)

where JmMFp¨q is a multi-directional estimation of the feasibility
of employing mode ξℓ for the body-frame velocity pB

ϱℓ
corre-

sponding to the arc ϱℓ, with more detailed derivations provided
in Appendix A3; Jmswp¨q measures the switching time from
mode ξℓ to mode ξℓ`1; Jmnvp¨q measures the navigation time
cost along the arc ϱℓ; and ws, wn ą 0 are the weighting pa-
rameters. These cost terms are designed to reflect the objective
function in Problem 1. Unlike a hard feasibility constraint [28],
the soft measure JmMFp¨q keeps the hybrid search solvable and
robust under modeling uncertainty or when the constraint is
structurally unsatisfiable (e.g., single-contact pushing), while
still permitting explicit enforcement of feasibility, as detailed
in Appendix A3. Afterwards, the selected node ϑ‹ is expanded
by finding the first keyframe that has not been assigned with
a mode, e.g., psℓ,Hq for the segment ϱℓ. Then, the node
expansion is performed in four steps:

(I) If the arc ϱℓ intersects with an obstacle, a new
keyframe ppsℓ, Hq is inserted between sℓ and sℓ`1 by se-
lecting an intermediate collision-free state psℓ, i.e., ϑ` fi



Algorithm 2: Neural Accelerated Hybrid Optimiza-
tion: HybDIFp¨q

Input: Subgroup N k
m, subtask Sk

m, Library X
Output: Hybrid Plan ϑk,‹m , control uNk

m
.

/* Offline Generation */
1 Collect state pairs tpss, sequ along the segment Sk

m;
2 Batch-generate hybrid plans for all state pairs:

tpϑ‹u Ð DIFpΩm,N k
m, tpss, sequq;

3 Update library X Ð X Y tpϑ‹u;
/* Keyframe-guided Hybrid Search */

4 Initialize Θ “ tϑ0u;
5 while not terminated do
6 Select ϑ‹ by (6);
7 Find first keyframe psℓ,Hq P ϑ‹ without a mode;
8 if Arc ϱℓ has collision then
9 pϑ‹ Ð psℓ,Hqppsℓ,Hq,psℓ P Sk

m;
10 else

/* Sequentially run the following steps

until pϑ‹ becomes feasible */

11 pϑ‹ Ð ppκ‹
1, ¨ ¨ ¨ , pκ‹

hq “ X pΩm,N k
m, sℓ, sℓ`1q;

12 pϑ‹ Ð DIFpΩm,N k
m, sℓ, sℓ`1q;

13 pϑ‹ Ð IterSamppϑ‹, ϱℓq ;
14 pϑ‹ Ð psℓ,Hqppsℓ,Hq, psℓ P Sk

m;
15 if }ϱℓ} ă ϵ then
16 pϑ‹ Ð SeqArcApproxpϱℓ,N k

mq;
17 Expand ϑ‹ by replace psℓ,Hq with pϑ‹;

¨ ¨ ¨κℓppsℓ,Hqκℓ`1 ¨ ¨ ¨ ; (II) If the arc ϱℓ is collision-free, a
mode is generated for the segment ϱℓ by minimizing the loss
function Jm

MFp¨q in (6) to measure feasibility, i.e.,

ξ‹
ℓ “ argminξℓPΞm

␣

JmMFpξℓ, p
B

ϱℓ
q
(

, (7)

which results in a combinatorial and nonlinear optimization
problem. To solve (7), we employ a parallel multi-start search
over contact modes. Candidate modes are initialized by ran-
dom sampling and iteratively refined by adjusting contact
points. For each candidate ξℓ, we first check force feasibility
via a loss related to force balance, and then practical feasibility
by simulating the pushing process along ϱℓ. A mode is
accepted only if both criteria are satisfied; see Appendix A3
for details. Thus, if a feasible mode is found, the mode is
assigned to the segment ϱℓ.

(III) If no feasible mode is found between sℓ and sℓ`1, an it-
erative sampling procedure is proposed to generate a sequence
of keyframes and modes that further split the segment ϱℓ
into h ą 0 sub-segments, i.e.,

pϑ‹ fi ppκ‹
1, . . . , pκ

‹
hq fi IterSamppsℓ, sℓ`1q. (8)

Keyframes are initially sampled uniformly along ϱℓ and then
perturbed with diminishing variance; for each perturbed seg-
ment, modes are generated as in (II) and evaluated using (6).
The procedure terminates when all sub-segments admit practi-
cally feasible modes or a maximum iteration count is reached.

(IV) Lastly, if the subplan pϑ‹ is still infeasible, a new
keyframe ppsℓ,Hq is inserted between sℓ and sℓ`1, thereby

splitting ϱℓ into two shorter segments. When the arc length
}ϱℓ} is below a threshold ϵ ą 0, we approximate the original
arc by concatenating pre-validated modes,

pϑ‹ fi SeqArcApproxpϱℓ, N k
mq, (9)

which serves as a “last resort” hybrid plan for the sub-
group N k

m due to its frequent mode switching. The following
lemma summarizes the theoretical guarantee of the hybrid
search; the proof is given in Appendix B.

Lemma 3. Given that the subgroup N k
m is mode-sufficient as

defined in Appendix. A4, and the path Sk
m is collision-free, the

proposed hybrid search scheme finds a feasible hybrid plan ϑ‹

in finite steps.

2) Diffusion-based Neural Acceleration: A key aspect of
the hybrid search scheme above is to generate suitable
keyframes tκℓu along the path segments and the associ-
ated pushing modes tξℓu. To further improve the planning
efficiency and reduce planning time mainly for large-scale
scenarios, a diffusion-based neural accelerator is proposed to
generate plausible keyframes and pushing modes for the hybrid
search scheme. Consequently, high-quality pushing strategies
are found earlier for any given path segment and even unseen
objects, in both free and cluttered environments. In particular,
it consists of three main components as described below: the
generation of training data, the training of proposed network
architecture, and the deployment of the learned network.

Dataset Generation. As shown in Fig. 6, a large variety
of pushing problems are instantiated for randomly deformed
basic shapes, a random number of robots with random config-
urations, and random initial and target states. Then, the pro-
posed keyframe-guided hybrid search scheme is used to solve
each problem instance, yielding multiple candidate solutions.
Instead of terminating upon finding a feasible solution, a fixed
number of iterations is enforced to obtain better solutions.
Each candidate is evaluated in simulation, and the one with
minimum task duration is selected. For each selected solution,
we store the problem description and its optimal hybrid plan:

D fi

!

`

ps0m, s
G
m, Ωm, tx0nuq, pϑ‹

m, T
‹
mq

˘

)

. (10)

To improve data efficiency, we also exploit two rotational
symmetries. We randomly rotate the object’s body frame by
an angle θ, expressing all contact points in the rotated frame
and shifting the object orientation by ´θ (a pure change of
reference), and use global in-plane rotational invariance to
normalize each trajectory to a common zero terminal state,
thereby reducing the output degrees of freedom and letting
the model predict in this canonical frame.

Network Architecture and Training. The noise prediction
network follows the U-net architecture in [33], with action
generation conditioned on observations O via Feature-wise
Linear Modulation (FiLM) [39]. The dataset D in (10) is
distilled into observational inputs O and outputs A. The ob-
servations O include: (I) object attributes, such as coordinates
and normal vectors of a fixed number of candidate contact
points and the maximum friction force and torque; (II) robot
attributes, including size and maximum pushing forces; and



Fig. 6. Dataset generation for training the diffusion-based generator of primitive pushing modes, where the initial state of the objects are randomized (in light
green), the object shape is scaled and twisted, and the number of robots is varied from 1 to 4. The resulting robot trajectories are shown in red lines.

Fig. 7. The training loss, the validation loss, the MSE of the hybrid plan during training and validation, for the pushing tasks shown in Fig. 6.

(III) the initial and target object states s0 and sG. The outputs
A are sequences of keyframes and pushing modes,

ps1, ξ1q ¨ ¨ ¨ psh, ξhq Ð DIFpΩm, N k
m, s

0, sGq, (11)

where DIFp¨q is the diffusion-based predictor.
The network is trained following the standard Denoising

Diffusion Probabilistic Model (DDPM) procedure [39]. At a
randomly sampled diffusion step k, Gaussian noise ϵk is added
to each action a P A, and the network is trained to predict ϵk

from po,a ` ϵk, kq using the MSE loss

Lθ fi MSE
`

ϵk, ϵθpo,a ` ϵk, kq
˘

,

where θ denotes the network parameters. As shown in Fig. 7,
the training and validation losses, together with the MSE of the
predicted hybrid plans, decrease steadily over epochs. Fig. 8
further illustrates hybrid plans generated by the trained model
for different objects and initial poses, where the keyframes and
modes are progressively refined during denoising and align
well with the ground-truth plans in the dataset.

Deployment within Hybrid Search. The most straightfor-
ward way to deploy the learned neural network is to replace the
hybrid search and directly execute its predicted plans, or to re-
place the optimization-based mode generation in (7). However,
this often leads to collisions and failures when test scenarios
differ from the training data. Instead, we use the diffusion
model to propose initial hybrid plans, which are then verified
and, if necessary, locally refined by the model-based scheme.
Specifically, when the arc between sℓ and sℓ`1 is collision-
free, the diffusion model generates candidate keyframes and
pushing modes connecting these states. The best candidate is
inserted into the search tree and then checked for feasibility
and performance. To further accelerate planning, we maintain
an online library X of previously verified pushing strategies,
indexed by relative object displacements. The library is queried
first; if no suitable entry is found, the hybrid search with the
diffusion model is invoked to generate a new verified strategy,

which is then stored in X . This “learning while planning”
setup both speeds up solving a single problem and improves
performance over multiple tasks.

Remark 3. Unlike approaches that directly execute neural
plans [15], [33], the predicted keyframes and modes are only
prioritized within the hybrid search and are always verified,
which is crucial in unseen complex workspaces. ■

C. Online Execution and Adaptation

Given the high-level assignment algorithm of the pushing
tasks and the hybrid optimization of the pushing policy, the
robotic fleet can start executing the pushing tasks as follows.

1) Mode Execution: Given the hybrid plan ϑk,‹m for each
object m P M and subtask Sk

m, the robots need execute the
plan by tracking the desired trajectories. More specifically, a
local reference trajectory is generated as the arc segment ϱptq
that connects the current state smptq of the object and the
next keyframe state s‹

m along the plan, which is updated
at each control loop. Then, the next reference state psrm is
selected as the first state along the planned arc ϱptq satisfying
|psrm ´ smptq| ą δc, where δc ą 0 is a fixed threshold.
Given this reference object state, the corresponding contact
point and orientation for each robot n P N k

m as specified
by the hybrid plan are denoted by pcn and pψn, respectively,
yielding the desired robot state psrn fi ppcn, pψnq. Then, the
desired translational and rotational velocities are given by:

pvn “ Kvel ppcn ´ cnq , pωn “ Krot

´

pψn ´ ψn

¯

; (12)

where Kvel and Krot are positive gains. These velocity com-
mands are then passed to the low-level controllers, yielding
actuation forces Qdrv for robot Rn. The exact implementation
of the low-level controllers depends on the actuation hardware.
Moreover, to handle contact slippage and deformation, pushing
is paused when any contact point deviates beyond a thresh-
old, triggering load-free motion to re-establish valid contact.



Fig. 8. Illustration of generating hybrid plans with a horizon of 3 via the trained diffusion model, for 6 different objects starting from 4 distinctive initial
positions and a common target at the origin. Each predicted hybrid plan consists of 4 keyframes and 3 pushing modes in between. During the denoising
process, both the mode and keyframe quality improve progressively, with the final predictions align well with the ground truth in the dataset.

Lastly, for high precision tracking at centimeter level, a more
deliberate control scheme might be required, e.g., distributed
coordination and control [28], [29]. Note that un in (12)
updates in real-time, relying solely on the online computation
of the analytical arc segment ϱt at each time step.

Remark 4. As neither the simulated nor physical robots in our
work are equipped with force sensors, the kinematic control
in (12) are adopted instead of explicit force-based control.
Thus, contact forces emerge implicitly from physical interac-
tions, reducing the reliance on accurate force measurements.
More analyses on the feasibility of this kinematic control
scheme can be found in Appendix A3. ■

Remark 5. Although the controller above is designed for
holonomic models, extensions to non-holonomic robots such
as quadruped and differential-drive robots can be achieved by
local adjusting schemes, e.g., turn-and-forward. More numer-
ical examples are given in Sec. V-A3. ■

2) Online Adaptation upon Failures: As discussed earlier,
due to model uncertainties such as communication delays,
actuation noises and slipping, the collaborative pushing task
is inherently uncertain in terms of both object trajectory and
task duration. In addition, congestion or deadlock during
navigation can also lead to failed execution. Thus, online
adaptation to such contingencies is essential for both the task
assignment and the hybrid search of the pushing strategy.
More specifically, the execution of the ℓ-th segment of the
current hybrid plan ϑk,‹m rℓs “ psℓ, ξℓq is considered to be failed
if one of the following conditions holds:

dist
`

smpt1q, ϱℓ
˘

ě δf, Dt1 P rt, t´ Tcs;

}smpt1q ´ smpt2q} ă rstuck, @t1, t2 P rt, t´ Tcs;
(13)

where distp¨q measures the minimum distance from a point to a
2D curve; the first condition checks whether the object deviates
from the target arc ϱℓ by more than δf ą 0 over a recent time
window Tc ą 0; the second detects if the object is stuck,
i.e., its position change remains below a threshold rstuck ą 0
during the same period. Note that δf bounds the tracking error,
while setting δf too small would trigger frequent replanning
and reduce efficiency. Moreover, if the object is too close

TABLE I
CONDITIONS FOR COMPLETENESS

Cond. Description

C1 The geometric and physical properties of the objects and
robots are known in advance.

C2 Inflating each target object by p1 ` ϵrq times the maximum
robot diameter, for arbitrarily small ϵr, yields a feasible
multi-agent path finding (MAPF) instance.

C3 For every target object Ωm, there exists a mode-sufficient
robot subgroup Nm Ď N (see Appendix A4).

to obstacles, or new obstacles appear, or several robots fail,
the hybrid search algorithm in Alg. 2 is re-executed with
the current system state and functional robots, yielding an
adapted hybrid plan ϑk,‹m , and the control policy in (12) is re-
activated. Last but not least, in case these measures can still not
resolve the failure, the high-level task assignment τ is updated
by receding horizon planning with the current system state
and remaining subtasks. This can be effective when several
robots failed and the remaining robots in the subgroup are not
sufficient to push the object. The above procedures of online
execution and adaptation are summarized in Fig. 9.

D. Discussion

1) Computation Complexity: The task-level complexity is
dominated by MAPF, task decomposition, and task assign-
ment. For M polygonal objects, a complete MAPF algorithm
such as CBS [40] is exponential, so we adopt a sequential A‹

scheme with complexity Op}Vst} log }Vst}¨M2q, where }Vst}

is the size of the space-time graph. Task decomposition and
assignment cost OpM2q and OpMHNminpM,Hqq, respectively.
For the hybrid search in Alg. 2, the cost is mainly determined
by mode generation and the search-tree size. The feasibility
check via JMF in (20) corresponds to a linear program with
complexity OpN3.5q [41]. Overall, the time complexity of
the hybrid search is O

´

N3.5W
2α{αmin

k

¯

, where Wk is the
maximum number of nodes generated in a single expansion.

Lastly, as summarized in Table I, the key assumptions
include that: the intrinsic properties of robots and objects are
known, a feasible MAPF solution exists for all objects, and
there is always a mode-sufficient subgroup of robots for each



Fig. 9. The proposed scheme of online execution and adaptation to uncertainties, delays and failures, as detailed in Sec. IV-C. Note that the pushing subtasks
of different objects are executed in parallel. Adaptation is triggered first within the subgroup and then the whole group.

object. Then, the completeness guarantee of the overall scheme
is stated below, with detailed proofs in Appendix B.

Theorem 1. Under the conditions in Table I, the proposed hy-
brid optimization scheme yields valid solutions to Problem 1.

2) Generalization: The proposed framework can be gener-
alized in the following notable directions:

(I) Movable obstacles. Movable obstacles can be treated
as additional objects that are pushed in the same way as
targets, either to unblock infeasible scenarios or to shorten
overall task duration. They are included in the MAPF instance
without fixed goal positions, so that timed paths implicitly
specify where and how they should be moved, and the resulting
subtasks include pushing these movable obstacles. (II) Het-
erogeneous robots. When robots have different capabilities,
the high-level assignment should account for their efficiency:
heavier objects are allocated to more powerful robots, while
lighter ones are handled by smaller teams. The interaction
mode can be extended to ξ fi pc1, f1, R1q ¨ ¨ ¨ pcN , fN , RN q, so
that contact points cn and forces fn reflect individual limits,
and the transition cost Jswp¨q in (6) is adapted accordingly.
(III) 6D pushing tasks. For 6D object poses in 3D scenes, the
framework extends under a quasi-static, zero-gravity setting.
The 2D arc transition becomes a 3D spiral transition, and the
hybrid search space is lifted to 6D pose, while the overall
structure of the pipeline remains unchanged. (IV) Planar as-
sembly. When only a global assembly pattern is specified, goal
poses for individual objects can be generated by geometric
solvers or generative methods [42]. The resulting object goals
are then passed to our pipeline to complete the assembly.

3) Limitation: The proposed approach has several limita-
tions. (I) As discussed in Appendix A1, the quasi-static analy-
sis of collaborative pushing modes holds only for slow motions
with small inertia and persistent contact. For microgravity
or floating objects, our method can still operate by actively
decelerating, but this can be inefficient and calls for further
study. (II) The mass, shape, and friction coefficients of all
objects are assumed known for feasibility evaluation. Small
deviations can be absorbed by the tracking controller in (12),
whereas large uncertainties would require active identification
and multi-objective planning. (III) The task decomposition
relies on a centralized MAPF solver, and the hybrid search is
executed centrally for each subteam. For large-scale scenarios,
decentralized MAPF approaches [43] could reduce complexity,
and designing a fully decentralized pushing scheme remains
an interesting direction for future work.

V. NUMERICAL EXPERIMENTS

To further validate the proposed method, extensive numeri-
cal simulations and hardware experiments are presented in this
section. The proposed method is implemented in Python3
and tested on a laptop with an Intel Core i7-1280P CPU.
Numerical simulations are run in PyBullet [44], while ROS
is adopted for the hardware experiments. The GJK package
from [45] is used for collision checking, and the CVXOPT
package from [46] for solving linear programs. Simulation and
experiment videos are available in the supplementary material.

A. Numerical Simulations

1) Setup of Simulation Environments: All simulations are
conducted in PyBullet with a fixed integration time step
of ∆t “ 1

240 s. Unless otherwise specified, the target object has
a mass of 10kg, a ground friction coefficient of 0.8, and a side
friction coefficient of 0.2. Robots are homogeneous cylinders
of 0.3m diameter and have a maximum pushing force of 100N.
A task is considered complete when the object is within 0.05m
and 0.15rad of the goal pose.

Control Scheme. As discussed in Sec. IV-C1, each robot
is controlled by a two-level scheme. The desired velocity
to track the arc segments is given by un “ ppvn, pωnq as
in (12), with gains Kvel “ 5 and Krot “ 1. A low-level
proportional controller then generates the forces fn,drv “

400ppvn ´ vnq and the torques χn,drv “ 20ppωn ´ ωnq, which
are clipped by the actuation limits and applied through the
force/torque API of PyBullet. The default robot-ground
friction is disabled, so robots move only under the commanded
and clipped forces/torques. Instead of explicitly modeling the
contact dynamics of Mecanum wheels [47], this formulation
serves as an abstraction of the ideal omni-directional platform,
while the actuation limits bound the realizable pushing forces.

Physics Interaction. PyBullet resolves contacts via a
sequential-impulse scheme that approximates a Mixed Linear
Complementary Problem (MLCP) under the non-penetration
and Coulomb friction constraints. However, its lateral and
spinning friction are modeled independently, which is incon-
sistent with the coupled limit-surface friction model in the
proposed mode-generation module, and may under-represent
the coupled nature of real-world contact. To mitigate this,
the object-ground friction of PyBullet is replaced by the
ellipsoidal limit-surface model in the force-moment space [2],
with more implementation details in Appendix A2. A sensi-
tivity study towards different friction models is provided in



Fig. 10. Simulation results of the proposed PushingBot system in two scenarios, including the timed path tSmu, generated subtasks with strict partial
order (numbered and in different colors), hybrid plans and final trajectories S‹, robot control inputs, and the task overall assignment results (indexed by the
object ID and order of segments). Top: 5 objects (diamond, circular, triangular, square and H-shape), 9 subtasks, and 8 robots within a forest-like workspace;
Bottom: 8 objects (4 rectangular and 4 quarter-circle), 13 subtasks and 8 robots.

TABLE II
SUMMARY OF RESULTS FOR NOMINAL SCENARIOS

Metric Scen. I Scen. II Scen. III

Objects/Robots 4/6 5/6 8/8
MAPF Time (s) 9.6 12.2 15.3
Subtasks Generated 9 9 13
Longest Task Dependency 5 5 5
Task Assignment Time (s) 2.0 2.1 2.5
Hybrid Optimization Time (s) 0.4 0.4 0.4
Pushing Modes 12 20 18
Completion Time (s) 70 130 95
Total Planning Time (s) 16.5 23.5 28.3

the supplementary material, including the relative ranking of
all methods and the main conclusions remain unchanged.

Algorithm configuration. The planning horizon for the
dynamic task assignment is set to 4. Assignments are re-
evaluated once the first two tasks are completed or after 80s.
The tracking threshold δc is set to 0.1m. The desired velocity
is updated at 60Hz while low-level controllers are executed
at 240Hz, synchronized with the simulation step. More details
are provided in the supplementary material.

2) Nominal Scenarios: As shown in Fig. 2 and 10, three
distinctive scenarios are tested: (I) 4 objects (T-shape, cylinder,
semi-circular ring, desk-like) are pushed by 6 robots; (II) 5
objects (circular, triangular, square, H-shape, and diamond) are
pushed through passages between dense prismatic obstacles by
6 robots to their goals; (III) 8 objects (4 rectangular bars and
4 quarter-circle segments) are rearranged from a square and
circular ring to a rounded square by 8 robots. The proposed
framework successfully completes all pushing tasks in all
three scenarios, with the planning time of each component
summarized in Table II. The solution time for MAPF increases
with the number of objects, while the longest dependency
chain remains constant at 5 across three scenarios as primarily

determined by path overlap. The time for the task assignment
remains consistent, due to the receding-horizon scheme. More-
over, the planning time for the hybrid optimization per subtask
across all objects takes around 0.4s, which is decoupled from
overall task complexity due to the neural accelerated scheme.
The task completion time is collectively influenced by total
path length, the task dependency, and the object intrinsics.

3) Generalization: As discussed in Sec. IV-D2 several
notable generalizations of the proposed method are evaluated.

(I) Movable obstacles. As shown in Fig. 11, 3 target
objects are pushed by 6 robots in a 20m ˆ 20m workspace
with fixed (dark grey) and movable (light grey) obstacles.
If movable obstacles are treated as fixed (in the top row
of the figure), the objects must take inefficient detours and
narrow passages, yielding longer MAPF planning times, more
complex trajectories, more frequent mode switching, and in-
creased task duration. In contrast, treating the movable obsta-
cles as pushable objects without predefined goals allows our
framework to push these obstacles into the nearest freespaces,
creating wider passages and shortcuts for the target objects.
This generalization reduces the task duration from 83.2s to
63.3s by 23%, while retaining safety and liveness.

(II) Heterogeneous robots. A scenario of pushing race is
designed to demonstrate the capability of the proposed method
to handle heterogeneous robots and objects. As shown in
Fig. 14, the setup involves two T-shape objects and two trian-
gular objects. For each shape, one object has a mass of 5kg
and the other has a mass of 20kg. These objects are placed in
a row at one end of a 20mˆ 20m workspace, with the target
position at the opposite end. In total, 6 heterogeneous robots
are deployed, i.e., the maximum pushing forces fn,max in (14)
are 100N , 30N and 10N and each force level is associated
with two robots. The assignment and planning strategy as



Fig. 11. Generalization of the proposed method to scenarios with movable obstacles: all obstacles are treated as fixed (Top); movable obstacles, shown in
lighter gray, are pushed to create wider passage for both triangular and L-shape objects and provide a shortcut for the T-shape object. (bottom).

Fig. 12. Generalization of the proposed method to planar assembly with 14 objects and 12 robots. Note that 11 objects are selected and pushed to suitable
target positions, while the other objects (in grey) are treated as movable obstacles.

described in Sec. IV-D2 is adopted, by which all tasks are
completed with different duration but all below 40s. Compared
to the nominal method which neglects these heterogeneity, the
assignments and pushing modes are intuitive, i.e., (i) heavier
objects are always pushed by more and stronger robots, while
lighter objects are handled by the remaining robots. (ii) robots
with larger forces are always assigned to the contact point that
requires more force. Although the task can still be completed
via the nominal method, the task duration is much longer (by
minimum 23% and maximum 188%). Last but not least, as
shown in Fig. 15, quadruped and differential-drive robots are
adopted for the collaborative pushing task. We adopt a soft
“turn-and-forward” scheme that smoothly scales linear speed
by the heading error, which suffices for our task settings. For
higher-precision pushing with nonholonomic platforms (e.g.,
centimeter-level path tracking), a more foundational treatment
such as Jourdain’s principle [29] may be required.

(III) Planar Assembly. As shown in Fig. 12, a planar
assembly task of assembling the word “PUSH” via 14 ob-
jects and 12 robots is demonstrated. The desired layout is
highlighted in red at the center of a 26m ˆ 20m area,
with objects initially randomly placed. Heuristic programming
method in [48] is adopted to select objects and optimize their
goal positions. For instance, two identical semicircular ring-
like objects are chosen to form the letters “S”, while L-shaped
objects can be part of the letter “H”, and so on. Objects
that are not required in the assembly, such as parallelograms
or cylinders, are treated as movable obstacles. The selected
objects and their timed paths are shown in Fig. 12. Once this
procedure is completed, the proposed scheme is applied to

push the selected objects to their goal positions. The whole
assembly is completed at t “ 108s, during which 13 subtasks
and 19 pushing modes and 6 mode switches are performed.

(IV) 6D Pushing. As shown in Fig. 13, the generalization to
pushing tasks in complex 3D workspace is demonstrated. The
scenario consists of 8 objects and 12 robots within a workspace
of 10m ˆ 10m ˆ 10m. Initially, all objects are placed at one
vertex of a cube and should be pushed to another vertex, i.e.,
to swap their positions. The resistance coefficient of all objects
are set to K “ 100. Thus, the MAPF algorithm in 3D is first
employed to generate 8 timed paths tSmu within 2.3s, which
are then decomposed into 13 subtasks. All tasks complete
at t “ 165s with a total planning time of 15.2s and 21
pushing modes. The difficulty of stably pushing an object
in 3D space depends on the diversity of its surface normal
vectors. For instance, the triangular prism has only 5 faces,
while the sphere has arbitrary normal vectors. Consequently,
the proposed method assigns 6 robots to the triangular prism,
but only 3 robots to the sphere.

4) Comparison of Diffusion and Iterative Sampling: We
compare the proposed diffusion-based method with the it-
erative sampling method in Sec. IV-B1 in terms of sample
efficiency and execution quality. As shown in Fig. 16 and
summarized in Table III, the diffusion model, especially the
DDIM variant, outperforms iterative sampling in both sample
efficiency and execution time. With only 8 iterations and
0.15s planning time, DDIM achieves a comparable execution
time of 20.6s to the iterative sampling method after 5000
iterations, demonstrating a 35-fold reduction in iterations.
Iterative sampling with the mode library as introduced in



Fig. 13. Generalization of the proposed method to 6D pushing tasks, where the positions of 8 objects are swapped via 12 robots. Note that the robots switch
subtasks frequently due to the cluttered workspace and the large number of partial order dependencies between the subtasks.

Fig. 14. Generalization of the proposed method to 12 heterogeneous
robots with varying maximum pushing forces, and 2 objects with different
masses: heterogeneity is considered (Left) and neglected (Right) in the hybrid
optimization, resulting in significantly different execution times.

Fig. 15. Generalization of the proposed method to non-holonomic robots
such as quadruped and differential-drive robots. Snapshots along with velocity
control inputs are also shown.

Sec. IV-B2 shows diminishing returns beyond 1000 iterations,
with execution time plateauing at around 20s despite a 408%
increase in planning time. Without the diffusion policy or
the mode library, the computational cost becomes prohibitive,
requiring 453s for planning with only marginal improvement
in execution time. This highlights that diffusion models distill
knowledge from high-iteration sampling into efficient gener-
ative models, offering a computationally superior alternative.
Furthermore, the diffusion-generated plans exhibit execution
feasibility comparable to those from iterative sampling, con-
firming their accuracy despite a generation time of just 0.15s.

5) Comparison of Single-object Pushing: We compare the
performance of the proposed hybrid optimization scheme
(HybDIF) against six baselines in single-object pushing tasks:
(I) KGHS, the keyframe-guided hybrid search without neu-
ral acceleration; (II) FDIF, a diffusion-based algorithm that
generates a complete hybrid plan, which incorporates image

TABLE III
COMPARISON BETWEEN DIFFUSION AND ITERATIVE SAMPLING

Method ITR1 PT (s)2 ET (s)3

Diffusion (DDPM) 100 1.60 20.4
Diffusion (DDIM) 8 0.15 20.6

Samp. (w/ mode library)

10 0.05 46.8
100 0.22 32.1

1000 2.45 24.5
5000 12.4 20.2

Samp. (w/o mode library) 5000 453 21.6
1 Number of iterations or inference steps. 2 Planning time
per trial. 3 Execution time per trial.

observations for cluttered environments; (III) HMS, which
uses heuristic sampling for mode generation without further
evaluation and optimization; (IV) CMTC, adapted from [29]
without co-optimizing the path and modes; (V) MARL, a
multi-agent reinforcement learning baseline based on the PPO
algorithm [49]; (VI) PG-RL, an extension of MARL with
a guiding path planning module, from which a local target
position is selected for guiding RL agents.

As shown in Fig. 17, we evaluate two scenarios: a nominal
one with a T-shaped object and obstacles, and a perturbed one
where the object is deformed and obstacles are rotated. FDIF,
RL, and PGRL sample data only in the nominal scenario, while
the perturbed environment is unseen. In contrast, HybDIF
collects data exclusively in free space, independent of obstacle
layouts, and does not include the deformed object. For both
scenarios, initial and goal positions are random, and each
algorithm is tested 30 times. Table IV reports five metrics
(success rate, execution time, planning time, control cost,
collision count) for N “ 1, 2, 4 robots.

In the nominal scenario, HybDIF achieves the highest
success rate (100%) with the shortest execution and planning
times across all robot numbers. It also maintains the lowest
control cost and collision count, demonstrating superior overall
performance. KGHS also achieves 100% success for N “ 2, 4.
However, its execution and planning times, along with control
costs, are significantly higher than HybDIF. In contrast, FDIF
has a lower success rate and higher planning time and control
costs than HybDIF and KGHS. CMTC achieves a success
rate of 96% for N “ 4, but for N “ 1, 2, it has a much
lower success rate (72% and 84%), as the smaller matching
degree between the path and the contact modes. Although
HMS achieves a 100% success rate for N “ 2, 4 it has
the longest execution time and highest control cost. PGRL



Fig. 16. Comparison of the diffusion-based method (Left) and iterative sampling (Right) for generating keyframes and pushing modes. The diffusion method
generates multi-modal policies in 8 iterations with an execution time of 19s, while iterative sampling requires 5000 iterations for similar plans.

Fig. 17. Comparison of the proposed method with 5 baselines in the single-object pushing task, in a nominal environment that are similar to training datasets
(Left) and a perturbed environment where obstacles are tilted and objects are deformed (Right).

performs competitively with a success rate around 96%, but
its control cost and collision count exceed HybDIF. Lastly,
MARL has the lowest success rate and highest collision count,
indicating poor performance for long-distance pushing tasks.
As analyzed in Fig. 19, PGRL reduces the difficulty of learning
long-distance pushing strategies by selecting local goals.

More importantly, in the perturbed scenario, HybDIF main-
tains the best performance with a 100% success rate, the
shortest execution time and the fastest planning time across
all robot numbers, validating its robustness to perturbations
in obstacle layout and object shape. In contrast, FDIF ex-
periences a significant drop in success rate. As shown in
Fig. 18, the diffusion model generates valid plans effectively
in the nominal scenario. However, the generated keyframes
are often in collision within the perturbed scenario due to
insufficient training data that fails to cover a diverse range
of obstacle distributions and object shapes. yielding a much
higher collision count by 720%. Similar degradation can be
found in MARL and PGRL, with a reduced success rate

(by 10% and 26%) and increased collision count (by 27% and
233%). Though PGRL still maintains an advantage compared
to MARL, it experiences a more significant performance drop,
indicating its vulnerability to the environment perturbations.

6) Comparison of Multi-object Pushing: To further eval-
uate the performance of the proposed neural accelerated
combinatorial-hybrid optimization method (NACHO), the fol-
lowing three baselines are considered: (I) CHO, which uses
the same model-based task assignment and hybrid optimiza-
tion modules as NACHO, but without diffusion-based neural
acceleration; (II) SCE, which disregards the heterogeneity of
robots and objects and instead assumes uniform capabilities,
e.g., identical object weights and robot force limits in both task
assignment and mode generation; (III) NTD, which retains the
task-allocation algorithm of [23] but omits the MAPF-based
sub-task decomposition and partial-order construction, so the
robots push the object directly along the raw MAPF path.

Fig. 20 shows snapshots of one execution in the nominal
scenario with varying object masses and shapes. NACHO



Fig. 18. The denoising process of the baseline method FDIF in both the nominal scenario (Top) and perturbed scenario (Bottom), where the predicted
keyframes appear in collision within the perturbed scenario, which would lead to a higher collision count and frequent replanning in online execution of FDIF.

Fig. 19. The training and testing results of MARL-based baselines: the vanilla MARL [49] (Left) and the path-guided PG-RL (Right).

TABLE IV
COMPARISON OF SINGLE-OBJECT TASKS WITH N “ 1, 2, 4 ROBOTS FOR NOMINAL AND PERTURBED ENVIRONMENTS (AVERAGED OVER 30 TESTS)

Env Method Success Rate Execution Time Planning Time Control Cost Collision Count

N=1 N=2 N=4 N=1 N=2 N=4 N=1 N=2 N=4 N=1 N=2 N=4 N=1 N=2 N=4

Nominal

HybDIF(ours) 1.00 1.00 1.00 35.8 21.5 22.4 1.87 0.88 1.02 25.2 17.7 13.1 0.12 0.03 0.03
KGHS 0.97 1.00 1.00 38.2 28.3 23.2 4.76 3.67 4.25 26.1 17.3 14.2 0.31 0.03 0.03
FDIF 0.87 0.94 0.97 46.3 38.4 32.5 3.26 2.10 1.25 31.4 24.5 20.7 0.65 0.31 0.25

CMTC 0.72 0.84 0.97 95.3 68.7 50.1 10.5 4.20 3.10 80.4 32.6 24.9 0.30 0.04 0.05
HMS 0.93 1.00 1.00 70.2 40.8 34.0 8.52 2.40 2.00 76.3 28.5 22.4 0.80 0.20 0.07

PGRL 0.97 1.00 1.00 47.9 25.6 28.3 3.71 1.06 0.98 27.3 16.8 16.2 0.52 0.30 0.27
MARL 0.53 0.64 0.55 67.2 52.2 59.4 2.04 1.73 2.12 40.2 24.1 28.2 0.72 1.43 1.17

Perturbed

HybDIF(ours) 1.00 1.00 1.00 36.4 28.1 22.3 2.04 0.98 1.15 26.3 17.6 12.8 0.22 0.06 0.03
KGHS 0.97 1.00 1.00 36.7 29.5 23.7 4.82 3.92 4.18 28.1 18.3 15.3 0.32 0.03 0.03
FDIF 0.72 0.82 0.86 52.1 42.3 37.9 5.90 4.92 2.96 36.5 28.9 25.1 1.21 0.60 0.42

CMTC 0.65 0.76 0.93 102.4 73.2 55.8 11.7 4.60 3.30 85.7 34.8 25.7 0.32 0.10 0.08
HMS 0.85 1.00 1.00 82.0 48.5 38.1 9.53 3.05 2.34 87.9 32.6 23.0 0.85 0.26 0.08

PGRL 0.64 0.75 0.82 64.5 56.4 44.3 2.06 2.12 1.94 38.4 27.6 21.6 1.50 1.23 0.87
MARL 0.47 0.57 0.52 65.1 62.7 58.1 1.98 1.62 1.19 39.5 24.1 22.1 1.16 1.72 1.34

completes the task first at t “ 70s, while CHO is slower
without neural acceleration. Due to the simplified module
of cost estimation, SCE is much slower and often exhibits
inefficient behaviors, e.g., heavier objects such as the table
and the semi-circle are assigned to only two robots. Without
the ordering of subtasks, NTD fails to complete the task as
the objects often block each other during execution.

Moreover, a quantitative comparison across 50 tasks in dif-
ferent environments is provided in TableV and Fig. 21. MAPF
and task decomposition take about 9.1s across all methods,
while task assignment and hybrid optimization take 1.82s and
2.64s for NACHO, respectively. NACHO achieves the shortest
planning (14.7s) and execution time (78.7s), outperforming
other methods by 37.8%. In contrast, SCE is the slowest
with an execution time of 94.7s, highlighting the importance
of considering robot and object heterogeneity. NTD has the

lowest success rate (44%) and high execution time (86.2s),
proving that simply following the MAPF path is infeasible.

7) Geometric Pushing Puzzle for Ants: A recent study
in [50] poses a hard geometric puzzle for hundreds of ants
to lift, push or pull a large dumbbell-shaped object through
two narrow passages in confined space, as shown in Fig. 22.
The ants demonstrate amazing coordination and collaboration
to accomplish this task, despite their limited field of view
and local communication. For (maybe unfair) comparisons,
a similar scenario is replicated, for which 1 and 6 robots
are deployed to see different strategies. Note that without the
ability to pull, the robots can still accomplish the task via the
proposed scheme. It takes 103s and 23 modes for 1 robot,
and 52s and 9 modes for 6 robots. Nonetheless, the observa-
tions in [50] have inspired our future work towards distributed
coordination schemes with only local communication.



Fig. 20. Comparison of different baseline methods for the multi-object pushing tasks, where 4 objects have different shapes and masses.

10 20 30 40 50

NACHO
CHO
SCE
NTD

10 20 30 40 50

NACHO
CHO
SCE
NTD

Fig. 21. Accumulated planning time (Left) and accumulated execution time
(Right) over 50 multi-object pushing tasks.

TABLE V
COMPARISON WITH 3 BASELINES FOR THE MULTI-OBJECT PUSHING TASK

Algorithm SR1 MDT2 TAT3 HOT4 ET5

NACHO(ours) 1.00 10.3 1.78 2.64 78.7

CHO 1.00 10.2 1.78 11.7 81.3

SCE 1.00 10.3 1.83 4.27 94.7

NTD 0.45 9.05 1.65 8.26 89.7
1 Success rate. 2 Time for task decomposition.
3 Time for task assignment. 4 Time for hybrid optimization.
5 Execution time.

B. Hardware Experiments

1) System Description: As shown in Fig. 23, the experi-
ments are conducted in a 5mˆ5m lab with the OptiTrack
motion capture system for global positioning. Four iden-
tical Mecanum-wheel robots are deployed, each measuring
0.2m ˆ 0.3m with a maximum pushing force of 10N. Each
robot is equipped with a NVIDIA Jetson Nano running ROS
for onboard communication and control. The centralized plan-
ning and control algorithm runs on a laptop (Intel Core i7-
1280P), which wirelessly transmits the velocity commands un

in (12) to the robots, and executed by their onboard velocity
controllers. Objects are made of cardboard, each weighing
approximately 1 kg, with a ground friction coefficient of 0.5
and a side friction coefficient of 0.2. These parameters were
not meticulously calibrated, e.g., using force sensors, but are

Fig. 22. Hard geometric pushing puzzle proposed in [50] from the left side
to the right side within the confined space. Top: the final object trajectory
as pushed by hundreds of ants, abstracted from the recorded video in [50];
Down: the object trajectory via the proposed method with 1 robot (within 103s
and 23 modes) and 6 robots (within 52s and 9 modes).

sufficient for the algorithm to complete the target tasks, as
the kinematic-level control is relatively insensitive to those
force-related parameters. With above setup, two scenarios
were tested: (I) a T-shaped and an L-shaped object placed
on opposite sides of a narrow passage formed by bar-shaped
obstacles, with four robots swapping their positions under
strict task ordering constraints; (II) an L-shaped object, a
long rectangular object, and a T-shaped object arranged in a
triangular layout, where four robots rotate the objects counter-
clockwise around a center obstacle.

2) Results: As shown in Fig. 23, the proposed method
successfully completes the pushing tasks in both scenarios.
In Scenario-I, MAPF generates two collision-free trajectories
in 8.2s, decomposed into 5 subtasks in 0.5s. Robots are divided
into two subgroups in 0.2s for task assignment: one subgroup
pushes the T-shaped object upwards, while the other pushes the
L-shaped object right. By t “ 40s, the T-shaped object reaches



Fig. 23. Snapshots of the PushingBot system during hardware experiments, including the pushing subtasks, the hybrid plan, control inputs and Gantt graph
of subtasks. Left: four robots are deployed for swapping two objects in Scenario-I; Right: four robots are deployed to rotate three objects in Scenario-II.

its target, and the L-shaped object begins its second subtask.
All objects reach their goals by t “ 85s with 7 modes. In
Scenario-II, MAPF generates three timed trajectories in 1.2s,
decomposed into 5 subtasks in 0.6s. Robots are divided into
two subgroups in 0.2s. In particular, the L-shaped object
subtask p2, 1q is assigned to one subgroup, and the rectangular
object subtask p3, 1q is assigned to the other. By t “ 45s,
the rectangular object has reached its target position, clearing
space for the T-shaped object. The L-shaped and rectangular
objects are pushed to their targets by t “ 45s, and the
remaining tasks are completed by t “ 65s with 6 modes. The
real-time progress and velocity control inputs are recorded in
Fig. 23. Note that the actual execution time fluctuates due
to the poor motion of Mecanum wheels in certain directions
around 45˝, causing drifting and slipping. However, the partial
ordering of subtasks and the online adaptation scheme ensure
the system consistently completes the tasks. More details can
be found in the attached videos.

VI. CONCLUSION

This work proposes a combinatorial-hybrid optimization
scheme for synthesizing collaborative pushing strategies for
multiple robots and multiple objects. The scheme consists
of two interleaved layers: the decomposition and assignment
of pushing subtasks; and the hybrid optimization of pushing
modes and forces for each subtask. Moreover, a diffusion-
based predictor is trained to accelerate the generation of
pushing modes during hybrid optimization. It is shown to be
scalable and effective for general-shaped objects in cluttered
scenes. The completeness and feasibility of our algorithm
have been demonstrated both theoretically and experimentally.
Future work includes partial knowledge of the objects, dis-
tributed coordination schemes, and other collaborative tasks
with dynamical and physical constraints among the robots.

ACKNOWLEDGMENT

The authors would like to thank Zhengyu Yang for his help
on the hardware experiments.

REFERENCES

[1] S. Goyal, A. Ruina, and J. Papadopoulos, “Limit surface and moment
function descriptions of planar sliding,” in Proc. IEEE Int. Conf. Robot.
Autom., 1989, pp. 794–795.

[2] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active
sensing by pushing using tactile feedback.” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., vol. 1, pp. 416–421.

[3] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile manipu-
lation with hybrid model predictive control,” Int. J. Robot. Res., vol. 39,
no. 7, pp. 755–773, 2020.

[4] T. Xue, H. Girgin, T. S. Lembono, and S. Calinon, “Guided optimal
control for long-term non-prehensile planar manipulation,” in Proc.
IEEE Int. Conf. Robot. Autom., 2023, pp. 4999–5005.

[5] S. Jeon, M. Jung, S. Choi, B. Kim, and J. Hwangbo, “Learning whole-
body manipulation for quadrupedal robot,” IEEE Robot. Autom. Lett.,
vol. 9, no. 1, pp. 699–706, 2023.

[6] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.” in Proc. Int. Joint
Conf. Artif. Intell., 2015, pp. 1930–1936.

[7] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Proc. Robot., Sci. Syst., 2018.

[8] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2018, pp. 4238–4245.

[9] Y. Xiao, J. Hoffman, T. Xia, and C. Amato, “Learning multi-robot
decentralized macro-action-based policies via a centralized q-net,” in
Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 10 695–10 701.

[10] P. García, P. Caamaño, R. J. Duro, and F. Bellas, “Scalable task
assignment for heterogeneous multi-robot teams,” Int. J. Adv. Robot.
Syst., vol. 10, no. 2, p. 105, 2013.

[11] C. R. Kube, “Task modelling in collective robotics,” Auton. Robot.,
vol. 4, pp. 53–72, 1997.

[12] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE Trans.
Robot., vol. 22, no. 4, pp. 637–649, 2006.

[13] Z. Pan, A. Zeng, Y. Li, J. Yu, and K. Hauser, “Algorithms and systems
for manipulating multiple objects,” IEEE Trans. Robot., vol. 39, no. 1,
pp. 2–20, 2022.

[14] M. Guo and M. Bürger, “Geometric task networks: Learning efficient
and explainable skill coordination for object manipulation,” IEEE Trans.
Robot., vol. 38, no. 3, pp. 1723–1734, 2022.

[15] B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to
guide task and motion planning using score-space representation,” Int.
J. Robot. Res., vol. 38, no. 7, pp. 793–812, 2019.

[16] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
“Long-horizon multi-robot rearrangement planning for construction as-
sembly,” IEEE Trans. Robot., 2022.



[17] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning
compositional models of robot skills for task and motion planning,” Int.
J. Robot. Res., vol. 40, no. 6-7, pp. 866–894, 2021.

[18] A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative
multi-agent planning: A survey,” Comput. Surv., vol. 50, no. 6, pp. 1–
32, 2017.

[19] M. Gini, “Multi-robot allocation of tasks with temporal and ordering
constraints,” in Proc. AAAI Artif. Intell., 2017.

[20] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A
review of the state-of-the-art,” Coop. Robot. Sensor Netw., pp. 31–51,
2015.

[21] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention
networks for scalable multi-robot scheduling with temporospatial con-
straints,” Auton. Robots., vol. 46, no. 1, pp. 249–268, 2022.

[22] M. Guo and M. M. Zavlanos, “Multirobot data gathering under
buffer constraints and intermittent communication,” IEEE Trans. Robot.,
vol. 34, no. 4, pp. 1082–1097, 2018.

[23] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg,
“Dynamic multi-robot task allocation under uncertainty and temporal
constraints,” Auton. Robots., vol. 46, no. 1, pp. 231–247, 2022.

[24] E. Tuci, M. H. Alkilabi, and O. Akanyeti, “Cooperative object transport
in multi-robot systems: A review of the state-of-the-art,” Front. Robot.
AI, vol. 5, p. 59, 2018.

[25] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Trans. Robot., vol. 31, no. 2, pp. 307–321, 2015.

[26] Z. Tang, J. Chen, and M. Guo, “Combinatorial-hybrid optimization for
multi-agent systems under collaborative tasks,” in Proc. IEEE Conf.
Decis. Control, 2023.

[27] M. Sombolestan and Q. Nguyen, “Hierarchical adaptive control for
collaborative manipulation of a rigid object by quadrupedal robots,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023, pp. 2752–2759.

[28] M. Rosenfelder, H. Ebel, and P. Eberhard, “Force-based organization
and control scheme for the non-prehensile cooperative transportation of
objects,” Robotica, vol. 42, no. 2, pp. 611–624, 2024.

[29] H. Ebel, M. Rosenfelder, and P. Eberhard, “Cooperative object trans-
portation with differential-drive mobile robots: Control and experimen-
tation,” Robot. Auton. Syst., vol. 173, p. 104612, 2024.

[30] Z. Tang, Y. Feng, and M. Guo, “Collaborative planar pushing of
polytopic objects with multiple robots in complex scenes,” in Proc.
Robot., Sci. Syst., 2024.

[31] H. Ebel and P. Eberhard, “Cooperative transportation: realizing the
promises of robotic networks using a tailored software/hardware archi-
tecture,” at - Automatisierungstechnik, vol. 70, no. 4, pp. 378–388, 2022.

[32] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” Proc. Conf. Robot. Learn., 2021.

[33] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Proc. Robot., Sci. Syst., 2023.

[34] A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, and
A. Rodriguez, “A long horizon planning framework for manipulating
rigid pointcloud objects,” in Proc. PMLR Conf. Robot Learn., 2021, pp.
1582–1601.

[35] D. Driess, J.-S. Ha, and M. Toussaint, “Learning to solve sequential
physical reasoning problems from a scene image,” Int. J. Robot. Res.,
vol. 40, no. 12-14, pp. 1435–1466, 2021.

[36] A. Mandlekar, D. Xu, R. Martín-Martín, S. Savarese, and L. Fei-
Fei, “Learning to generalize across long-horizon tasks from human
demonstrations,” Proc. Robot. Sci. Syst., 2020.

[37] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion plan-
ning diffusion: Learning and planning of robot motions with diffusion
models.” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023, pp.
1916–1923.

[38] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker,
J. Li, D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in Proc. Int. Symp. Combin.
Search, vol. 10, no. 1, 2019, pp. 151–158.

[39] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Adv. Neural Inf. Process. Syst., vol. 33, pp. 6840–6851, 2020.

[40] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp.
40–66, 2015.

[41] T. Terlaky, Interior point methods of mathematical programming.
Springer Sci. Bus. Media, 2013, vol. 5.

[42] F. M. Yamada, H. C. Batagelo, J. P. Gois, and H. Takahashi, “Generative
approaches for solving tangram puzzles,” Disc. Artif. Intell., vol. 4, no. 1,
p. 12, 2024.

[43] C. Leet, J. Li, and S. Koenig, “Shard systems: Scalable, robust and
persistent multi-agent path finding with performance guarantees,” in
Proc. AAAI Artif. Intell., vol. 36, no. 9, 2022, pp. 9386–9395.

[44] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[45] G. v. d. Bergen, “A fast and robust gjk implementation for collision
detection of convex objects,” J. Graph. Tools, vol. 4, no. 2, pp. 7–25,
1999.

[46] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 2909–2913, 2016.

[47] I. Zeidis and K. Zimmermann, “Dynamics of a four-wheeled mobile
robot with mecanum wheels,” p. e201900173, 2019.

[48] E. Deutsch and K. Hayes Jr, “A heuristic solution to the tangram puzzle,”
Mach. Intell., vol. 7, pp. 205–240, 1972.

[49] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The surprising effectiveness of ppo in cooperative multi-agent games,”
Adv. Neural Inf. Process. Syst., vol. 35, pp. 24 611–24 624, 2022.

[50] T. Dreyer, A. Haluts, A. Korman, N. Gov, E. Fonio, and O. Feiner-
man, “Comparing cooperative geometric puzzle solving in ants versus
humans,” Proc. Natl. Acad. Sci., vol. 122, no. 1, p. e2414274121, 2025.

[51] I. Kao, K. M. Lynch, and J. W. Burdick, “Contact modeling and
manipulation,” Springer Handb. Robot., pp. 931–954, 2016.

APPENDIX

TABLE VI
NOMENCLATURE TABLE

Term Definition Reference

Pushing Mode (ξ) Contact points and forces between
robots and the target object.

Sec. III-A

MAPF Path (Sm) Collision-free timed trajectory. Eq. (2)
Subtask (Sk

m) k-th segment of object path. Eq. (3)
Partial Order (ĺ) Temporal ordering between the sub-

tasks.
Def. 2

Task Plan (τi) Timed sequence of subtasks as the
local plan for robot i.

Def. 3

Subgroup (N k
m) Robot coalition for subtask. Sec. IV-A2

Keyframe (κℓ) Critical system state. Sec. IV-B1
Hybrid Plan (ϑ) A sequence of keyframes and push-

ing modes.
Eq. (8)

Arc Segment (ϱℓ) Trajectory between keyframes. Sec. IV-B1

Primitive Plan (pϑ) Feasible hybrid plan as sequence of
keyframes and modes.

Alg. 2

Diffusion Model Diffusion-based neural network for
generating hybrid plans.

Sec. IV-B2

Primitive Lib. (X ) Library that contains verified hybrid
plans for different subtasks.

Alg. 2

Mode Lib. Library of verified modes. Alg. 2

A. Modeling and Mode Feasibility

1) Pushing Modes and Coupled Dynamics: Given an object
m and a set of robots Nm, working at a particular pushing
mode ξ, the robots can apply pushing forces in different
directions with different magnitude. Denote by f1f2 ¨ ¨ ¨ fNm ,
where fn P R2 is the contact force of robot Rn at contact
point cn, @n P Nm. Furthermore, each force fn can be
decomposed in the directions of the normal vector nn and
the tangent vector τn w.r.t. the object surface at the contact
point cn, i.e., fn fi fnn ` ftn fi fnnnn ` ftnn

K
n . Due to the

Coulomb law of friction see [51], it holds that:

0 ď fnn ď fn,max; 0 ď |ftn | ď µcmf
n
n, (14)

http://pybullet.org


Fig. 24. Illustration of a pushing mode and relevant notations in Sec. A1.

where fn,max ą 0 is the maximum force each robot can apply;
and µcm is the coefficient of lateral friction defined earlier.
Then, these decomposed forces can be re-arranged by:

Fξ fi pFn
ξ , F

t
ξq fi pfn1 , ¨ ¨ ¨ , fnNm

, ft1 , ¨ ¨ ¨ , ftNm
q P R2Nm ,

(15)
and further Fξ fi tFξu denotes the set of all forces within
each mode ξ P Ξm. Furthermore, the combined generalized
force qξ fi pf‹, χ‹q as also used in [2] is given by:

f‹ fi
řNm

n“1 fn; χ
‹ fi

řNm

n“1 pcn ´ xnq ˆ fn, (16)

where ˆ is the cross product and χ‹ is the resulting torque
from all robots. It can be written in matrix form qξ fi JFξ,
where J fi ∇Fξ

qξ is a 3ˆ2Nm Jacobian matrix. Similarly, let
Qξ fi tqξu denote the set of all allowed combined generalized
forces within each mode ξ P Ξm. The coupled dynamics of
the object and robots can be described as follows:

Mm 9pm “ qµm
` qξm “ Qm

µ ppmq `
ř

nPNm
qm,n; (17a)

Mn 9pn “ Qn
drvpun, sn,pnq ´ qm,n, (17b)

where Mm fi diagpMm,Mm, Imq; qm,n is the generalized
pushing force in (16) applied by robot Rn on object Ωm;
and qm,µ fi Qm

µ ppmq “ pfm, χmq is the ground friction,
determined by the velocity pm and object intrinsics. (17a)
models the object’s motion under external forces qξ and qµ

within mode ξ, while (17b) describes the robot’s motion under
the control inputs un and the reaction force from the object.
These equations are instrumental for system modeling and
subsequent analysis, while the simulation is handled by the
physics engine. Denote by ξmptq fi pξmptq,qξmptq,Nmptqq

the contact points, pushing forces and participants for ob-
ject m P M at time t ě 0.

2) Quasi-static Analyses: The friction force Qµppmq

in (17a) lacks a closed-form expression. As also adopted
in [2], [30], the quasi-static analyses assume that the motion
of the target is sufficiently slow, such that its acceleration is
approximately zero and the inertia forces can be neglected.
Consequently, given the desired velocity p‹

m of the object, the
generalized friction force qm,µ is computed as:

qµm
fi rQm

µ pp‹
mq “ ´}D1D2pm}´1

2
D2p

‹
m, (18)

where rQm
µ p¨q approximates Qµp¨q in (17a); D1 fi

diagpfmax, fmax,mmaxq´1, D2 fi diagp1, 1,m2
max{f2maxq; fmax

and mmax are the maximum ground friction and moment
of the target object Ωm. Furthermore, assuming no slipping
occurs during the pushing process, and the robot continuously
applies a net force that exactly counteracts the frictional

force, i.e., qm,ξ “ ´qµm , the object can be pushed at
a constant body-frame velocity pB

m. Under this condition,
the resulting trajectory forms a circular arc, expressed as:
∆sptq fi

´

şt̄

t“0
Rotpωt` ψ0qdt

¯

pB
m, where Rotp¨q denotes

the rotation matrix, ω is the angular velocity in pB, and
ψ0 is the initial orientation of the object. Conversely, given
any two states, sℓ and sℓ`1, the corresponding arc trajectory
ϱℓ “

hkkkkkkj

sℓsℓ`1 can be uniquely determined, along with the body-
frame velocity pB

ϱ that generates it.
3) Feasibility of Pushing Modes: We define the primary

feasibility loss JmF to evaluate whether the pushing forces qm,ξ

are sufficient to counteract frictional forces while maintaining
the object’s motion at the desired body-frame velocity pB:

JmF pξ, pBq fi min
qm,ξPQm,ξ

›

›qm,ξ `Qm
µ ppBq

›

›

1
, (19)

where }}1 is the first norm. To account for the robustness of the
mode against perturbations in velocity direction, we introduce
the multi-directional feasibility loss JmMF, which aggregates the
primary loss over a set of basis velocities D:

JmMFpξ, pBq fi
ÿ

pdPD
wd ¨ JmF pξ, pdq, (20)

where D denotes a set of basis velocities that span the
generalized velocity space, including the desired direction pB.
Each basis direction pd is associated with a weight wd, with
the primary direction assigned the highest weight. This loss is
introduced as a soft measure to account for infeasibility and
uncertainty in certain scenarios. A lower JmMF indicates greater
robustness of the pushing mode ξ, i.e., it can tolerate pertur-
bations in velocity direction while maintaining feasibility.

Definition 4. (I) A mode ξ is force-feasible for a target
velocity pB if and only if JmF pξ, pBq “ 0; (II) A mode ξ
is practically feasible for a target velocity pB if and only if
the robot can stably push the object at velocity pB. ■

Force feasibility is necessary but not sufficient for practical
feasibility. For example, robots without force sensing cannot
precisely apply desired forces via position control alone. Thus,
given a pushing mode ξ and a target velocity pB, the feasibility
check is performed in two stages: (I) Force feasibility: Verify
if JmF pξ, pBq “ 0 holds; (II) Practical feasibility: If force-
feasible, verify the mode in simulation by tracking the arc
trajectory ϱp generated by p. If successful, the mode is
considered practically feasible. Additionally, for real-world
execution, a mode library is maintained to record the mode
and observed tracking error. This helps bridge the gap between
simulation-based feasibility checks and physical execution.

4) Mode Sufficiency: The subgroup of robots Nm is said to
be mode-sufficient for pushing object Ωm if there exists a set
of velocities P‹

m fi tp‹
ju such that: (I) P‹

m can positively span
the R3 space; and (II) the robots in Nm can push object Ωm in
each velocity p‹

j P P‹
m, i.e., there exists a practically feasible

mode ξj for each velocity p‹
j . The set P‹

m satisfying the
above sufficient conditions is referred to as the set of feasible
velocities for the system. Verification of this condition can
be done by iteratively expand the set of feasible velocities,
i.e., by selecting new velocity direction p and generate modes



by (7). If a feasible mode is found, this velocity is added to
the set P‹

m. This process is repeated until when the set P‹
m

can span the R3 space or the set of velocities is exhausted.

B. Proof of Lemmas and Theorems

Proof. of Lemma 1. Assume that after certain iterations,
the largest splitting instance t‹m remains unchanged for all
objects, and there exists m P M such that t‹m ă tL. Let
m‹ fi argminmPMtt‹mu. (I) If @m1, t‹m ă t‹m1 , the next
splitting instance tsm‹ is determined by (5), which implies
that tsm‹ ě t‹m1 ą t‹m‹ . Thus tcm1 will increase, contradicting
the assumption. (II) If there exists m1 such that t‹m1 “ t‹m‹ ,
which implies that two objects collide at same time t‹m‹ , which
contradicts collision-free assumption of the timed paths. Thus,
t‹m can reach tL in finite steps and the algorithm terminates.
Moreover, assume that there exists a loop in the ordering i.e.,
Sk

m ĺ ¨ ¨ ¨ ĺ Sk
m. If segment Sk

m ĺ Sk1

m1 , then it holds
that tk,cm ď tk

1,c
m1 . Following (5), Sk1

m1 can only be created after
the segment Sk

m has been created and removed from rSm.
Thus, Sk

m must be created before itself, which contradicts the
assumption, the partial ordering is strict without loops.

Proof. of Lemma 2. To begin with, the segments of the same
object are followed according to the sequence in Sm, i.e.,
sequentially from S1

m to SKm
m . Then, given any two segments

Sk1
m1

and Sk2
m2

of different objects m1 and m2, consider
the following two cases: if two segments are not partially
ordered, objects m1 and m2 can be moved concurrently;
otherwise, if Sk1

m1
ĺ Sk2

m2
, the second condition requires

that the subsequent object m2 can only be moved after the
preceding segment of object m1 has been traversed. In this
way, if each segment is traversed within a bounded time, each
object can reach its goal state without collision.

Proof. (Sketch) of Lemma 3. The key insight is that any arc in
collision will be split into two shorter arcs, until all the arcs
are collision-free. For these collision-free arcs, the iterative
sampling procedure will try to find intermediate keyframes and
feasible modes. If the iterative sampling fails, the collision-
free arc will be further split. When the arc ϱℓ is sufficiently
short, i.e. |ϱℓ| ă ϵ, it can be approximated by a sequence
of three arcs. Specifically, the arc ϱℓ can be generated by
velocity pℓ with time duration tℓ. With the mode sufficiency
assumption, any velocity pℓ can be positively decomposed
into three primitive velocities p‹

j , where j P t1, 2, 3u, i.e.,
pℓ “

ř3
j“1 λ

‹
jp

‹
j , for λ‹

j ě 0 and j P t1, 2, 3u. Consider
the sequence of arc motion pp‹

1, t1qpp‹
2, t2qpp‹

3, t3q that starts
from sℓ, where tj “ λ‹

j t is the duration of velocity p‹
j .

The Hausdorff distance between the trajectory sequential arc
motion and the original arc ϱℓ can be proved to be bounded by
Opϵq, as detailed in the supplementary material. As each prim-
itive velocity has a feasible mode, this sequence of arc motion
can be replaced by the original arc ϱℓ to form a feasible hybrid
plan. Consequently, the search depth is bounded by |S

k

m|{ϵ

with |S
k

m| being the total length of the path segment, yielding
that the termination condition is reached in finite steps. Thus,
the algorithm is guaranteed to find a feasible solution.

Proof. of Theorem 1. Under condition C2 in Table I, the
collision-free timed paths tSm,@m P Mu can be found by
MAPF algorithms. Alg. 1 decomposes the paths tSm,@m P

Mu into tSmu that satisfies strict partial ordering, with a
guarantee on convergence in Lemma 1. Then, the segments
are assigned to the robots with a horizon of H , while ensuring
that the partial ordering are respected, and furthermore those
segments can be traversed without collisions by Lemma 2.
Meanwhile, under the condition C3, each robot subgroup
assigned to a subtask must satisfy the mode-sufficient con-
dition, which guarantees that the hybrid strategy for each
object is feasible by Lemma 3. Lastly, under the proposed
motion controller, each robot can track any given arc motion
of the object, and apply the required bounded forces. Thus,
all subtasks can be accomplished, which in turns ensures that
the overall pushing task for each object can be fulfilled.


	Introduction
	Related Work
	Task and Motion Planning
	Collaborative Pushing
	Neural Policies for Task and Motion Planning

	Problem Description
	Model of Workspace and Robots
	Collaborative Pushing Modes
	Problem Statement

	Proposed Solution
	Decomposition and Assignment of Pushing Tasks
	Decomposition and Ordering via MAPF
	Dynamic Task Assignment

	Accelerated Hybrid Optimization for Collaborative Push
	Keyframe-guided Hybrid Search
	Diffusion-based Neural Acceleration

	Online Execution and Adaptation
	Mode Execution
	Online Adaptation upon Failures

	Discussion
	Computation Complexity
	Generalization
	Limitation


	Numerical Experiments
	Numerical Simulations
	Setup of Simulation Environments
	Nominal Scenarios
	Generalization
	Comparison of Diffusion and Iterative Sampling
	Comparison of Single-object Pushing
	Comparison of Multi-object Pushing
	Geometric Pushing Puzzle for Ants

	Hardware Experiments
	System Description
	Results


	Conclusion
	References
	Appendix
	Modeling and Mode Feasibility
	Pushing Modes and Coupled Dynamics
	Quasi-static Analyses
	Feasibility of Pushing Modes
	Mode Sufficiency

	Proof of Lemmas and Theorems


